I was not informed before this meeting that my notes would be scanned and put on a CD. Had I known in advance, I would have prepared them with greater care. I apologize for their poor quality.
Category 0

Reference: V. Ginzburg, N. Guay, E. Opdam, R. Rouquier
math.RT/0212036

\[W: \text{Weyl group (finite real reflection group)} \quad b: \text{reflection representation of } W \text{ (over } \mathbb{C}) \]

\[b: \text{Cartan subalgebra of a simple Lie algebra } \mathfrak{g} \text{ with associated Weyl group } W. \]

ex: \(b \cong \mathbb{C}^{n^2} = \text{n x n diagonal matrices of trace 0} \), \(W = S_n \) (type A).

\[(\text{smash}) \]

Semi-direct product: \(A: \text{ring}, \ G: \text{a finite group acting on } A \text{ by ring automorphisms} \]

\[A \rtimes G = \{ a_g | a \in A, g \in G \} \quad (a_g)(a_{g'}) = (a, g)(a, g) \]

\[T(b \otimes x) = \text{tensor algebra of } b \otimes x = \bigoplus_{k=0}^\infty (b \otimes x)^{\otimes k} \]

\[
\left\{ \begin{array}{c}
\{ \text{reflecting hyperplanes in } b \} \\
\{ V \in GL(V) | s(V) = V \}
\end{array} \right\} \xrightarrow{\text{bijection}} \left\{ \text{reflections in } W \right\}
\]

\[V \xrightarrow{\text{pointwise stabilizer of } V \text{ in } W = \{1, x\}} \]

Ex: \(W = S_n, \ b = \mathbb{C}^{n^2} = \left\{ (d_1, \ldots, d_n) \mid \sum d_i = 0, d_i d_j = d_j d_i \right\} \)

\[\left\{ \begin{array}{c}
\{ \text{Killing form, non-degenerate } W\text{-invariant bilinear form on } b \}
\end{array} \right\}
\]

Ex: \(A, B \in \mathfrak{sl}_n \), \((A, B) = \frac{1}{n} \text{Tr}(AB) \).
\[S = \text{set of reflections in } W. \text{ For } s \in W, \text{ let } b_s = \{ v \in V \mid s(v) = v \} \] and write
\[b = b_s \oplus b_v : s \text{-stable decomposition } s(b_v) = -b_v. \text{ Let } \alpha_s \in b^* \text{ be such that } \alpha_s | b_s = 0 \text{ and } \alpha_s(b_v) = 2. \text{ The } \alpha_s \text{ are called roots.} \]

Ex: \[\alpha_{x_j - x_k}^* = x_j - x_k \quad \alpha_{x_j - x_k}^* = \frac{x_j - x_k}{jk}. \]

Let \(c : \frac{b^*}{W} \to \mathbb{C} \) is a \(W \)-invariant function on \(S \).

Fact: There are only two possibilities: \(\frac{b^*}{W} \) has cardinality 1 or 2.

\[\Rightarrow c \text{ takes } 1 \text{ or } 2 \text{ values.} \]

Ex: \(W = S_n \)

Let \(\langle , , \rangle : b^* \times b^* \to \mathbb{C} \) be the canonical pairing.

Def: Let \(t \in \mathbb{C} \) as above. The \(\text{universal Chevalley algebra} \) \(\mathfrak{H}_t(W) \) is the quotient of \(T(b^* \times b^*) \) by the following relations:

1) \(\alpha_x \alpha_y = \alpha_y \alpha_x, \quad \alpha_x \alpha_y \alpha_x = \alpha_y \alpha_x \alpha_y \quad \forall \alpha_x, \alpha_y \in b^* \quad \forall x, y \in b^* \)

2) \(\alpha_x \alpha_y - \alpha_y \alpha_x = t \langle x, y \rangle - \sum_{\alpha_s} c_s \langle \alpha_s, x \rangle \langle y, x \rangle = s \).

\[\mathfrak{H}_t = \mathbb{C}[b^*] \times W \]

\[\text{polynomials on } b^*, \]

Filtration on \(\mathfrak{H}_t(W) \): \(\deg(x) = 1 = 2 \deg(y), x \in b^*, y \in b, \deg(w) = 0 \forall w \in W \)

\[F_0 = \mathbb{C}W, F_1, F_2, \ldots, F_i = \text{span of monomials of degree } \leq i. \]

This filtration comes from the grading on \(T(b^* \times b^*) \times W \).
\[\mathfrak{g}^\vee (H^*_c(W)) = \bigoplus_{k \geq 0} \frac{F_{k+1}}{F_k} / \frac{F_k}{F_0} \quad \text{This is a ring.} \]

\[\frac{F_{k+1}}{F_k} \times \frac{F_{k+1}}{F_k} \longrightarrow \frac{F_{k+b+2}}{F_{k+b+1}} \]

\[x, y \in \frac{F_k}{F_0}, \quad y \cdot x - x \cdot y = \frac{yx - xy}{F_0} \]

\[= 0 \quad \text{in } \frac{F_k}{F_0}, \]

because \(yx - xy \in \mathfrak{g}[W] = F_0 \subset F_1.\)

\[\implies \mathfrak{g}^\vee (H^*_c(W)) \]

Theorem (Etingof-Ginzburg): This map is an isomorphism. \((\text{PBW-property})\)

Corollary: Suppose that \(\{x_1, \ldots, x_r\}\) is a basis of \(\mathfrak{g}^*\)

\[\{y_1, \ldots, y_s\} \quad \text{is a basis of } \mathfrak{g} \]

Then \(\{x_1^{a_1} \cdots x_r^{a_r} w_1^{b_1} \cdots w_s^{b_s} | a_i, b_i \in \mathbb{Z}_{\geq 0}, w \in W \}\) is a vector space basis of \(H^*_c(W)\)

Corollary: The linear map \(\mathfrak{g}[\mathfrak{b}] \otimes \mathfrak{g}[W] \otimes \mathfrak{g}[\mathfrak{b}] \longrightarrow H^*_c(W)\) given by multiplication is an isomorphism.

\[\implies H^*_c(W) \text{ has a (multiplicative) triangular decomposition.} \]

Analogue: \(\mathfrak{gl}_n = \mathfrak{m} \oplus \mathfrak{n}^+ \oplus \mathfrak{m}^+; \text{ upper-triangular matrices} \)

\(\mathfrak{n}^+: \text{ diagonal matrices of trace 0, } \mathfrak{m}^+: \text{ lower}\)

The PBW theorem for \(U(\mathfrak{g})\) implies that \(U(\mathfrak{gl}_n) = U(\mathfrak{m}) \otimes U(\mathfrak{n}) \otimes U(\mathfrak{m}^+).\)
From now on, we will assume that \(t = 1 \) (if \(\quad \quad H_{t}(W) \equiv H_{1}(W) \)).

Standard modules: Let \(\sigma \in \text{Irr}(W) \). We can pull-back \(\sigma \) to a representation of \(A[\xi] \times W \) via \(A[\xi] \times W \rightarrow A[W] \).

Set \(\Delta(\sigma) = \text{Ind}_{A[\xi] \times W}^{A[W]} H_{t}(W) \). \(\Delta(\sigma) \) is a left \(H_{t}(W) \)-module.

PBW corollary \(\Rightarrow \Delta(\sigma) \cong A[\xi] \otimes \sigma \) as left \(A[\xi] \)-module.

\(H_{t}(W) \) is also graded:

\[
\begin{align*}
\deg(y) &= 1 \quad \forall y \in b^* \\
\deg(w) &= 1 \quad \forall w \in W.
\end{align*}
\]

\(\Rightarrow \Delta(\sigma) \) is (negatively) graded, \(\Delta(\sigma) = \bigoplus_{j \geq 0} \Delta(\sigma)_j \). \(\Delta(\sigma)_0 \cong \sigma \).

Up to a shift, this is an inner grading: choose dual bases \(\{ x_{li} \} \text{ and } \{ y_{li} \} \) of \(b^* \) and \(b \). Set \(\mathfrak{h} = \frac{1}{2} \sum_{i=1}^{r}(x_i y_i + y_i x_i) \).

Lemma: \([b, x_i] = -x_i \) and \([b, y_i] = y_i \) \(\forall i \in \mathbb{N} \).

Proof: \([b, x_i] = -\frac{1}{2} \sum_{i=1}^{r}(x_i [x_i, x_i] + [x_i, x_i] x_i) \)

\[
= -\frac{1}{2} \sum_{i=1}^{r} \left(x_i (x_i x_i + \sum_{s \in S} c_s <x_i y_i> x_i x_i) + (x_i y_i - \sum_{s \in S} c_s <x_i y_i> x_i x_i) x_i \right)
\]

\[
= -x_i + \frac{1}{2} \sum_{s \in S} c_s \sum_{i=1}^{r} <x_i y_i> <x_i y_i> (x_i + s(\mathfrak{h})) s
\]

\[
= -x_i + \frac{1}{2} \sum_{s \in S} c_s <x_i y_i> (\mathfrak{h} + s(\mathfrak{h})) s = -x_i \mathfrak{h}.
\]

\[
= 0
\]
Y acts by D on \(\Delta(\sigma)_0 \equiv \sigma, \sigma_0 \), if \(\forall \in \Delta(\sigma)_0 \), \(h(v) = \frac{1}{2} \sum_{i=1}^{k} \left[x_i y_i - \sum_{s \in \sigma} \gamma_i < x_i, y_i > x_i, y_i > s \right] (v) \).

\[
\frac{1}{2} \sum_{i=1}^{k} \left[x_i y_i - \sum_{s \in \sigma} \gamma_i < x_i, y_i > x_i, y_i > s \right] (v) = \frac{1}{3} \left(h + \sum_{s \in \sigma} \gamma_i x_i y_i < x_i, y_i > s \right) (v) \\
\text{where } c \in \mathbb{Z} \Gamma = \text{center of } \mathbb{C}[\Gamma]
\]

Recall: Schur's Lemma \(\Rightarrow h \) acts on \(\sigma \) by a scalar \(x(c, \sigma) \).

This observation and the previous lemma \(\Rightarrow h \cdot v = (x(c, \sigma) + j) v \) if \(\forall \sigma \).

The grading on \(\Delta(\sigma) \), up to the shift \(x(c, \sigma) \), is given by \(h \).

Set \(H_c = H_{\mathbb{C}[\Gamma]}(W) \).

Corollary: \(\Delta(\sigma) \) has a unique simple quotient (denoted \(L(\sigma) \).

This is a standard argument for Verma modules.

Proof: Let \(J \) be the sum of all the proper submodules of \(\Delta(\sigma) \). Then \(J \) must be graded via the action of \(h \). Moreover, \(\Delta(\sigma)_0 \cap J = \{0\} \), since any \(0 \neq v \in \Delta(\sigma)_0 \) generates \(\Delta(\sigma) \), hence \(\Delta(\sigma)_0 \cap N = \{0\} \) for any proper submodule \(N \subseteq M \).

\(\Rightarrow J \) is the unique proper maximal submodule of \(\Delta(\sigma) \).

\[
0 \rightarrow J \rightarrow \Delta(\sigma) \rightarrow L(\sigma) \rightarrow 0 \quad J = \text{rad}(\Delta(\sigma)) \]

(Standard modules \(V(\sigma) \))

Via \(C[\mathbb{Z}] \times W \rightarrow C[W] \), we can pull back \(\sigma \) to a (left) \(C[\mathbb{Z}] \times W \)-module.

\[
p(\sigma) : W \rightarrow p(\sigma) W
\]

\(\text{Hom}_{C[\mathbb{Z}] \times W}(H_c(W), \sigma) \) is a left \(H_c(W) \)-module via right multiplication on \(H_c(W) \).

Let \(\mathbb{D}(\sigma) \) be the subspace of \(C[\mathbb{Z}] \)-nilpotent elements in \(\text{Hom}_{C[\mathbb{Z}] \times W}(H_c(W), \sigma) \).
\[\Delta(\sigma) = \text{Hom}_{\mathbb{K}(W)}(H_c(W), \sigma) \text{ where } \sigma \text{ is given degree 0.} \]

space of graded homomorphisms.

\[\Delta(\sigma) \] can also be defined as the restriction wider space dual of \(\Delta(\sigma) \).

Anti-involution \(S : H_c(W) \to H_c(W) \) where \(\Theta : J^* \to J^* \) is the

\[
\begin{align*}
\Theta(x) &= y, \\
\Theta(y) &= x
\end{align*}
\]

\(\mathbb{K} \)-equivariant isomorphism given by \(\langle x, y \rangle = (x(y), y(x)) \).

If \(M \in \text{mod}_L H_c(W) \), then \(M^* \in \text{mod}_R H_c(W) \), but, using \(S \), we can turn \(M^* \) into a left module.

\[\text{Hom}_L(M, \sigma). \]

Suppose that \(M \in \text{mod}_L H_c(W) \) is the sum of its \(\mathbb{K} \)-eigenspaces:

\[M = \bigoplus_{\mu \in \mathbb{C}} H_M^\mu \text{ and } (\lambda - \mu)^{m_\mu} = 0 \text{ if } m \in H_M^\mu. \]

Set \(\sigma^* = \bigoplus_{\mu \in \mathbb{C}} \sigma^*_\mu \subseteq M^* \).

Then \(M^* \in \text{mod}_L H_c(W) \) (using \(S \)).

\[\Delta(\sigma)^* = S^*(\text{Hom}_{\mathbb{K}(W)}(H_c(W), \sigma) \otimes \mathbb{K}^n, C)) \to \text{Hom as right } \mathbb{K}(W) \text{-modules.} \]

\[S^*(\text{Hom}_{\mathbb{K}(W)}(H_c(W), \sigma)) = \text{Hom}_{\mathbb{K}(W)}(H_c(W), \sigma) = \Delta(\sigma) \]

Proposition: \(\text{Ext}^i_{H_c(W)}(\Delta(\sigma), \Delta(\tau)) = 0 \) if \(i \geq 1, 1 = 0, \sigma \neq 0 \).

Proof: \(\text{Ext}^i_{H_c(W)}(\Delta(\sigma), \Delta(\tau)) = \text{Ext}^i_{\mathbb{K}(W)}(\text{Res}^i_{\mathbb{K}(W)}(\Delta(\sigma)), \tau) = \text{Ext}^i_{\mathbb{K}(W)}(\sigma, \tau) = 0 \) if \(i \geq 1, 1 = 0, \sigma \neq 0 \).

\[\text{Hom}_A(M_1, \text{Hom}_B(M_2, M_3)) \cong \text{Hom}_B(M_2 \sigma A M_1, M_3). \]

\(M_1 \) : left \(A \)-module, \(M_2 \) : left \(B \)-module, \(M_3 \) : \(B \)-\(A \)-bimodule.
Insert here the definition of Ω from the next page.

Definition of block: A block of a finite dimensional algebra is an indecomposable two-sided ideal. Two blocks M, N are in the same block if they have a composition factor in common, M and N, being also indecomposable.

Prop: $\{ L(\sigma) \mid \sigma \in \text{Irr}(W) \}$ is the set of simple objects in Ω.

Proof: Let $M \in \Omega$ be simple and choose $m \in M$ such that $\gamma_m = 0$ for all $\gamma \in \text{Irr}(W)$. Then $\Delta(\sigma) = M$ is well-defined. Let $\text{Hom}_{\mathfrak{H}_c}(\Delta(\sigma), M) = \text{Hom}_{\mathfrak{H}_c}(\sigma, M) = \{ m \}$.

$\Rightarrow M \in L(\sigma)$.

We can put a partial order \preceq on $\text{Irr}(W)$ which turns out to be very important for the representation theory of $\mathfrak{H}_c(W)$: $\sigma \preceq \tau$ if $\sigma \leq \tau$ in $\text{Irr}(W)$. It is possible to have $x(c, \sigma) = x(c, \tau)$ and $\sigma \neq \tau$.

We could replace $\mathbb{P}_{\mathbb{Z}_2}$ by \mathbb{Z}_2 since $L(\sigma)$ and $L(\tau)$ are not in the same block if $L(\sigma) - L(\tau) \notin \mathbb{Z}_2$.

Prop: If $L(\sigma)$ is a subquotient of $A(\tau)$, then $\sigma \preceq \tau$.

Proof: Suppose that $M \in N \in A(\tau)$ and $N_M \in L(\sigma)$. Then $A(\sigma) \hookrightarrow L(\sigma) \cong N_M \hookrightarrow A(\tau)$. A acts on a highest weight vector of N_M by $x(c, \sigma)$. Since $A(\tau) \cong C[1]$, all its k-weights are in $x(c, \tau) - \mathbb{Z}_{20}$. $\Rightarrow x(c, \sigma) \in x(c, \tau) - \mathbb{Z}_{20}$. \Box
Corollary: If $c_5 > 0$ for all c_5, then $\Delta(\text{sign})$ is simple. ($\text{sign} = \Lambda^1$)

Proof: In this case, $x(c, \text{sign}) = \frac{1}{2} (r + 2 \sum c_5)$. \[x(c, \sigma) \leq \frac{1}{2} \dim \sigma - \sum c_5 \dim \sigma \]

if $\sigma \neq \text{sign}$ because σ can only have eigenvalues 1 or -1 on c_5, so $\dim c_5 > \dim \sigma$

if $\sigma \neq \text{sign}$

$\Rightarrow x(c, \sigma) > x(c, \text{sign})$, hence $\Lambda(\sigma)$ cannot be a subquotient of $\Delta(\text{sign})$. \square

Corollary: $\Delta(\sigma)$ has finite length.

Proof: The λ-weight spaces of $\Delta(\sigma)$ are all finite dimensional since $\Delta(\sigma) \cong C[\lambda] \otimes \mathcal{O}_C$. If $M \in \Delta(\sigma)$ and v is a vector in M of highest weight, then its weight is $x(c, \sigma)$ for some c, so there are only finitely many possibilities. The difference between the λ-weight of v and $x(c, \sigma)$ cannot be arbitrarily large.

Prop: Any $M \in \mathcal{O}_C$ has finite length.

Def: The category \mathcal{O}_C is the category of finitely generated \mathcal{O}_C-modules which are locally nilpotent over $C[\lambda^\ast]$.

If $M \in \mathcal{O}_C$, $M = \bigoplus_{c \in \mathbb{Z}_0} M[c]$ with $M[c] = \{ m \in M \mid (\lambda - c)^m = 0 \}$ for some $k > 0$.

$\dim M[c] < \infty$ for $c \in \mathbb{Z}_0$ large enough and $c \in \mathcal{O}_C(x(c, \sigma) + \mathbb{Z}_0)$

The main structure theorem about \mathcal{O}_C states that it is a highest weight category.

Def: (Clue-Parshall-Scott): A highest weight category C is an abelian, \mathcal{O}_C-linear (free field) and cotilting category admitting finite direct sums and having enough projective objects, such that there exists a partial Λ satisfying the following conditions:
1. There is a complete collection \(\{ S(\lambda) \} \) of pairwise non-isomorphic simple objects indexed by the set \(\Lambda \).

2. There is a collection \(\{ V(\lambda) \} \), \(\lambda \in \Lambda \), of objects \(C \)-called standard objects such that for each \(\lambda \), an epimorphism \(V(\lambda) \to S(\lambda) \) and all composition factors \(S(\mu) \) \(\mu \neq \lambda \), have finite length \(V_\lambda \in \Lambda \), \(\dim \text{Hom}_C(V(\lambda), V(\mu)) \) and the multiplicities \([V(\lambda) : S(\mu)] \) are finite.

3. Each simple object \(S(\lambda) \) has a projective cover \(P(\lambda) \) in \(C \). Furthermore, \(P(\lambda) \) has a standard filtration, that is, a decreasing, finite filtration \(P(\lambda) = F^*(\lambda) \subseteq F'(\lambda) \subseteq \cdots \) such that:

 (a) \(P(\lambda)/F^*(\lambda) \cong V(\lambda) \)

 (b) \(F^*(\lambda)/F_j(\lambda) \cong V(\mu) \) for some \(\mu \geq \lambda \).

The main example of such a category is the category \(O(\mathfrak{g}) \) for a semi-simple Lie algebra \(\mathfrak{g} \) introduced by Bernstein-Gelfand-Gelfand in the 1970s.

To prove that \(O_c \) is a highest weight category with \(\Lambda = \text{Ind}W \), we have to construct projective modules and show that 3 holds.

- Given \(a \in C \), let \(N(a) \in \mathbb{Z}_{\geq 1} \) such that, if \(\lambda \in \Lambda_c \) and \(m \in \text{mult}(\lambda) \), then \(\lambda, \mu \in \Lambda \).

This is true because there is an upper bound on the possible \(\lambda \)-weights which are in \(a + \mathbb{Z} \). The set of possible \(\lambda \)-weights of modules in \(O \) is \(\bigcup_{a \in C} \{ \lambda \in \mathbb{Z} \} \) for \(a + \mathbb{Z} \).

For \(r \in \mathbb{Z} \geq 1 \), let \(R(a) = H_c(W) \otimes \bigoplus_{a+\mathbb{Z} \in C} \bigoplus_{\lambda \in \Lambda} \bigoplus_{m} \bigoplus_{s \in \mathbb{Z} \geq 1} \bigoplus_{a \in C} \bigoplus_{\lambda \in \Lambda} \mathbb{Z} \).

Then \(R(a) = R(a) \bigoplus (a \otimes \mathbb{Z}) \).

Def: \(O' \) is the full subcategory of \(O \) consisting of modules \(N \) such that, if \(m \in \text{mult}(\lambda) \), then \((a-\lambda)^m \equiv 0 \).

Ex: \(O'(\sigma), \Omega(\tau) \in O' \).
Fact: \(\exists R_0 \text{ such that } O_c = O_c^{R_0} \). (Proof on the back.)

Prop: \(R(a, R_0) \) is a projective module in \(O_c \). (\(R(a, R) \) is projective in \(O_c^R \)).

Proof: The canonical map \(\hom_{O_c^R}(R(a, R_0), M) \to M[a] \) for \(M \in O_c \) is an isomorphism by the definition of \(R(a, R) \) and \(N(a) \).

Since \(M \to M[a] \) is an exact functor, so is \(\hom_{O_c^R}(R(a, R_0), \cdot) \), hence \(R(a, R_0) \) is projective. □

Prop: \(R(a) \) admits a finite filtration whose successive quotients are standard modules.

Proof: Let \(R_j \) be the \(H_{O_c^R}(w) \)-submodule generated by \(\begin{bmatrix} R(a) \\ C[\theta] \end{bmatrix} \). Then \(R(a) = R_0 \supseteq R_1 \supseteq \cdots \supseteq R_n = \{ 0 \} \).

Then \(R_j / R_{j-1} \cong H_{O_c^R}(w) \otimes_{C[\theta]} \begin{bmatrix} C[\theta] \end{bmatrix} \).

\(\Rightarrow R_j / R_{j-1} \cong \bigoplus_{r \in \text{dimg} W} \Delta(p_j^n(r, j)) \). □

Corollary: \(R(a, R_0) \) also admits such a filtration.

Proof: \(R(a) \to R(a, R_0) \) and \(R(a, R_0) \) is projective, so this epimorphism splits.

Standard fact: if \(M, M_2 \in O \) and \(M_1 \oplus M_2 \) possesses a standard filtration, then so do \(M_1 \) and \(M_2 \). □

Is use the criterion \(\text{Ext}^1_{O_c^R}(\cdot, \Delta(j)) = 0 \) for \(j \in \text{Imm}(\theta) \).
Other argument: In $R(a)$, we have a descending chain of submodules

$$(b-a)M \supset (b-a)^2 M \supset (b-a)^3 M \supset \ldots$$

which must stabilize because $R(a) \in D_c \Rightarrow R(a)$ has finite length. (Due to V. Ginzburg)

Let $R_0 := \max \{R_a\}$ such that $R(a, r) \in R(a, R_0) \forall r > R_0$.

Now let $R_0 = \max \{R_a\}$ such that $x(c, a) \leq x(c, r_0) \forall x(c, a)$ for some $r_0 > R_0$.

If $M \in D_c$, let $\{m_1, \ldots, m_N\}$ be a basis of $\bigoplus_{a \in \mathbb{Q}} H(a)$

Then $\{m_1, \ldots, m_N\}$ generate M and we have an epimorphism

$$\bigoplus_{a \in \mathbb{Q}} R(a, R_0) \twoheadrightarrow M \Rightarrow M \cong \bigoplus_{a \in \mathbb{Q}} R_a.$$
\[R(x(\zeta, 0), R_0) \rightarrow L(0), \] for some indecomposable direct summand of \(R(x(\zeta, 0), R_0) \) surjects onto \(L(0) \). Call it \(P(0) \). It is projective and it is the projective cover of \(L(0) \) in \(G \). It admits a standard filtration.

We still have to prove that the standard modules in a standard filtration can be ordered in an increasing way. This is essentially a consequence of the following proposition.

Prop. If \(\text{Ext}^1_\mathcal{O}(A(\mu), A(\nu)) \neq 0 \), then \(\mu < \nu \).

Proof. Suppose that \(0 \rightarrow A(\nu) \rightarrow M \rightarrow A(\mu) \rightarrow 0 \) is an extension of \(A(\mu) \) by \(A(\nu) \). Choose \(x(\zeta, \mu) \in A(\mu) \) and \(\nu \in \text{Ext}^1_\mathcal{O}(u) \cap M[x(\zeta, \mu), \mu] \). Suppose that \(\mu < \nu \) (so that either \(\mu < \nu \) or \(x(\zeta, \mu) - x(\zeta, \nu) \notin Z \)). Then \(x(\zeta, \mu) \) is a maximal \(\mathcal{O}_0 \)-weight of \(M \), so \(y = 0 \). For \(y \), and therefore, \(\Delta = \zeta = x(\zeta, \mu) \).

Let \(N \) be the \(H_{x(\zeta, \mu)} \)-submodule of \(M \) generated by \(m \). Then
\[\begin{align*}
A(\mu) & \rightarrow N \\
\text{Hom}(A(\mu), x(\zeta, \mu)) & \rightarrow 0. \end{align*} \]
The composite must be an isomorphism, so \(N \cong A(\mu) \) and \(x(\zeta, \mu) \) splits, so the extension is trivial.

BGG reciprocity:

Reminder: \(\text{Hom}(A(\mu), x(\zeta, \mu)) \neq 0 \) \(\Rightarrow \mu = p \) and \(\text{Ext}^1_\mathcal{O}(A(\mu), x(\zeta, \mu)) = 0 \) \(\forall p \neq p \).

\(\Rightarrow \) The multiplicity \([P(0): A(\mu)] \) of \(A(\mu) \) in a standard filtration of \(P(0) \) is well-defined and independent of the filtration. More precisely, \([P(0): A(\mu)] = \dim \text{Hom}(P(0), A(\mu)) \) (use the long exact sequence for Ext).

\[[P(0): A(\mu)] = [\Delta(\mu): L(0)] \]
\[= [\Delta(\mu): L(0)] \] since \(G \) has a density such that \(\nabla(\mu) = \Delta(\mu) \).

\[L(0) \cong L(0). \]