Positive-existential definability in Noetherian rings

Laurent Moret-Bailly

IRMAR, Université de Rennes 1
Member of the European network *Arithmetic Algebraic Geometry*

ICMS workshop
Number Theory and Computability
June 2007
Summary

1. (Positive-)existential sets
2. The results
3. The methods
4. Approximation properties
Conventions:

- Rings are commutative with unit.
- If R is a ring, we shall consider definability over R with respect to the language $L(R)$ which is the language of rings $(+, ., 0, 1)$, augmented with:

1. One constant for each element of R.
2. The logical constant FALSE.
Conventions:

- Rings are commutative with unit.
- If R is a ring, we shall consider definability over R with respect to the language $L(R)$ which is the language of rings $(+,.,0,1)$, augmented with:
Rings are commutative with unit.

If \(R \) is a ring, we shall consider definability over \(R \) with respect to the language \(L(R) \) which is the language of rings \((+, ., 0, 1) \), augmented with:
Conventions:

- Rings are commutative with unit.
- If R is a ring, we shall consider definability over R with respect to the language $L(R)$ which is the language of rings $(+,\cdot,0,1)$, augmented with:
 - one constant for each element of R
Conventions:

- Rings are commutative with unit.
- If R is a ring, we shall consider definability over R with respect to the language $L(R)$ which is the language of rings $(+,\cdot,0,1)$, augmented with:
 - one constant for each element of R
 - the logical constant FALSE.
Special subsets:

If R is a ring and $n \in \mathbb{N}$, then:

- **basic algebraic subsets** of R^n are defined by finite systems of polynomial equations, with coefficients in R:

 $$\{ t \in R^n \mid F_1(t) = \cdots = F_r(t) = 0 \}$$

- **algebraic subsets** of R^n are finite unions of basic algebraic subsets

- **constructible subsets** of R^n are finite Boolean combinations of (basic) algebraic subsets

- **positive-existential subsets** of R^n are projections of algebraic subsets of some R^{n+p}

- **existential subsets** of R^n are projections of constructible subsets of some R^{n+p}.
Special subsets:

If R is a ring and $n \in \mathbb{N}$, then:

- **basic algebraic subsets** of R^n are defined by finite systems of polynomial equations, with coefficients in R:
 $$\{ t \in R^n \mid F_1(t) = \cdots = F_r(t) = 0 \}$$

- **algebraic subsets** of R^n are finite unions of basic algebraic subsets

- **constructible subsets** of R^n are finite Boolean combinations of (basic) algebraic subsets

- **positive-existential subsets** of R^n are projections of algebraic subsets of some R^{n+p}

- **existential subsets** of R^n are projections of constructible subsets of some R^{n+p}.
Special subsets:

If R is a ring and $n \in \mathbb{N}$, then:

- **basic algebraic subsets** of R^n are defined by finite systems of polynomial equations, with coefficients in R:
 \[
 \{ t \in R^n \mid F_1(t) = \cdots = F_r(t) = 0 \}
 \]

- **algebraic subsets** of R^n are finite unions of basic algebraic subsets

- **constructible subsets** of R^n are finite Boolean combinations of (basic) algebraic subsets

- **positive-existential subsets** of R^n are projections of algebraic subsets of some R^{n+p}

- **existential subsets** of R^n are projections of constructible subsets of some R^{n+p}.
Special subsets:

If R is a ring and $n \in \mathbb{N}$, then:

- **basic algebraic subsets** of R^n are defined by finite systems of polynomial equations, with coefficients in R:

 \[\{ t \in R^n \mid F_1(t) = \cdots = F_r(t) = 0 \} \]

- **algebraic subsets** of R^n are finite unions of basic algebraic subsets

- **constructible subsets** of R^n are finite Boolean combinations of (basic) algebraic subsets

- **positive-existential subsets** of R^n are projections of algebraic subsets of some R^{n+p}

- **existential subsets** of R^n are projections of constructible subsets of some R^{n+p}.
Special subsets:

If R is a ring and $n \in \mathbb{N}$, then:

- **basic algebraic subsets** of R^n are defined by finite systems of polynomial equations, with coefficients in R:
 \[
 \{ t \in R^n \mid F_1(t) = \cdots = F_r(t) = 0 \}
 \]

- **algebraic subsets** of R^n are finite unions of basic algebraic subsets

- **constructible subsets** of R^n are finite Boolean combinations of (basic) algebraic subsets

- **positive-existential subsets** of R^n are projections of algebraic subsets of some R^{n+p}

- **existential subsets** of R^n are projections of constructible subsets of some R^{n+p}.
Remarks:

- One can replace “projections” by “images by polynomial maps”.
- If R is a domain, all algebraic sets are basic.
- (Positive-)existential sets are those defined by (positive-)existential formulas in the language $L(R)$.
- The reason for the logical constant FALSE is to make the empty subset of R^n positive-existential when R is the zero ring!
Remarks:

- One can replace “projections” by “images by polynomial maps”.

- If R is a domain, all algebraic sets are basic.

- (Positive-)existential sets are those defined by (positive-)existential formulas in the language $L(R)$.

- The reason for the logical constant FALSE is to make the empty subset of R^n positive-existential when R is the zero ring!
Remarks:

- One can replace “projections” by “images by polynomial maps”.
- If R is a domain, all algebraic sets are basic.
- (Positive-)existential sets are those defined by (positive-)existential formulas in the language $L(R)$.
- The reason for the logical constant FALSE is to make the empty subset of R^n positive-existential when R is the zero ring!
Remarks:

- One can replace “projections” by “images by polynomial maps”.
- If R is a domain, all algebraic sets are basic.
- (Positive-)existential sets are those defined by (positive-)existential formulas in the language $L(R)$.
- The reason for the logical constant FALSE is to make the empty subset of R^n positive-existential when R is the zero ring!
Remarks:

- One can replace “projections” by “images by polynomial maps”.
- If R is a domain, all algebraic sets are basic.
- (Positive-)existential sets are those defined by (positive-)existential formulas in the language $L(R)$.
- The reason for the logical constant FALSE is to make the empty subset of R^n positive-existential when R is the zero ring!
 (for a nonzero ring, FALSE is equivalent to $1 = 0$)
“Existential” vs. “positive-existential”:

Clearly, every positive-existential set is existential. The converse is true (for given R) if and only if R is “good” in the following sense:

Definition

A ring R is good if

$$R \setminus \{0\} \text{ is positive-existential in } R$$
“Existential” vs. “positive-existential”:

Clearly, every positive-existential set is existential. The converse is true (for given R) if and only if R is “good” in the following sense:

Definition

A ring R is **good** if

$$R \setminus \{0\} \text{ is positive-existential in } R$$
“Existential” vs. “positive-existential”:

Clearly, every positive-existential set is existential.

The converse is true (for given R) if and only if R is “good” in the following sense:

Definition

A ring R is **good** if

$$R \setminus \{0\}$$

is positive-existential in R

and is **bad** otherwise.
Problem:

find useful classes of good (resp. bad) rings
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good:
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good:
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good:
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good:
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good:
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good: for $t \in \mathbb{Z}$, we have

 \[t \neq 0 \iff (\exists x)(\exists y) \ t^2 = (1 + 2x)(1 + 3y) \]
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good: for $t \in \mathbb{Z}$, we have

$$t \neq 0 \iff (\exists x)(\exists y) \quad t^2 = (1 + 2x)(1 + 3y) \iff (\exists w)(\exists x)(\exists y) \quad tw = (1 + 2x)(1 + 3y).$$
Some examples of good rings:

- Every finite ring is good.
- Every field is good (nonzero = invertible).
- $R_1 \times R_2$ is good iff both R_1 and R_2 are.
- \mathbb{Z} is good: for $t \in \mathbb{Z}$, we have
 \[
 t \neq 0 \iff (\exists x)(\exists y) \ t^2 = (1 + 2x)(1 + 3y)
 \]
 \[
 \iff (\exists w)(\exists x)(\exists y) \ tw = (1 + 2x)(1 + 3y).
 \]
- In fact, the last formula shows that every ring of algebraic integers is good.
Some examples of bad rings:

- If p is a prime, \mathbb{Z}_p is bad.
- More generally, infinite compact topological rings are bad (examples: $\mathbb{F}_p[[t]]$, \mathbb{F}_p^N).
- Infinite products of nonzero rings are bad.
- If R is a nonzero ring, and I is an infinite set, then $R\left((X_i)_{i \in I}\right)$ is bad.
Some examples of bad rings:

- If p is a prime, \mathbb{Z}_p is bad

- More generally, infinite compact topological rings are bad (examples: $\mathbb{F}_p[[t]]$, $\mathbb{F}_p^\mathbb{N}$).

- Infinite products of nonzero rings are bad.

- If R is a nonzero ring, and I is an infinite set, then $R\left[(X_i)_{i \in I} \right]$ is bad.
Some examples of bad rings:

- If p is a prime, \mathbb{Z}_p is bad (every positive-existential set is p-adically compact).

- More generally, infinite compact topological rings are bad (examples: $\mathbb{F}_p[[t]]$, $\mathbb{F}_p^\mathbb{N}$).

- Infinite products of nonzero rings are bad.

- If R is a nonzero ring, and I is an infinite set, then $R \left[(X_i)_{i \in I} \right]$ is bad.
Some examples of bad rings:

- If p is a prime, \mathbb{Z}_p is bad (every positive-existential set is p-adically compact).

- More generally, infinite compact topological rings are bad (examples: $\mathbb{F}_p[[t]]$, $\mathbb{F}_p^\mathbb{N}$).

- Infinite products of nonzero rings are bad.

- If R is a nonzero ring, and I is an infinite set, then $R \left[(X_i)_{i \in I} \right]$ is bad.
Some examples of bad rings:

- If p is a prime, \mathbb{Z}_p is bad (every positive-existential set is p-adically compact).
- More generally, infinite compact topological rings are bad (examples: $\mathbb{F}_p[[t]]$, $\mathbb{F}_p^\mathbb{N}$).
- Infinite products of nonzero rings are bad.
- If R is a nonzero ring, and I is an infinite set, then $R[(X_i)_{i \in I}]$ is bad.
Some examples of bad rings:

- If p is a prime, \mathbb{Z}_p is bad (every positive-existential set is p-adically compact).

- More generally, infinite compact topological rings are bad (examples: $\mathbb{F}_p[[t]]$, $\mathbb{F}_p^\mathbb{N}$).

- Infinite products of nonzero rings are bad.

- If R is a nonzero ring, and I is an infinite set, then $R \left[(X_i)_{i \in I} \right]$ is bad.
Main result for Noetherian domains:

“Most” Noetherian domains are good:

Theorem

Let R be a Noetherian domain.
Main result for Noetherian domains:

“Most” Noetherian domains are good:

Theorem

Let R be a Noetherian domain.
Main result for Noetherian domains:

“Most” Noetherian domains are good:

Theorem

Let R be a Noetherian domain. If R is not local Henselian, then R is good.
Main result for Noetherian domains:

“Most” Noetherian domains are good:

Theorem

Let R be a Noetherian domain.

If R is not local Henselian, then R is good.

What about other Noetherian rings?
Main result for Noetherian domains:

“Most” Noetherian domains are good:

Theorem

Let R be a Noetherian domain.

If R is not local Henselian, then R is good.

What about other Noetherian rings?

What about the Henselian case?
Other good Noetherian rings:

Proposition

Let R be a Noetherian ring.
Other good Noetherian rings:

Proposition

Let R be a Noetherian ring.

Assume that *every quotient domain of R is good.*
Proposition

Let R be a Noetherian ring.

Assume that every quotient domain of R is good.

Then R is good. More generally, every ring of fractions $S^{-1}R$ is good.
Corollary

Artin rings are good.

Corollary

Let R be a Noetherian Jacobson ring
Corollary

Artin rings are good.

Proof: every quotient domain of an Artin ring is a field.

Corollary

Let R be a Noetherian Jacobson ring
Corollary

Artin rings are good.

Proof: every quotient domain of an Artin ring is a field.

Corollary

Let R be a Noetherian Jacobson ring.
Corollary

Artin rings are good.

Proof: every quotient domain of an Artin ring is a field.

Corollary

Let R be a Noetherian Jacobson ring (every prime ideal is an intersection of maximal ideals).
Corollary

Artin rings are good.

Proof: every quotient domain of an Artin ring is a field.

Let R be a Noetherian Jacobson ring.

Then *every ring of fractions $S^{-1}R$ is good.*
Corollary

Artin rings are good.

Proof: every quotient domain of an Artin ring is a field.

Corollary

Let R be a Noetherian Jacobson ring.

Then every ring of fractions $S^{-1}R$ is good.

In particular, if k is a field, every k-algebra essentially of finite type is good.
Local Henselian rings

Let R be local with maximal ideal \mathfrak{m}.

Recall that R is Henselian if:

Examples: complete local rings (by Hensel’s lemma) $\tilde{\mathbb{Q}} \cap \mathbb{Z}_p$.
Local Henselian rings

Let R be local with maximal ideal m.

Recall that R is Henselian if:

for every $F \in R[X]$, every simple root of F in R/m lifts to a (unique) root of F in R.

Examples: complete local rings (by Hensel's lemma) $\mathbb{Q} \cap \mathbb{Z}_p$.
Let R be local with maximal ideal m.

Recall that R is Henselian if:

for every $F \in R[X]$, every simple root of F in R/m lifts to a (unique) root of F in R.

Examples:
Local Henselian rings

Let R be local with maximal ideal m.

Recall that R is Henselian if:

for every $F \in R[X]$, every simple root of F in R/m lifts to a (unique) root of F in R.

Examples:

- complete local rings (by Hensel’s lemma)
Local Henselian rings

Let R be local with maximal ideal m.

Recall that R is Henselian if:

for every $F \in R[X]$, every simple root of F in R/m lifts to a (unique) root of F in R.

Examples:

- complete local rings (by Hensel’s lemma)
- $\overline{\mathbb{Q}} \cap \mathbb{Z}_p$.
Local Henselian rings tend to be bad:

Assume R is Noetherian, local and Henselian (not necessarily a domain). If $\text{dim } R = 0$ then R is good, so we assume $\text{dim } R > 0$.

Then:

Theorem

If R is excellent, then R is bad.

Remarks:

All complete local rings, and all Noetherian rings "occurring naturally" in algebraic geometry and number theory, are excellent. There is a (non-excellent) Henselian discrete valuation ring which is good.
Local Henselian rings tend to be bad:

Assume R is Noetherian, local and Henselian (not necessarily a domain).
Local Henselian rings tend to be bad:

Assume R is Noetherian, local and Henselian (not necessarily a domain).
If $\dim R = 0$ then R is good, so we assume $\dim R > 0$.
Local Henselian rings tend to be bad:

Assume R is Noetherian, local and Henselian (not necessarily a domain).
If $\dim R = 0$ then R is good, so we assume $\dim R > 0$.
Then:

Theorem
Local Henselian rings tend to be bad:

Assume R is Noetherian, local and Henselian (not necessarily a domain).
If $\dim R = 0$ then R is good, so we assume $\dim R > 0$.
Then:

Theorem

If R is excellent, then R is bad.
Local Henselian rings tend to be bad:

Assume R is Noetherian, local and Henselian (not necessarily a domain).
If $\dim R = 0$ then R is good, so we assume $\dim R > 0$. Then:

Theorem

If R is excellent, then R is bad.

Remarks:

- All complete local rings, and all Noetherian rings “occurring naturally” in algebraic geometry and number theory, are excellent.
Local Henselian rings tend to be bad:

Assume R is Noetherian, local and Henselian (not necessarily a domain). If $\dim R = 0$ then R is good, so we assume $\dim R > 0$. Then:

Theorem

If R is excellent, then R is bad.

Remarks:

- All complete local rings, and all Noetherian rings “occurring naturally” in algebraic geometry and number theory, are excellent.
- There is a (non-excellent) Henselian discrete valuation ring which is good.
Rings of analytic functions:

Theorem

Let X be a reduced irreducible Stein analytic space.
Rings of analytic functions:

Theorem

Let X be a reduced irreducible Stein analytic space

(e.g. a polydisk)
Rings of analytic functions:

Theorem

Let X be a reduced irreducible Stein analytic space.

Then the ring $\mathcal{H}(X)$ of holomorphic functions on X is good.
Some elementary facts:

- If I is a finitely generated ideal of R and R/I is good, then $R \setminus I$ is positive-existential in R.

- ("Weil restriction") If some nonzero finite free R-algebra is good, then R is good.
Some elementary facts:

- If I is a finitely generated ideal of R and R/I is good, then $R \setminus I$ is positive-existential in R.

- ("Weil restriction") If some nonzero finite free R-algebra is good, then R is good.
The “Two Ideals” Lemma

(generalizing results of A. Shlapentokh and J. Demeyer)

Lemma

Let R be a Noetherian domain, and let \mathfrak{p} and \mathfrak{q} be two prime ideals of R. Assume that:

Then R is good.
The “Two Ideals” Lemma

(generalizing results of A. Shlapentokh and J. Demeyer)

Lemma

Let R *be a Noetherian domain, and let* p *and* q *be two prime ideals of* R. *Assume that:*

- $p \cap q$ *contains no nonzero prime.

Then R *is good.*
The “Two Ideals” Lemma

(generalizing results of A. Shlapentokh and J. Demeyer)

Lemma

Let R be a Noetherian domain, and let \mathfrak{p} and \mathfrak{q} be two prime ideals of R. Assume that:

- $\mathfrak{p} \cap \mathfrak{q}$ contains no nonzero prime
 (e.g. \mathfrak{p} has height 1 and $\mathfrak{p} \not\subset \mathfrak{q}$).

Then R is good.
The “Two Ideals” Lemma

Let R be a Noetherian domain, and let \mathfrak{p} and \mathfrak{q} be two prime ideals of R. Assume that:

- $\mathfrak{p} \cap \mathfrak{q}$ contains no nonzero prime.
- R/\mathfrak{p} and R/\mathfrak{q} are good.

Then R is good.
The “Two Ideals” Lemma

(generalizing results of A. Shlapentokh and J. Demeyer)

Lemma

Let R be a Noetherian domain, and let \mathfrak{p} and \mathfrak{q} be two prime ideals of R. Assume that:

- $\mathfrak{p} \cap \mathfrak{q}$ contains no nonzero prime.
- R/\mathfrak{p} and R/\mathfrak{q} are good.

Then R is good.

Explicitly, for $t \in R$, we have $t \neq 0$ if and only if

(some multiple of t)=$(some~x \notin \mathfrak{p})(some~y \notin \mathfrak{q})$
The “Two Ideals” Lemma

(generalizing results of A. Shlapentokh and J. Demeyer)

Lemma

Let R be a Noetherian domain, and let \mathfrak{p} and \mathfrak{q} be two prime ideals of R. Assume that:

- $\mathfrak{p} \cap \mathfrak{q}$ contains no nonzero prime.
- R/\mathfrak{p} and R/\mathfrak{q} are good.

Then R is good.

Explicitly, for $t \in R$, we have $t \neq 0$ if and only if

(some multiple of t)$=(some \ x \notin \mathfrak{p})(some \ y \notin \mathfrak{q})$

and the conditions $x \notin \mathfrak{p}$ and $y \notin \mathfrak{q}$ are positive-existential.
Corollary

If k is a good (Noetherian) domain, then k[X] is good.

Proof: Apply the lemma with $R = k[X]$, $p = (X)$, $q = (X - 1)$: then

- $p \cap q = X(X - 1)R$ contains no nonzero prime,
- R/p and R/q are both isomorphic to k.

Remark: the Noetherian assumption is in fact not needed.
Corollary

If k is a good (Noetherian) domain, then $k[X]$ is good.

Proof: Apply the lemma with $R = k[X]$, $p = (X)$, $q = (X - 1)$: then

- $p \cap q = X(X - 1)R$ contains no nonzero prime,
- R/p and R/q are both isomorphic to k.

Remark: the Noetherian assumption is in fact not needed.
Corollary

If k is a good (Noetherian) domain, then $k[X]$ is good.

Proof: Apply the lemma with $R = k[X]$, $p = (X)$, $q = (X - 1)$: then

- $p \cap q = X(X - 1)R$ contains no nonzero prime,
- R/p and R/q are both isomorphic to k.

Remark: the Noetherian assumption is in fact not needed.
One cannot apply the “Two Ideals” lemma directly if (for example) \(R \) is a one-dimensional local domain.

In such cases, one can try to replace \(R \) by a finite free \(R \)-algebra which has “more” primes.

For instance, if \(R = \mathbb{Z}_{(2)} \), the ring \(S = R[X]/(X^2 + X + 2) \) is free of rank 2 over \(R \) and has two maximal ideals \((X^2 + X + 2 \) has two simple roots mod 2).

The lemma then implies that \(S \) is good, hence so is \(R \) by Weil restriction.
One cannot apply the “Two Ideals” lemma directly if (for example) R is a one-dimensional local domain. In such cases, one can try to replace R by a finite free R-algebra which has “more” primes.

For instance, if $R = \mathbb{Z}_{(2)}$, the ring $S = R[X]/(X^2 + X + 2)$ is free of rank 2 over R and has two maximal ideals ($X^2 + X + 2$ has two simple roots mod 2).

The lemma then implies that S is good, hence so is R by Weil restriction.
One cannot apply the “Two Ideals” lemma directly if (for example) \(R \) is a \textbf{one-dimensional local domain}.

In such cases, one can try to replace \(R \) by a finite free \(R \)-algebra which has “more” primes.

For instance, if \(R = \mathbb{Z}_2(2) \), the ring \(S = R[X]/(X^2 + X + 2) \) is free of rank 2 over \(R \) and has two maximal ideals \((X^2 + X + 2 \text{ has two simple roots mod } 2)\).

The lemma then implies that \(S \) is good, hence so is \(R \) by Weil restriction.
One cannot apply the “Two Ideals” lemma directly if (for example) R is a one-dimensional local domain.

In such cases, one can try to replace R by a finite free R-algebra which has “more” primes.

For instance, if $R = \mathbb{Z}_2$, the ring $S = R[X]/(X^2 + X + 2)$ is free of rank 2 over R and has two maximal ideals ($X^2 + X + 2$ has two simple roots mod 2).

The lemma then implies that S is good, hence so is R by Weil restriction.
One cannot apply the “Two Ideals” lemma directly if (for example) \(R \) is a one-dimensional local domain.

In such cases, one can try to replace \(R \) by a finite free \(R \)-algebra which has “more” primes.

For instance, if \(R = \mathbb{Z}_2 \), the ring \(S = R[X]/(X^2 + X + 2) \) is free of rank 2 over \(R \) and has \textit{two maximal ideals} \((X^2 + X + 2 \text{ has two simple roots mod } 2) \). The lemma then implies that \(S \) is good, hence so is \(R \) by Weil restriction.
One cannot apply the “Two Ideals” lemma directly if (for example) R is a one-dimensional local domain.

In such cases, one can try to replace R by a finite free R-algebra which has “more” primes.

For instance, if $R = \mathbb{Z}_2$, the ring $S = R[X]/(X^2 + X + 2)$ is free of rank 2 over R and has two maximal ideals ($X^2 + X + 2$ has two simple roots mod 2).

The lemma then implies that S is good, hence so is R by Weil restriction.
One cannot apply the “Two Ideals” lemma directly if (for example) R is a one-dimensional local domain.

In such cases, one can try to replace R by a finite free R-algebra which has “more” primes.

For instance, if $R = \mathbb{Z}_{(2)}$, the ring $S = R[X]/(X^2 + X + 2)$ is free of rank 2 over R and has two maximal ideals ($X^2 + X + 2$ has two simple roots mod 2).

The lemma then implies that S is good, hence so is R by Weil restriction.

Note: the trick does not work if $R = \mathbb{Z}_2$
One cannot apply the “Two Ideals” lemma directly if (for example) R is a one-dimensional local domain.

In such cases, one can try to replace R by a finite free R-algebra which has “more” primes.

For instance, if $R = \mathbb{Z}_2$, the ring $S = R[X]/(X^2 + X + 2)$ is free of rank 2 over R and has two maximal ideals ($X^2 + X + 2$ has two simple roots mod 2).

The lemma then implies that S is good, hence so is R by Weil restriction.

Note: the trick does not work if $R = \mathbb{Z}_2$ because S is no longer a domain!
One cannot apply the “Two Ideals” lemma directly if (for example) \(R \) is a one-dimensional local domain.

In such cases, one can try to replace \(R \) by a finite free \(R \)-algebra which has “more” primes.

For instance, if \(R = \mathbb{Z}_{(2)} \), the ring \(S = R[X]/(X^2 + X + 2) \) is free of rank 2 over \(R \) and has two maximal ideals \((X^2 + X + 2 \text{ has two simple roots mod } 2)\).

The lemma then implies that \(S \) is good, hence so is \(R \) by Weil restriction.

Note: the trick does not work if \(R = \mathbb{Z}_2 \) because \(S \) is no longer a domain!

Of course, this method can be used in other situations:
The “Doubling Lemma”

Lemma

Let R be a Noetherian domain with fraction field K. Let $\mathfrak{p} \subset R$ be a nonzero prime ideal. Exclude the case where R is local with maximal ideal \mathfrak{p}.

Then there exists a polynomial

$$F = X^2 + aX + b \in R[X]$$

such that $a \not\in \mathfrak{p}$, $b \in \mathfrak{p}$, and F is irreducible in $K[X]$.

In particular, the R-algebra $S := R[X]/(F)$ has the following properties:

- S is a domain,
- S is free of rank 2 as an R-module,
- S has two prime ideals above \mathfrak{p}, with quotients both isomorphic to R/\mathfrak{p}.
Let R be a Noetherian domain with fraction field K. Let $\mathfrak{p} \subseteq R$ be a nonzero prime ideal. Exclude the case where R is local with maximal ideal \mathfrak{p}. Then there exists a polynomial

$$F = X^2 + aX + b \in R[X]$$

such that $a \notin \mathfrak{p}$, $b \in \mathfrak{p}$, and F is irreducible in $K[X]$. In particular, the R-algebra $S := R[X]/(F)$ has the following properties:

- S is a domain,
- S is free of rank 2 as an R-module,
- S has two prime ideals above \mathfrak{p}, with quotients both isomorphic to R/\mathfrak{p}.
The “Doubling Lemma”

Lemma

Let R be a Noetherian domain with fraction field K. Let $\mathfrak{p} \subset R$ be a nonzero prime ideal.

Exclude the case where R is local with maximal ideal \mathfrak{p}.

Then there exists a polynomial

$$F = X^2 + aX + b \in R[X]$$

such that $a \notin \mathfrak{p}$, $b \in \mathfrak{p}$, and F is irreducible in $K[X]$.

In particular, the R-algebra $S := R[X]/(F)$ has the following properties:

- S is a domain,
- S is free of rank 2 as an R-module,
- S has two prime ideals above \mathfrak{p}, with quotients both isomorphic to R/\mathfrak{p}.
The “Doubling Lemma”

Lemma

Let R be a Noetherian domain with fraction field K. Let $\mathfrak{p} \subset R$ be a nonzero prime ideal.

Exclude the case where R is local with maximal ideal \mathfrak{p}.

Then there exists a polynomial

$$F = X^2 + aX + b \in R[X]$$

such that $a \not\in \mathfrak{p}$, $b \in \mathfrak{p}$, and F is irreducible in $K[X]$.

In particular, the R-algebra $S := R[X]/(F)$ has the following properties:

- S is a domain,
- S is free of rank 2 as an R-module,
- S has two prime ideals above \mathfrak{p}, with quotients both isomorphic to R/\mathfrak{p}.
The “Doubling Lemma”

Lemma

Let R be a Noetherian domain with fraction field K. Let $\mathfrak{p} \subset R$ be a nonzero prime ideal. Exclude the case where R is local with maximal ideal \mathfrak{p}.

Then there exists a polynomial

$$F = X^2 + aX + b \in R[X]$$

such that $a \notin \mathfrak{p}$, $b \in \mathfrak{p}$, and F is irreducible in $K[X]$.

In particular, the R-algebra $S := R[X]/(F)$ has the following properties:

- S is a domain,
- S is free of rank 2 as an R-module,
- S has two prime ideals above \mathfrak{p}, with quotients both isomorphic to R/\mathfrak{p}.
The non-local case

Combining the Two Ideals Lemma, the Doubling Lemma, and an induction on dimension, one obtains:

Proposition

Let R be a Noetherian domain, \mathfrak{p} a prime ideal of R. Exclude the case where R is local with maximal ideal \mathfrak{p}. If R/\mathfrak{p} is good, then R is good.

Corollary

Every *non-local* Noetherian domain is good.

Proof: apply the proposition to any maximal ideal of R.
The non-local case

Combining the Two Ideals Lemma, the Doubling Lemma, and an induction on dimension, one obtains:

Proposition

Let \(R \) be a Noetherian domain, \(\mathfrak{p} \) a prime ideal of \(R \). Exclude the case where \(R \) is local with maximal ideal \(\mathfrak{p} \). If \(R/\mathfrak{p} \) is good, then \(R \) is good.

Corollary

Every non-local Noetherian domain is good.

Proof: apply the proposition to any maximal ideal of \(R \).
Combing the Two Ideals Lemma, the Doubling Lemma, and an induction on dimension, one obtains:

Proposition

Let R be a Noetherian domain, \mathfrak{p} a prime ideal of R. Exclude the case where R is local with maximal ideal \mathfrak{p}. If R/\mathfrak{p} is good, then R is good.

Corollary

Every *non-local* Noetherian domain is good.

Proof: apply the proposition to any maximal ideal of R.

If R is a local, non-Henselian Noetherian domain, there exists a finite R-algebra S which is a non-local domain, hence good.
The non-Henselian case

If R is a local, non-Henselian Noetherian domain, there exists a finite R-algebra S which is a non-local domain, hence good.
The non-Henselian case

If R is a local, non-Henselian Noetherian domain, there exists a finite R-algebra S which is a non-local domain, hence good.
The non-Henselian case

If R is a local, non-Henselian Noetherian domain, there exists a finite R-algebra S which is a non-local domain, hence good.

Using Weil restriction, one concludes that R is also good.
The non-Henselian case

If R is a local, non-Henselian Noetherian domain, there exists a finite R-algebra S which is a non-local domain, hence good.

Using Weil restriction, one concludes that R is also good.

(Some care is needed because S is not necessarily a free R-module).
Approximation properties and the Henselian case
Notation:

Assume

- R is a ring,
- S is a finite system of polynomial equations with coefficients in R,
- A is an R-algebra.

Then we denote by $\text{sol}(S, A)$ the set of A-valued solutions of S.
Notation:

Assume

- R is a ring,
- S is a finite system of polynomial equations with coefficients in R,
- A is an R-algebra.

Then we denote by $\text{sol}(S, A)$ the set of A-valued solutions of S.
Let R be a ring and I an ideal of R. We say that (R, I) satisfies the infinitesimal Hasse principle (IHP) if:

For each polynomial system S as before,

if $\text{sol}(S, R/I^q) \neq \emptyset$ for each $q \geq 0$, then $\text{sol}(S, R) \neq \emptyset$.
Let R be a ring and I an ideal of R. We say that (R, I) satisfies the infinitesimal Hasse principle (IHP) if:

For each polynomial system S as before, if $\text{sol}(S, R/I^q) \neq \emptyset$ for each $q \geq 0$, then $\text{sol}(S, R) \neq \emptyset$.
Remarks on IHP:

Assume R is local and Noetherian, with maximal ideal I, and \hat{R} is the I-adic completion of R.

Then (IHP) is equivalent to either of:

- the approximation property: for each system S, $\text{sol}(S, R)$ is I-adically dense in $\text{sol}(S, \hat{R})$,
- the strong approximation property (Pfister-Popescu; Becker-Denef-Lipshitz-van den Dries).
Remarks on IHP:

Assume R is local and Noetherian, with maximal ideal I, and \hat{R} is the I-adic completion of R.

Then (IHP) is equivalent to either of:

- the approximation property: for each system S, $\text{sol}(S, R)$ is I-adically dense in $\text{sol}(S, \hat{R})$,

- the strong approximation property (Pfister-Popescu; Becker-Denef-Lipshitz-van den Dries).
Remarks on IHP:

Assume R is local and Noetherian, with maximal ideal I, and \hat{R} is the I-adic completion of R.

Then (IHP) is equivalent to either of:

- the approximation property: for each system S, $\text{sol}(S, R)$ is I-adically dense in $\text{sol}(S, \hat{R})$,
- the strong approximation property (Pfister-Popescu; Becker-Denef-Lipshitz-van den Dries).
Remarks on IHP:

Assume R is local and Noetherian, with maximal ideal I, and \hat{R} is the I-adic completion of R.

Then (IHP) is equivalent to either of:

- the approximation property: for each system S, $\text{sol}(S, R)$ is I-adically dense in $\text{sol}(S, \hat{R})$,
- the strong approximation property (Pfister-Popescu; Becker-Denef-Lipshitz-van den Dries).

Moreover, these properties are satisfied if R is excellent (Popescu).
The connection with bad rings:

Proposition

Let R be a Noetherian ring, I an ideal of R. The following are equivalent:

1. (R, I) satisfies the IHP,
2. for all n in \mathbb{N}, every positive-existential subset of R^n is I-adically closed.

(The proof is easy, directly from the definitions).
The connection with bad rings:

Proposition

Let \(R \) be a Noetherian ring, \(I \) an ideal of \(R \). The following are equivalent:

1. \((R, I)\) satisfies the IHP,
2. for all \(n \) in \(\mathbb{N} \), every positive-existential subset of \(R^n \) is \(I \)-adically closed.

(The proof is easy, directly from the definitions).
Corollary

Let R be a Noetherian ring, I an ideal of R. Assume that (R, I) satisfies the IHP and I is not nilpotent. Then R is bad.
Corollary

Let R be a Noetherian ring, I an ideal of R. Assume that (R, I) satisfies the IHP and I is not nilpotent. Then R is bad.

Proof: since I is not nilpotent,
Corollary

Let R be a Noetherian ring, I an ideal of R. Assume that (R, I) satisfies the IHP and I is not nilpotent. Then R is bad.

Proof: since I is not nilpotent, the I-adic topology on R is not discrete.
Corollary

Let R be a Noetherian ring, I an ideal of R. Assume that (R, I) satisfies the IHP and I is not nilpotent. Then R is bad.

Proof: since I is not nilpotent, the I-adic topology on R is not discrete. Hence, $R \setminus \{0\}$ is not closed,
Corollary

Let R be a Noetherian ring, I an ideal of R. Assume that (R, I) satisfies the IHP and I is not nilpotent. Then R is bad.

Proof: since I is not nilpotent, the I-adic topology on R is not discrete. Hence, $R \setminus \{0\}$ is not closed, and therefore not positive-existential.
Corollary

Assume R is

- Noetherian,
- local,
- Henselian,
- positive-dimensional (i.e. not Artinian),
- excellent.

Then R is bad.