Low Distortion
Embeddings for Edit
Distance

Rafail Ostrovsky (UCLA)
Yuval Rabani (Technion)

edit (or Levenshtein) distance

Let X,y be two character strings.

ed(x,y) = minimum # edit operations
needed to convert x info V.

edit operations: insert, delete (substitute)

We will restrict our attention to {0,1}¢

applications: text processing, genomics,

www, image matching, ...

edit distance computation

e dynamic programming (1965 ?) O(d®)

» Masek & Paterson (1980) O(d?/log d)

e BEKMRRS (2003) d€ vs. d, sublinear time
e BJKK (2004) d*7 approx. in O(d) time

o BES (2006) d/3+¢ approx. in O(d) time

o sketching: BIJKK (2004) k vs. (kd)?3
e communication complexity
e NNS: Indyk, BJKK (2004) d¢ approx.

e block ed: CPSV, MS (2000), CM (2002)

low distortion embedding

Map ({0,1}%,ed) to a normed space which we
know more about.

Natural candidate: 4, (Hamming distance)

¢ will denote the mapping.

The distortion = |llluip - ll=llup =

19(x) —@(y)]|: ed(x, y)

max -mMax

X,y ed(x,y) vy ||[@(x) — o)

our results

o 20Wlogdloglog d) distortion;

o efficiently computable: embedding a
point takes poly(d) time;

e implies same guarantee for sketfching,
communication complexity, nearest
neighbor search.

the embedding

Partition the string into blocks of length b:

0010111100101 0001111111000

In each block:
Take “shingles” shifted by 0,1,2,...,5-1:

O010111100101

embedding (cont.)
We get a (multi-) set of strings:
0010111100 1011110010

Recursively embed each shingle into the
Hamming cube: S = {0',0%,0°,0%}

Define a metric on s-sets of strings:

dist(S = e min {Z min{s,c-H(c,u(c))}

S matchings U S

V

/

embedding (cont.)

dist(S, F) = e min {Z min{s,c-H(G,,u(G))}}

S matchings U ceS

Use ¢ = 2 In(2s)

embedding (cont.)
ok o3

f?(e

Embed dist into 41 (P is the embedding)

We dont know how to get low distortion.

Guarantee:
1. Always |[W(S)-W(T)Il < c-dist(S,T)
recall: ¢ = 2 In(2s)

2.1f Vo, T H(o,T)2s, then IlW(S)-W(T)Il; >s/2

constructing Y

S contains s strings of length n

I is a sample of (1/s)-n-In(2s) positions
z is a (1/s)-n-In(2s) bit string

Coord. 1,z = #0-s with 01 = z.

Scaling: divide by #coordinates.

analysis of Y's construction

Simple probabilistic analysis:
Let J = 4j: 0; # Tj1, so H(0,T) = [JI.

Iis a u.a.r. sample of (1/s)-n-In(2s)
positions (with repetition).

PrlInT = O] = exp(-(1/s) - H(o,T) - In(2s))

choice of parameters

The block size b = d / 2+'0g d loglog d

Use several values for s: o
& o .
s = (log d)}, Vj s.t. s < b. Tot: 6glozd values.

Each block and each s-value generates a
set of coordinates (using V).

analysis

Crucial observation:

1. If #edit operations k in block < s, then <
ed(x,y) shingles o have ed(o,u(0)) > k:
0001111111000
0111110100001

2.1f do,T with ed(o,T) < s, then the two

X,y blocks align with cost < 2s + ed(o,T).

upper bound

Cost of "bad” shingles: (1/s)- ed(x,y) - s

“good” shingles: (1/s)-s- O(llPwllLip -k - n(s))

Summing over blocks, s gives:

lower bound

In each block i, let s =
max s s.t. Vo, T ed(0,T) 2 llpplluip - s

1. ed(x,y) < 2i (lppHlLip + 2)-si-log(d)

2.llp(x)-p(Yll: 2 2i si/2

analysis (cont.)

We need to balance #blocks against the

depth of the recurrence.

analysis (cont.)

We will use #blocks = 2+'09 d loglog d

Both recurrences solve to 2°(~Tog dTloglog d)

logd

The recurrence depth is 0O \/

loglogd

concluding remarks

e For efficient implementation, sample the
coordinates of .

* Failure prob. 0, dim = O(d - log(d/d)).

e To embed entire cube, dim = O(d?).

Lower bounds:
e ADGIR (2003) 3/2

e Khot & Naor (2005) Q(~/Tog d)
e Krauthgamer & R. (2006) Q(log d)
e CK? (2006) d“W into Hilbert space

