Proof Systems for Reasoning about Generic Judgments

Alwen Tiu
Australian National University and NICTA

Mathematical Theories of Abstraction, Substitution and Naming in Computer Science
Edinburgh, May 27, 2007
Motivations

- Designing a framework for reasoning about higher-order abstract syntax.
- Challenges: inductive reasoning over α-equivalent classes of judgments, while retaining the benefits of higher-order abstract syntax specification.
- Relating some aspects of nominal techniques (i.e., equivariant reasoning) with a variant of HOAS-style approach to reasoning about binders.
Two-level approach to HOAS specifications

- We follow the two-level approach of McDowell and Miller: specify a computation system in an *object logic*, which is embedded in a *meta-logic*.

- The object logic is typically based on a version of first-order intuitionistic logic (e.g., the hereditary Harrop fragment). The meta-logic includes an induction principle.

- Reasoning about the computation system encoded in the object logic reduces to reasoning about the structure of proofs of the object logic.
Reasoning about binders

Consider the following formula in an object logic HH

$$\forall x. (p x r \Rightarrow \forall y. (p y s \Rightarrow p x t))$$

A meta-level observation: if the formula is provable then r and t must be syntactically equal.

Encoding in $FO\lambda^{\Delta\nabla}$ (a subset of LINC):

$$L \vdash_{HH} P \quad \triangleq \quad P \in L$$

$$L \vdash_{HH} P \Rightarrow Q \quad \triangleq \quad (P :: L) \vdash_{HH} Q$$

$$L \vdash_{HH} \forall x. P x \quad \triangleq \quad \forall x. L \vdash_{HH} P x$$

The following is provable in $FO\lambda^{\Delta\nabla}$:

$$\forall r \forall s \forall t. \emptyset \vdash_{HH} \forall x. (p x r \Rightarrow \forall y. (p y s \Rightarrow p x t)) \supset r = t$$
∇ and induction

- LINC allows case analyses on object logic proofs with binders, but some inductive properties are not provable, notably:

\[\forall L[(\forall x. L x \vdash_{HH} P x) \Implies (\forall x. L x \vdash_{HH} P x)] \]

- The inductive proof of this statement requires an induction hypothesis that hold for all possible variable context, i.e., hypothesis of the kind

 “for all” \(\vec{x} \), \[\forall \vec{x}(\forall y. F \vec{x} y \Implies \forall y. F \vec{x} y) \]

 which requires some form of quantification over variable contexts.
Possible solutions

- Allow context quantification: possible, but too complicated.
- Strengthen the variable context: allow propositions to hold in arbitrary extensions of variable contexts. In effect, admit this axiom

\[B \supset \nabla x. B, \quad x \text{ not free in } B \]
Relation with Nominal Logic

∇ and the \mathcal{N}-quantifier of Nominal Logic share some similarity, in particular, they are both self-dual and distribute over all propositional connectives. However, the following are not theorems in LINC:

\[
B \equiv \nabla x. B, \quad \nabla x \nabla y. B \supset \nabla y \nabla x. B
\]
\[
\forall x. B \supset \nabla x. B \quad \nabla x. B \supset \exists x. B
\]

but they are theorems of nominal logic, if ∇ is replaced with \mathcal{N}.
Extensions of LINC

We consider extensions of LINC with the following axioms:

(A1) \(B \supset \nabla x.B, \ x \) not free in \(B \)
(A2) \(\nabla x.B \supset B, \ x \) not free in \(B \)
(A3) \(\nabla x\nabla y.B \supset \nabla y\nabla x.B \)

We examine two extensions: LINC + \{A1, A3\} (call this \(LG_1 \)) and LINC + \{A1, A2, A3\} (call this \(LG_2 \)).

Cut-elimination for the other combinations of (A1) – (A3) do not seem obvious.
Some observations about extensions of LINC

- The distinction between LG_1 and LG_2 is observable in intuitionistic logic, but not in classical logic. Axioms $(A1)$ and $(A2)$ are classically equivalent, since ∇ is self-dual.

- Axiom $(A2)$ forces every type τ in ∇_τ to contain at least countably infinite number of elements:

$$\exists_\tau x_1 \cdots \exists_\tau x_n. x_1 \neq x_2 \neq \cdots \neq x_n$$

is provable for arbitrary n.

- By not accepting $(A2)$, one can allow ∇-quantification on finite types. This might be useful in encodings of object logic quantifiers over finite types.
Absorbing axioms into rules

\[(A1): \quad \frac{\Sigma; \bar{x}z\bar{y} \triangleright B, \Gamma \vdash C}{\Sigma; \bar{x}\bar{y} \triangleright B, \Gamma \vdash C} \quad \text{ssl} \quad \frac{\Sigma; \Gamma \vdash \bar{x}\bar{y} \triangleright B}{\Sigma; \Gamma \vdash \bar{x}z\bar{y} \triangleright B} \quad \text{swr}\]

\[(A2): \quad \frac{\Sigma; \bar{x}z\bar{y} \triangleright B, \Gamma \vdash C}{\Sigma; \bar{x}z\bar{y} \triangleright B, \Gamma \vdash C} \quad \text{swl} \quad \frac{\Sigma; \Gamma \vdash \bar{x}z\bar{y} \triangleright B}{\Sigma; \Gamma \vdash \bar{x}\bar{y} \triangleright B} \quad \text{ssr}\]

\[(A3): \quad \frac{\Sigma; \bar{x}uv\bar{y} \triangleright B, \Gamma \vdash C}{\Sigma; \bar{x}uv\bar{y} \triangleright B, \Gamma \vdash C} \quad \text{sel} \quad \frac{\Sigma; \Gamma \vdash \bar{x}uv\bar{y} \triangleright B}{\Sigma; \Gamma \vdash \bar{x}uv\bar{y} \triangleright B} \quad \text{ser}\]
Rules for quantifiers

Same as in LINC:

\[
\frac{\Sigma, \sigma \vdash t : \gamma \quad \Sigma; \sigma \triangleright B[t/x], \Gamma \vdash C}{\Sigma; \sigma \triangleright \forall \gamma x. B, \Gamma \vdash C} \quad \forall L
\]

\[
\frac{\Sigma, h; \Gamma \vdash \sigma \triangleright B[(h \sigma)/x]}{\Sigma; \Gamma \vdash \sigma \triangleright \forall x. B} \quad \forall R
\]

Use raising to encode dependency between eigenvariables and local contexts.

\[
\frac{\Sigma; (\sigma, y) \triangleright B[y/x], \Gamma \vdash C}{\Sigma; \sigma \triangleright \nabla x. B, \Gamma \vdash C} \quad \nabla L
\]

\[
\frac{\Sigma; \Gamma \vdash (\sigma, y) \triangleright B[y/x]}{\Sigma; \Gamma \vdash \sigma \triangleright \nabla x. B} \quad \nabla R
\]
Cut elimination holds for both LG_1 and LG_2. Central to the cut-elimination proof is the context weakening lemma: if

$$\Sigma; \sigma_1 \triangleright B_1, \ldots, \sigma_n \triangleright B_n \vdash \sigma \triangleright C$$

is provable then

$$\Sigma; x\sigma_1 \triangleright B_1, \ldots, x\sigma_n \triangleright B_n \vdash x\sigma \triangleright C$$

where x is a fresh variable, is provable with smaller or equal proof length, but without the context weakening rules (i.e., swl or swr).
An alternative formulation of LG_2

Since weakening, strengthening and exchange rules are applicable to local signatures, we can prove in LG_2

$$\sigma \triangleright B \vdash \sigma' \triangleright B'$$

where B is obtained from B' by an injective renaming of the variables in σ.

It turns out that we can simplify the sequent system of LG_2 if we remove the local signatures and adopt the equivariant principles.
Equivariant predicates

- Assume an infinite set of special *name constants*. Name constants can be of arbitrary types, depending on applications. Call these types *nominal types*.

- Propositions are considered equivalent under permutations of name constants.

\[\pi.B = \pi'.B' \]

\[B \vdash B' \quad \text{id} \]

for some type-preserving permutations \(\pi \) and \(\pi' \).

- Example: instead of proving

\[abc \Rightarrow P a \Leftarrow de \Rightarrow P e \]

by a series of strengthening of local signatures and renaming, we can simply regard \(a, b, c, d, e \) as name constants and conclude

\[(a e).P a = (a e).P e \]

\[P a \Leftarrow P e \]
Permutations and Support

- The support of a term is the set of name constants appearing in it.
- Application of permutation on arbitrary terms is defined as
 \[\pi.a = \pi(a), \text{ } a \text{ is a name constant} \]
 \[\pi.c = c, \text{ } c \text{ is an ordinary constant.} \]
 \[\pi.x = x \]
 \[\pi.(M \ N) = (\pi.M) (\pi.N) \]
 \[\pi.(\lambda x.M) = \lambda x.(\pi.M) \]
- Similar to Nominal Logic, except that: variables have empty supports, substitutions cannot mention name constants.
- Freshness constraints and permutations (or swapping) are not part of the syntax of the logic.
Some rules of LG_2 (with implicit local signatures)

- The propositional rules are standard rules of intuitionistic logic.

Quantifiers:

$$\frac{\Sigma, K, C_N \vdash t : \tau}{\Sigma; \Gamma, \forall \tau x. B \vdash C} \quad \forall \mathcal{L} \quad \frac{\Sigma, h; \Gamma \vdash B[h \bar{c} / x]}{\Sigma; \Gamma \vdash \forall x. B} \quad \forall \mathcal{R}$$

where $h \notin \Sigma$ and $\text{supp}(B) = \{\bar{c}\}$. Notice the use of raising to encode dependency on nominal constants (since substitutions cannot mention nominal constants).

$$\frac{\Sigma; \Gamma, B[a/x] \vdash C}{\Sigma; \Gamma, \nabla x. B \vdash C} \quad \nabla \mathcal{L} \quad \frac{\Sigma; \Gamma \vdash B[a/x]}{\Sigma; \Gamma \vdash \nabla x. B} \quad \nabla \mathcal{R}$$

where $a \notin \text{supp}(B)$.
Adding fixed points and equality

Associate an atomic formula with a defining formula:

\[p\vec{x} \triangleq B\vec{x}. \]

Introduction rules for defined predicates:

\[
\frac{\Sigma; \Gamma, B[t/\vec{x}] \vdash C}{\Sigma; \Gamma, p\vec{t} \vdash C} \quad \text{def}_L, p\vec{x} \triangleq B \quad \frac{\Sigma; \Gamma \vdash B[t/\vec{x}]}{\Sigma; \Gamma \vdash p\vec{t}} \quad \text{def}_R, p\vec{x} \triangleq B
\]

Equality rules:

\[
\frac{\{\Sigma\theta; \Gamma \theta \vdash C\theta \mid (\lambda\vec{c}.t)\theta =_{\beta\eta} (\lambda\vec{c}.s)\theta\}}{\Sigma; \Gamma, s = t \vdash C} \quad \text{eq}_L \quad \frac{\Sigma; \Gamma \vdash t = t}{\Sigma; \Gamma \vdash t = t} \quad \text{eq}_R
\]

where \(\text{supp}(s = t) = \{\vec{c}\} \)
Adding natural number induction

We use similar rules as the ones in $FO\lambda^{\Delta \mathbb{N}}$ [McDowell & Miller]

\[
\frac{\vdash D z \quad D j \vdash D (s j) \quad \Sigma; \Gamma, \mathcal{D} l \vdash C}{\Sigma; \Gamma, \text{nat } l \vdash C} \quad \text{natL}
\]

\[
\frac{\Sigma; \Gamma \vdash \text{nat } z}{\Sigma; \Gamma \vdash \text{nat } (s l)} \quad \text{natR}
\]

\[
\frac{\Sigma; \Gamma \vdash \text{nat } l}{\Sigma; \Gamma \vdash \text{nat } (s l)} \quad \text{natR}
\]

Consider the hereditary harrop fragment of intuitionistic logic, given by

\[
D ::= A \mid G \Rightarrow A \mid \bigwedge_\tau x.D \\
G ::= A \mid tt \mid G \& G \mid A \Rightarrow G \mid \bigwedge_\iota x.G
\]

The object logic formulas are encoded using the (ordinary) constants:

\[
\langle \rangle : atm \rightarrow prp \quad tt : prp \\
\& : prp \rightarrow prp \rightarrow prp \quad \Rightarrow : atm \rightarrow prp \rightarrow prp \\
\bigwedge_\iota : (\tau \rightarrow prp) \rightarrow prp \quad \bigvee_\iota : (\tau \rightarrow prp) \rightarrow prp
\]

The domain of object logic quantifier is a nominal type.
A definition of object logic

\[\text{seq}_I L \, \text{tt} \triangleq \top. \]
\[\text{seq}_I L \, \langle A \rangle \triangleq \text{elem} \, A \, L. \]
\[\text{seq}_{(sI)} L \, (A \land B) \triangleq \text{seq}_I L \, A \land \text{seq}_I L \, B. \]
\[\text{seq}_{(sI)} L \, (A \Rightarrow B) \triangleq \text{seq}_I (A :: L) \, B. \]
\[\text{seq}_{(sI)} L \, (\forall x. Gx) \triangleq \nabla x. \text{seq}_I L \, Gx. \]
\[\text{seq}_{(sI)} L \, \langle A \rangle \triangleq \exists B. \text{prog} \, A \, B \land \text{seq}_I L \, B. \]
Example: behaviors of the object logic eigenvariables

In the object logic, \(p X \Rightarrow \bigwedge y.p y \) is not provable.

\[
\begin{align*}
X, l_2; \text{seq}_{l_2} [p X] \langle p a \rangle & \vdash \bot \quad \nabla L \\
X, l_2; \nabla y.\text{seq}_{l_2} [p X] \langle p y \rangle & \vdash \bot \quad \text{def} L \\
X, l_1; \text{seq}_{l_1} [p X] (\bigwedge y.\langle p y \rangle) & \vdash \bot \quad \text{def} L \\
X, l; \text{seq}_{l} \text{nil} (p X \Rightarrow \bigwedge y.\langle p y \rangle) & \vdash \bot \quad \forall R; \supset R \\
\vdash \forall X \forall l. (\text{seq}_{l} \text{nil} (p X \Rightarrow \bigwedge y.\langle p y \rangle) \supset \bot)
\end{align*}
\]

The leaf sequent is provable since unification fails on \(\lambda x.X = \lambda a.a \).
Properties of the object logic

Theorem

The following formulas are provable in LG₂ with the definition of the object logic HH:

1. **Structural rules:**
 \[\forall L \forall L' \forall G \forall i. \text{nat } i \supset \text{list } L \supset \text{list } L' \]
 \[(\forall A. \text{elem } A \ L \supset \text{elem } A \ L') \supset \text{seq}_i \ L \ G \supset \text{seq}_i \ L' \ G. \]

2. **Atomic cut:**
 \[\forall L \forall G \forall A. \text{list } L \supset \exists i. (\text{nat } i \land \text{seq}_i \ L \ (A \Rightarrow G)) \supset \]
 \[\exists i. (\text{nat } i \land \text{seq}_i \ L \langle A \rangle) \supset \exists i. \text{nat } i \land \text{seq}_i \ L \ G. \]

3. **Specialization:**
 \[\forall L \forall G \forall i. \text{nat } i \supset \text{list } L \supset \text{seq}_{(s_i)} \ L \ (\land G) \supset \forall x. \text{seq}_i \ L \ (G \ x). \]
Encoding simply typed \(\lambda \)-calculus

Encode the terms and the types using:

\[
arr : ty \rightarrow ty \rightarrow ty.
\]

\[
app : tm \rightarrow tm \rightarrow tm \quad abs : ty \rightarrow (tm \rightarrow tm) \rightarrow tm
\]

The type \(tm \) is a nominal type, and \(ty \) is an ordinary type.

To encode the operational semantics, use the two-level approach as in [McDowell & Miller, TOCL 2002]

\[
eval (abs T M) (abs T M) \quad \Leftarrow \quad tt.
\]

\[
\bigwedge P. [\eval (app M N) V \quad \Leftarrow \quad \eval M P \& \eval (P N) V].
\]

\[
typeof (abs T M) (ar T T') \quad \Leftarrow \quad \bigwedge x. typeof x T \Rightarrow typeof (Mx) T'.
\]

\[
\bigwedge T'. [typeof (app M N) T \quad \Leftarrow \quad typeof M (ar T' T) \& typeof N T'].
\]
Subject reduction

$L ▷ G$ denotes the formula $\exists i. \text{nat } i \land \text{seq}_i L G$.

Theorem

Subject reduction. *The following formula is provable*

$$\forall M \forall V \forall T. \ ▷ \langle \text{eval } M \ V \rangle \land ▷ \langle \text{typeof } M \ T \rangle \supset ▷ \langle \text{typeof } V \ T \rangle.$$
Uniqueness of typing

Let $\text{var } X$ denote the formula

$$\forall M \forall N. (X = \text{app } M N \supset \bot) \land \forall M. (X = (\text{abs } M) \supset \bot).$$

Let $\text{ctx } L$ denote the well-formedness of a context L, defined as:

$$(\forall X \forall T. \text{elem (typeof } X \ T) L \supset \text{var } X) \land$$
$$(\forall X \forall T_1 \forall T_2. \text{elem (typeof } X \ T_1) L \supset \text{elem (typeof } X \ T_2) L \supset T_1 = T_2.)$$

Theorem

The following formula is provable:

$$\forall L \forall X \forall T_1 \forall T_2. \text{list } L \supset \text{ctx } L \supset L \triangleright \langle \text{typeof } X \ T_1 \rangle \supset L \triangleright \langle \text{typeof } X \ T_2 \rangle \supset T_1 = T_2.$$
Future work

- Extensions of LINC without the axiom $\nabla x \nabla y. B \supset \nabla y \nabla x. B$.
- Implementation: can it be done in existing proof assistants? e.g., Isabelle/Nominal package? Or implementation from scratch is required?
- Bigger case studies, e.g., the POPLmark challenge.
- Semantics of LG: Categorical semantics? Supports models for nominal logic?