Low Distortion Embeddings for Edit Distance

Rafail Ostrovsky (UCLA) Yuval Rabani (Technion) edit (or Levenshtein) distance

Let x,y be two character strings.

ed(x,y) = minimum # edit operations needed to convert x into y.

edit operations: insert, delete (substitute)

We will restrict our attention to {0,1}d

<u>applications</u>: text processing, genomics, www, image matching, ...

edit distance computation

- dynamic programming (1965 ?) O(d²)
- Masek & Paterson (1980) O(d²/log d)
- BEKMRRS (2003) d[€] vs. d, sublinear time
- BJKK (2004) $d^{3/7}$ approx. in $\tilde{O}(d)$ time
- BES (2006) $d^{1/3+\epsilon}$ approx. in $\tilde{O}(d)$ time
- sketching: BJKK (2004) k vs. (kd)^{2/3}
- communication complexity
- NNS: Indyk, BJKK (2004) d[€] approx.
- block ed: CPSV, MS (2000), CM (2002)

low distortion embedding

Map ({0,1}d,ed) to a normed space which we know more about.

Natural candidate: 1 (≈ Hamming distance)

φ will denote the mapping.

The distortion =
$$\|\phi\|_{Lip} \cdot \|\phi^{-1}\|_{Lip}$$
 =

$$\max_{x,y} \frac{\|\varphi(x) - \varphi(y)\|_1}{\text{ed}(x,y)} \cdot \max_{x,y} \frac{\text{ed}(x,y)}{\|\varphi(x) - \varphi(y)\|_1}$$

our results

- 20(\langle loglog d) distortion;
- efficiently computable: embedding a point takes poly(d) time;
- implies same guarantee for sketching, communication complexity, nearest neighbor search.

the embedding

Partition the string into blocks of length b:

In each block:

Take "shingles" shifted by 0,1,2,...,s-1:

0010111100101

embedding (cont.)

We get a (multi-) set of strings:

0010111100 0101111001 1011110010 0111100101

Recursively embed each shingle into the Hamming cube: $S = \{\sigma^1, \sigma^2, \sigma^3, \sigma^4\}$

Define a metric on s-sets of strings:

$$\operatorname{dist}(S,T) = \frac{1}{s} \cdot \min_{\text{matchings } \mu} \left\{ \sum_{\sigma \in S} \min\{s, c \cdot H(\sigma, \mu(\sigma))\} \right\}$$

embedding (cont.)

$$\operatorname{dist}(S,T) = \frac{1}{s} \cdot \min_{\text{matchings } \mu} \left\{ \sum_{\sigma \in S} \min\{s, c \cdot H(\sigma, \mu(\sigma))\} \right\}$$

Use $c = 2 \ln(2s)$

embedding (cont.)

Embed dist into ℓ_1 (ψ is the embedding) We don't know how to get low distortion.

Guarantee:

- 1. Always $||\psi(S)-\psi(T)||_1 \le c \cdot dist(S,T)$ recall: $c = 2 \ln(2s)$
- 2. If $\forall \sigma, \tau \mathcal{H}(\sigma, \tau) \geq s$, then $||\psi(s) \psi(\tau)||_1 \geq s/2$

constructing Ψ

S contains s strings of length n

I is a sample of $(1/s) \cdot n \cdot \ln(2s)$ positions z is a $(1/s) \cdot n \cdot \ln(2s)$ bit string

Coord. $I_{,z} = \#\sigma_{-s}$ with $\sigma_{I} = z$.

Scaling: divide by #coordinates.

analysis of ψ's construction

Simple probabilistic analysis:

Let
$$J = \{j: \sigma_j \neq \tau_j\}$$
, so $\mathcal{H}(\sigma,\tau) = |J|$.

I is a u.a.r. sample of $(1/s) \cdot n \cdot ln(2s)$ positions (with repetition).

$$Pr[I \cap J = \emptyset] \approx exp(-(1/s) \cdot \mathcal{H}(\sigma,\tau) \cdot ln(2s))$$

choice of parameters

The block size $b = d / 2^{\log d \log \log d}$

Use several values for s: $s = (\log d)^j$, $\forall j$ s.t. $s \le b$. Tot: $\frac{\log d}{\log \log d}$ values.

Each block and each s-value generates a set of coordinates (using ψ).

analysis

Crucial observation:

If #edit operations k in block ≤ 5, then ≤ ed(x,y) shingles σ have ed(σ,μ(σ)) > k:
 0001111111000
 0111110100001

2. If $\exists \sigma, \tau$ with $ed(\sigma, \tau) \leq s$, then the two x,y blocks align with cost $\leq 2s + ed(\sigma, \tau)$.

upper bound

Cost of "bad" shingles: (1/s) - ed(x,y) - s

"good" shingles: (1/s)·s·O(||φ≤b||Lip·k·ln(s))

Summing over blocks, s gives:

 $||\phi_d||_{Lip} \le \#blocks \cdot \#s + \#s \cdot ln(d) \cdot ||\phi_b||_{Lip}$

lower bound

In each block i, let
$$s_i = \max s$$
 s.t. $\forall \sigma, \tau \ ed(\sigma, \tau) \ge ||\phi_b^{-1}||_{Lip} \cdot s$

1.
$$ed(x,y) \leq \sum_{i} (||\phi_{b}^{-1}||_{Lip} + 2) \cdot s_{i} \cdot log(d)$$

$$2.||\phi(x)-\phi(y)||_1 \ge \sum_i s_i/2$$

$$\|\phi_{d}^{-1}\|_{Lip} \leq \log(d) \cdot \|\phi_{b}^{-1}\|_{Lip} + \log(d)$$

analysis (cont.)

1. $\|\varphi_d\|_{Lip} \leq \log^2(d) \cdot \|\varphi_b\|_{Lip} + \#blocks \cdot \#s$

 $2.||\phi_d^{-1}||_{Lip} \leq \log(d) \cdot ||\phi_b^{-1}||_{Lip} + \log(d)$

We need to balance #blocks against the depth of the recurrence.

analysis (cont.)

1. $||\phi_d||_{Lip} \leq \log^2(d) \cdot ||\phi_b||_{Lip} + \#blocks \cdot \#s$

 $2.||\phi_{d}^{-1}||_{Lip} \leq \log(d) \cdot ||\phi_{b}^{-1}||_{Lip} + \log(d)$

We will use #blocks = 2/log d loglog d

Both recurrences solve to 20(\langle loglog d)

The recurrence depth is $O\left(\sqrt{\frac{\log d}{\log \log d}}\right)$

concluding remarks

- For efficient implementation, sample the coordinates of ψ .
- Failure prob. δ , dim = $O(d \cdot \log(d/\delta))$.
- To embed entire cube, dim = $O(d^2)$.

Lower bounds:

- ADGIR (2003) 3/2
- Khot & Naor (2005) Ω(√log d)
- Krauthgamer & R. (2006) $\Omega(\log d)$
- CK? (2006) $d^{\Omega(1)}$ into Hilbert space

