Names in Higher-Order Rewriting

Vincent van Oostrom

Theoretical Philosophy
Universiteit Utrecht
The Netherlands

June 8, 2007
Higher-Order Rewriting

HRS meta-theory

Lambda-calculus with explicit substitutions

Lambda-calculus with patterns
CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus

first-/higher-order term rewriting systems
Combinatory Logic, Lambda-calculus

- not closed under rule manipulations

first-/higher-order term rewriting systems

- closed under many rule manipulations
CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus
- not closed under rule manipulations
- rule schemes

first-/higher-order term rewriting systems
- closed under many rule manipulations
- rules
CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus
 ▶ not closed under rule manipulations
 ▶ rule schemes
 ▶ logical
first-/higher-order term rewriting systems
 ▶ closed under many rule manipulations
 ▶ rules
 ▶ algebraic
Higher-Order Equational Logic (\(=\))

Terms over (simply) typed signature

Inference system:
Higher-Order Equational Logic (＝)

Terms over (simply) typed signature

Inference system:
- equivalence rules (reflexivity, symmetry, transitivity)
Higher-Order Equational Logic (≡)

Terms over (simply) typed signature

Inference system:

- equivalence rules (reflexivity, symmetry, transitivity)
- congruence rules (application, abstraction)
Higher-Order Equational Logic (=)

Terms over (simply) typed signature

Inference system:

- equivalence rules (reflexivity, symmetry, transitivity)
- congruence rules (application, abstraction)
- $\alpha\beta\eta$ rule schemes
Higher-Order Equational Logic (\(\equiv\))

Terms over (simply) typed signature

Inference system:
- equivalence rules (reflexivity, symmetry, transitivity)
- congruence rules (application, abstraction)
- \(\alpha \beta \eta\) rule schemes
- user-defined rules \(R\) of terms of same type \((\ell \rightarrow r)\)
Higher-Order Rewriting (\rightarrow)

- Drop symmetry, allow transitivity only at top level
Higher-Order Rewriting (→)

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha\beta\eta$
Higher-Order Rewriting (\rightarrow)

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha\beta\eta$
- IDTS: modulo α, but $\beta\eta$ as steps
Higher-Order Rewriting (→)

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha\beta\eta$
- IDTS: modulo α, but $\beta\eta$ as steps

Theorem

$$=R = \leftrightarrow^*_R(\beta\eta)$$
Higher-Order Rewriting (→)

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha \beta \eta$
- IDTS: modulo α, but $\beta \eta$ as steps

Theorem

$$= R = \leftrightarrow^*_{R(\beta \eta)}$$

Decide equational theory via rewriting
HRS Terms, Rules, Rewriting

Signature:
(Simply) typed symbols

Terms:
λ-terms modulo $\alpha\beta\eta$ over signature represented by their $\beta\eta$-normal form

Rules:
Pairs of terms of same type, lhs a pattern:

Definition

Pattern: free vars have only distinct bound vars as arguments.

Steps for rule $\ell \rightarrow r$:
$s =_{\alpha\beta\eta} C[\lambda\vec{m}.\ell] \rightarrow C[\lambda\vec{m}.r] =_{\alpha\beta\eta} t$
TRS as HRS

Signature:

0 : \(\iota \)

\(s : \iota \rightarrow \iota \)

\(+ : \iota \rightarrow \iota \rightarrow \iota \)

Rules for \(m, n: \iota \)

\(+ m 0 \rightarrow m \)

\(+ m (s n) \rightarrow s (+ m n) \)

Steps:

\(+ 0 (s 0) =_{\alpha \beta \eta} (\lambda mn. (+ m (s n)) 0 0 \)

\rightarrow (\lambda mn. s (+ m n)) 0 0 \)

\(=_{\alpha \beta \eta} s (+ 0 0) \)

\(=_{\alpha \beta \eta} s ((\lambda m. (+ m 0) 0) \)

\rightarrow s ((\lambda m.m) 0) \)

\(=_{\alpha \beta \eta} s 0 \)
Lambda-calculus as HRS

Signature:

\[
\begin{align*}
\text{app} & : o \rightarrow (o \rightarrow o) \\
\text{lam} & : (o \rightarrow o) \rightarrow o
\end{align*}
\]

Rules for \(M:o \rightarrow o\), \(N:o\):

\[
\begin{align*}
\text{app}\ (\text{lam}\ \lambda x.\ M\ x)\ N & \rightarrow M\ N \\
\text{lam}\ \lambda x.\ \text{app}\ M\ x & \rightarrow M
\end{align*}
\]

Steps:

\[
\begin{align*}
\text{app}\ (\text{lam}\ \lambda y.y)\ (\text{lam}\ \lambda z.z) & \\
=_{\alpha\beta\eta} & (\lambda MN.\ \text{app}\ (\text{lam}\ \lambda x.\ M\ x)\ N)\ (\lambda y.y)\ (\text{lam}\ \lambda z.z) \\
& \rightarrow (\lambda MN.\ M\ N)\ (\lambda y.y)\ (\text{lam}\ \lambda z.z) \\
=_{\alpha\beta\eta} & \text{lam}\ \lambda z.z
\end{align*}
\]

\[
\begin{align*}
\text{lam}\ \lambda x.\ \text{app}\ x\ x & \neq_{\alpha\beta\eta} (\lambda M.\ \text{lam}\ \lambda x.\ \text{app}\ M\ x)\ t
\end{align*}
\]
HRS meta-theory

Generalization of TRS and Lambda-calculus

Combined difficulties:
HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:
- TRS ⇒ arbitrary rules (overlap)
Generalization of TRS and Lambda-calculus

Combined difficulties:

- TRS \Rightarrow arbitrary rules (overlap)
- Lambda-calculus \Rightarrow second-orderness (nesting)
HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

- TRS \Rightarrow arbitrary rules (overlap)
- Lambda-calculus \Rightarrow second-orderness (nesting)

patterns make HRSs first-order-like
HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

- TRS \Rightarrow arbitrary rules (overlap)
- Lambda-calculus \Rightarrow second-orderness (nesting)

patterns make HRSs first-order-like
orthogonality makes HRSs λ-calculus-like
HRS meta-theory: Critical Pair Lemma

Definition

Critical Pair: pair of reducts of most general overlap of lhss.

(Invited talk this afternoon)
HRS meta-theory: Critical Pair Lemma

Definition
Critical Pair: pair of reducts of most general overlap of lhss.

(Invited talk this afternoon)
For Lambda-calculus HRS:

\[
\text{app } M \, N \leftarrow \text{app } (\text{lam } \lambda x. \text{app } M \, x) \, N \rightarrow \text{app } M \, N
\]

\[
\text{lam } \lambda y. M \, y \leftarrow \text{lam } \lambda x. \text{app } (\text{lam } \lambda y. M \, y) \, x \rightarrow \text{lam } \lambda x. M \, x
\]
HRS meta-theory: Critical Pair Lemma

Definition

Critical Pair: pair of reducts of most general overlap of lhss.

(Invited talk this afternoon)
For Lambda-calculus HRS:

\[
\text{app } M \ N \leftarrow \text{app } (\text{lam } \lambda x.\text{app } M \ x) \ N \rightarrow \text{app } M \ N
\]

\[
\text{lam } \lambda y.\ M \ y \leftarrow \text{lam } \lambda x.\text{app } (\text{lam } \lambda y.\ M \ y) \ x \rightarrow \text{lam } \lambda x.\ M \ x
\]

Theorem

Locally confluent iff all critical pairs are.
Definition

Critical Pair: pair of reducts of most general overlap of lhss.

(Invited talk this afternoon)

For Lambda-calculus HRS:

\[
\text{app } M N \leftarrow \text{app } (\text{lam } \lambda x. \text{app } M x) N \rightarrow \text{app } M N
\]

\[
\text{lam } \lambda y. M y \leftarrow \text{lam } \lambda x. \text{app } (\text{lam } \lambda y. M y) x \rightarrow \text{lam } \lambda x. M x
\]

Theorem

Locally confluent iff all critical pairs are.

\[\Rightarrow\] for terminating \(\rightarrow_R\), \(\rightarrow_R\) confluent, \(=_R\) decidable.
HRS meta-theory: Bounded termination

Definition

Bounded reduction: creation depth of redexes bounded
HRS meta-theory: Bounded termination

Definition
Bounded reduction: creation depth of redexes bounded

rule \(a \rightarrow a \):
\[a \rightarrow a \rightarrow a \rightarrow a \text{ bounded (by 3)} \]
\[a \rightarrow a \rightarrow a \rightarrow \ldots \text{ not bounded} \]
HRS meta-theory: Bounded termination

Definition

Bounded reduction: creation depth of redexes bounded

rule $a \rightarrow a$:

- $a \rightarrow a \rightarrow a \rightarrow a$ bounded (by 3)
- $a \rightarrow a \rightarrow a \rightarrow \ldots$ not bounded

Theorem

Bounded reductions are terminating.
HRS meta-theory: Bounded termination

Definition

Bounded reduction: creation depth of redexes bounded

rule $a \rightarrow a$:

$a \rightarrow a \rightarrow a \rightarrow a$ bounded (by 3)

$a \rightarrow a \rightarrow a \rightarrow \ldots$ not bounded

Theorem

Bounded reductions are terminating.

\Rightarrow finite developments (bound 1)

\Rightarrow reduction up to order of contraction (permutation equivalence)

\Rightarrow neededness, normalisation of needed strategy
HRS meta-theory: Left-linear + fully-extended \(\Rightarrow \) Standardisation

Definition

- **Left-linear**: lhss are linear
- **Fully-extended/applied**: free vars have all bound vars as arguments
HRS meta-theory: Left-linear + fully-extended ⇒ Standardisation

Definition

Left-linear: lhss are linear

Fully-extended/applied: free vars have all bound vars as arguments

All rules above left-linear

eta-rule not fully-extended.
HRS meta-theory: Left-linear + fully-extended ⇒ Standardisation

Definition
Left-linear: lhss are linear
Fully-extended/applied: free vars have all bound vars as arguments
All rules above left-linear eta-rule not fully-extended.

Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps
HRS meta-theory: Left-linear $+$ fully-extended \Rightarrow Standardisation

Definition

Left-linear: lhss are linear

Fully-extended/applied: free vars have **all** bound vars as arguments

All rules above left-linear

eta-rule not fully-extended.

Definition

Steps **Out-of-order**: inside-out or right-to-left

Standardisation: swap out-of-order steps

Theorem

Left-linear $+$ fully-extended \Rightarrow standardisation ends in standard
HRS meta-theory: Left-linear + fully-extended ⇒ Standardisation

Definition
Left-linear: lhss are linear
Fully-extended/applied: free vars have all bound vars as arguments
All rules above left-linear
eta-rule not fully-extended.

Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps

Theorem
Left-linear + fully-extended ⇒ standardisation ends in standard
⇒ Standardised reduction permutation equivalent to original
⇒ normal order sound to implement Lambda-calculus/FP.
HRS meta-theory: Orthogonal \Rightarrow Confluent

Definition

Orthogonal: left-linear and no critical pairs.
HRS meta-theory: Orthogonal \Rightarrow Confluent

Definition
Orthogonal: left-linear and no critical pairs.
All rules above.
Non-example: add $\text{eq}(x, x) \rightarrow \text{true}$
Definition

Orthogonal: left-linear and no critical pairs.

All rules above.

Non-example: add \(\text{eq}(x, x) \rightarrow \text{true} \)

Theorem

Orthogonal \(\Rightarrow \) **confluent**
HRS meta-theory: Orthogonal \Rightarrow Confluent

Definition

Orthogonal: left-linear and no critical pairs.

All rules above.

Non-example: add $\text{eq}(x, x) \rightarrow \text{true}$

Theorem

Orthogonal \Rightarrow confluent

\Rightarrow all reductions to normal form permutation equivalent

\Rightarrow unique normal forms (normalising strategy \equiv_R decidable)
HRS meta-theory: RPO termination via semantic labelling

Definition

RPO termination

\[\ell > RPO r \]

- RPO obtained by lifting wfo on signature to terms compatible with computability/reducibility

Theorem

If \(\ell > RPO r \) then terminating

Definition

Semantics: tutorial this morning, and

\[[\ell] = [r] \]

Definition

Labelling: label symbols by arguments semantics, labelled rules.

Semantics guarantees labelling invariant under reduction

Theorem

If labelled system RPO terminating, then \(\rightarrow \) terminating

Example: Lambda-labelled explicit subs are RPO-terminating.
HRS meta-theory: RPO termination via semantic labelling

Definition

RPO termination $\ell >_{RPO} r$:

$>_{RPO}$ obtained by lifting wfo $>$ on signature to terms compatible with computability/reducibility
HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination $\ell >_{RPO} r$:
$>_{RPO}$ obtained by lifting $wfo >$ on signature to terms compatible with computability/reducibility

Theorem
If $\ell >_{RPO} r$ then \rightarrow terminating
HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination $\ell >_{RPO} r$:
$>_{RPO}$ obtained by lifting $wfo >$ on signature to terms compatible with computability/reducibility

Theorem
If $\ell >_{RPO} r$ then \rightarrow terminating

Definition
Semantics: tutorial this morning, and $[\ell] = [r]$
HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination $\ell >_{RPO} r$:
\succ_{RPO} obtained by lifting wfo \succ on signature to terms compatible with computability/reducibility

Theorem
If $\ell >_{RPO} r$ then \rightarrow terminating

Definition
Semantics: tutorial this morning, and $[\ell] = [r]$

Definition
Labelling: label symbols by arguments semantics, labelled rules.
Semantics guarantees labelling invariant under reduction
HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination \(\ell >_{RPO} r \):
\(>_{RPO} \) obtained by lifting \(\text{wfo} > \) on signature to terms compatible with computability/reducibility.

Theorem
If \(\ell >_{RPO} r \) then \(\rightarrow \) terminating.

Definition
Semantics: tutorial this morning, and \([\ell] = [r] \)

Definition
Labelling: label symbols by arguments semantics, labelled rules. Semantics guarantees labelling invariant under reduction.

Theorem
If labelled system RPO terminating, then \(\rightarrow_R \) terminating.

Example: Lambda-labelled explicit subs are RPO-terminating.
Lambda-calculus with explicit subs: usual presentation

\[(\lambda x. M)N \rightarrow M\langle x:=N \rangle\]

\[x\langle x:=N \rangle \rightarrow N\]

\[y\langle x:=N \rangle \rightarrow y \quad \text{where } y \neq x\]

\[(M_1 M_2)\langle x:=N \rangle \rightarrow M_1\langle x:=N \rangle M_2\langle x:=N \rangle\]

\[(\lambda y. M)\langle x:=N \rangle \rightarrow \lambda y. M\langle x:=N \rangle\]
Lambda-calculus with explicit subs: naïve HRS

Signature:

\[
\begin{align*}
\text{app} & : \ o \rightarrow (o \rightarrow o) \\
\text{lam} & : (o \rightarrow o) \rightarrow o \\
\langle _ := _ \rangle & : (o \leftarrow o) \rightarrow o \rightarrow o
\end{align*}
\]
Lambda-calculus with explicit subs: naïve HRS

Signature:

\[
\begin{align*}
 \text{app} & : \ o \to (o \to o) \\
 \text{lam} & : (o \to o) \to o \\
 (-\langle-:=\rangle) & : (o \leftarrow o) \to o \to o
\end{align*}
\]

Rules:

\[
\begin{align*}
 \text{app}(\text{lam}\lambda x. M x)N & \to M x\langle x:=N \rangle \\
 x\langle x:=N \rangle & \to N \\
 y\langle x:=N \rangle & \to y \\
 (\text{app}(M_1 x)(M_2 x))\langle x:=N \rangle & \to \text{app}(M_1 x)\langle x:=N \rangle (M_2 x)\langle x:=N \rangle \\
 (\text{lam}\lambda y. M x y)\langle x:=N \rangle & \to \text{lam}\lambda y. (M x y)\langle x:=N \rangle
\end{align*}
\]
Lambda-calculus with explicit subs: naïve HRS

Signature:

\[
\begin{align*}
\text{app} &: \ o \to (o \to o) \\
\text{lam} &: \ (o \to o) \to o \\
\langle _:=_ \rangle &: \ (o \leftrightarrow o) \to o \to o
\end{align*}
\]

Rules:

\[
\begin{align*}
\text{app} (\text{lam} \lambda x. M x) N & \to M x \langle x:=N \rangle \\
\lambda x. M \langle x:=N \rangle & \to N \\
\lambda y. M \langle x:=N \rangle & \to y \\
(\text{app} (M_1 x) (M_2 x)) \langle x:=N \rangle & \to \text{app} (M_1 x) \langle x:=N \rangle (M_2 x) \langle x:=N \rangle \\
\text{lam} \lambda y. M x y \langle x:=N \rangle & \to \text{lam} \lambda y. (M x y) \langle x:=N \rangle
\end{align*}
\]

Problems with third rule:

- not faithful: \(y \) term var, substitute any (closed) term for it
Lambda-calculus with explicit subs: naïve HRS

Signature:

\[
\begin{align*}
\text{app} & : \ o \rightarrow (o \rightarrow o) \\
\text{lam} & : \ (o \rightarrow o) \rightarrow o \\
\langle _:=_ \rangle & : \ (o \leftarrow o) \rightarrow o \rightarrow o
\end{align*}
\]

Rules:

\[
\begin{align*}
\text{app}(\text{lam}\lambda x. M x) N & \rightarrow M x\langle x:=N \rangle \\
x\langle x:=N \rangle & \rightarrow N \\
y\langle x:=N \rangle & \rightarrow y \\
(\text{app}(M_1 x)(M_2 x))\langle x:=N \rangle & \rightarrow \text{app}(M_1 x)\langle x:=N \rangle (M_2 x)\langle x:=N \rangle \\
(\text{lam}\lambda y. M x y)\langle x:=N \rangle & \rightarrow \text{lam}\lambda y. (M x y)\langle x:=N \rangle
\end{align*}
\]

Problems with third rule:

- not faithful: \(y \) term var, substitute any (closed) term for it
- not fully-extended: term substituted for \(y \) may not contain \(x \)
Lambda-calculus with explicit subs: less naïve HRS

Signature:

\[
\begin{align*}
\text{app} & : \ o \rightarrow (o \rightarrow o) \\
\text{lam} & : \ (\nu \rightarrow o) \rightarrow o \\
\text{var} & : \ \nu \rightarrow o \\
\langle__::=__\rangle & : \ (o \leftarrow \nu) \rightarrow o \rightarrow o
\end{align*}
\]
Lambda-calculus with explicit subs: less naïve HRS

Signature:

\[
\begin{align*}
app & : o \rightarrow (o \rightarrow o) \\
lam & : (\nu \rightarrow o) \rightarrow o \\
var & : \nu \rightarrow o \\
\langle_:=_\rangle & : (o \leftarrow \nu) \rightarrow o \rightarrow o
\end{align*}
\]

Rules:

\[
\begin{align*}
app(lam\lambda x.M x)N & \rightarrow (M x)\langle x:=N\rangle \\
(var x)\langle x:=N\rangle & \rightarrow N \\
(var y)\langle x:=N\rangle & \rightarrow y \\
(app(M_1 x)(M_2 x))\langle x:=N\rangle & \rightarrow app(M_1 x)\langle x:=N\rangle(M_2 x)\langle x:=N\rangle \\
(lam \lambda y.M x y)\langle x:=N\rangle & \rightarrow lam \lambda y.(M x y)\langle x:=N\rangle
\end{align*}
\]
Lambda-calculus with explicit subs: less naïve HRS

Signature:

\[\begin{align*}
app &: o \to (o \to o) \\
\lambda &: (\nu \to o) \to o \\
\nu &: o \\
\langle \nu ::= \rangle &: (o \leftarrow \nu) \to o \to o
\end{align*} \]

Rules:

\[\begin{align*}
app(\lambda x.Mx)N & \to (Mx)\langle x::=N \rangle \\
\langle x::=N \rangle & \to N \\
\langle x::=N \rangle & \to y \\
(app(M_1x)(M_2x))\langle x::=N \rangle & \to app(M_1x)\langle x::=N \rangle(M_2x)\langle x::=N \rangle \\
\lambda y.(Mxy)\langle x::=N \rangle & \to \lambda y.(Mxy)\langle x::=N \rangle
\end{align*} \]

Problem with third rule?:

- still not fully-extended
Lambda-calculus with explicit subs: less naïve HRS

Signature:

\[
\begin{align*}
\text{app} & : o \rightarrow (o \rightarrow o) \\
\text{lam} & : (\nu \rightarrow o) \rightarrow o \\
\text{var} & : \nu \rightarrow o \\
\langle _ := _ \rangle & : (o \leftarrow \nu) \rightarrow o \rightarrow o
\end{align*}
\]

Rules:

\[
\begin{align*}
\text{app}(\text{lam}\lambda x.M x)N & \rightarrow (M x)\langle x := N \rangle \\
(\text{var} x)\langle x := N \rangle & \rightarrow N \\
(\text{var} y)\langle x := N \rangle & \rightarrow y \\
(\text{app}(M_1 x)(M_2 x))\langle x := N \rangle & \rightarrow \text{app}(M_1 x)\langle x := N \rangle(M_2 x)\langle x := N \rangle \\
(\text{lam} \lambda y.M x y)\langle x := N \rangle & \rightarrow \text{lam} \lambda y.(M x y)\langle x := N \rangle
\end{align*}
\]

Problem with third rule?:

- still **not** fully-extended
- but doesn’t matter since never substituted for names
Lambda-calculus with patterns: usual presentation

Terms:

\[M ::= x \mid MM \mid \lambda M.M \]

free variables of abstracted term bound in body

Rule scheme:

\[(\lambda P.M)P^\sigma \rightarrow M^\sigma \]

Steps as usual, e.g.

\[(\lambda(\lambda z.zxy).x)\lambda z.zMN \rightarrow M \]
Lambda-calculus with patterns: usual presentation

Terms:

\[M ::= x \mid MM \mid \lambda M.M \]

free variables of abstracted term bound in body

Rule scheme:

\[(\lambda P.M)P^\sigma \rightarrow M^\sigma\]

Steps as usual, e.g.

\[(\lambda(\lambda z.zxy).x)\lambda z.zMN \rightarrow M\]

with syntactic sugar:

\[(\lambda\langle x, y\rangle.x)\langle M, N\rangle \rightarrow M\]
\[\Rightarrow \beta_p \]

\[\lambda \]

\[\text{pattern} \]

\[\text{body} \]

\[\Rightarrow \beta_p \]

\[\text{contractum} \]
Rules:

\[
\text{app (lam } \lambda \vec{x}(P \vec{x}).(Z \vec{x})) (P \vec{Z}) \rightarrow Z \vec{Z}
\]

for every pattern \(P \)
Lambda-calculus with patterns: HRS

Rules:

\[
\text{app (lam } \lambda \vec{x}(P \vec{x}).(Z \vec{x}))(P \vec{Z}) \rightarrow Z \vec{Z}
\]

for every pattern \(P \)

Theorem

Abstracted terms linear and not narrowable \(\Rightarrow \) confluent

Proof.

Orthogonal HRS!
Pure pattern calculus: part 1

\[
\begin{align*}
 d &::= x \ (x \in \varphi) \mid d \ t \\
 e &::= d \mid [\theta] t \rightarrow t
\end{align*}
\]

Definition 7 (Basic Matching). The basic matching \(\{ u \triangleright \theta \ p \}_\gamma \) of a term \(p \) (called the pattern) against a term \(u \) (called the argument) relative to a set \(\theta \) of binding variables and a disjoint set \(\gamma \) of constructing variables (or constructors) is the partial operation defined by applying the following equations in order

\[
\begin{align*}
\{ u \triangleright \theta \ x \}_\gamma &::= \{ u/x \} \quad \text{if } x \in \theta \\
\{ x \triangleright \theta \ x \}_\gamma &::= \{ \} \quad \text{if } x \in \gamma \\
\{ v \ u \triangleright \theta \ q \ p \}_\gamma &::= \{ v \triangleright \theta \ q \}_\gamma \cup \{ u \triangleright \theta \ p \}_\gamma \quad \text{if } q \ p \text{ is a } \gamma, \theta\text{-matchable form and } v \ u \text{ is a } \gamma\text{-matchable form} \\
\{ u \triangleright \theta \ p \}_\gamma &::= \text{none} \quad \text{if } p \text{ is a } \gamma, \theta\text{-matchable form and } u \text{ is a } \gamma\text{-matchable form} \\
\{ u \triangleright \theta \ p \}_\gamma &::= \text{undefined} \quad \text{otherwise.}
\end{align*}
\]
Pure pattern calculus: part 2

\((\theta p \to s) \ u \overset{\gamma}{\to} \{u/\theta\} p\) \(\gamma\) \(s\)

\[
\frac{r \to_{\gamma} r'}{\[\theta\] p \to s \to_{\gamma} \[\theta\] p' \to s}
\]

\[
\frac{[\theta] p \to s \to_{\gamma} \[\theta\] p \to s'}{[\theta] p \to s \to_{\gamma} \[\theta\] p \to s'}
\]
Pure pattern calculus: part 2

$([\theta] p \rightarrow s) u \triangleright_\gamma \{u/[\theta] p\}_{\gamma} s$

\[
\begin{array}{c}
([\theta] p \rightarrow s) u \rightarrow_\gamma \{u/[\theta] p\}_{\gamma} s \\
\hline
r \rightarrow_\gamma r' \\
\hline
u \rightarrow_\gamma u'
\end{array}
\]

\[
\begin{array}{c}
p \rightarrow_\gamma,\theta p' \\
\hline
[\theta] p \rightarrow s \rightarrow_\gamma [\theta] p' \rightarrow s
\end{array}
\]

\[
\begin{array}{c}
r u \rightarrow_\gamma r' u \\
\hline
r u \rightarrow_\gamma r u'
\end{array}
\]

\[
\begin{array}{c}
s \rightarrow_\gamma s' \\
\hline
[\theta] p \rightarrow s \rightarrow_\gamma [\theta] p \rightarrow s'
\end{array}
\]

Theorem

Pure pattern calculus is confluent

Proof.

Tait–Martin-Löf
Pure pattern calculus: HRS

Rules:

\[\text{app (lam (λ\vec{a}.(P \vec{a})) (λ\vec{x}.(Z \vec{x}))(P \vec{Z}))} \rightarrow Z \vec{Z} \]

for every pattern \(P \)
Pure pattern calculus: HRS

Rules:

\[
\text{app (lam (\lambda \vec{a}. (P \vec{a}))) (\lambda \vec{x}. (Z \vec{x}))) (P \vec{Z}) \rightarrow Z \vec{Z}
\]

for every pattern \(P \)

Theorem

Pure pattern calculus is confluent

Proof.

By orthogonality for HRSs, with non-substitutable names.
\[\square\]