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Abstract This article describes a formal proof of the Kepler conjecture on dense sphere packings in a
combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official
published account of the now completed Flyspeck project.
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The formal proot of the Kepler conjecture, which was finally
published in 2017 uncovered and corrected hundreds of
errors in the proof.



where the_kepler_conjecture is defined as the following term

“(!V. packing V
== {?C. lr. 81l == T
==> &(CARD(V INTER ball(vec 0,r))) <=
pi x r pow 3 / sqrt(&18) + c x r pow 2))°

In standard mathematical language, this states that for every packing V (which is identified
with the set of centers of balls of radius 1), there exists a constant ¢ controlling the error
term, such that for every radius r that is at least 1, the number of ball centers inside a
spherical container of radius r is at most pi *x r*3 / sqrt(18) , plus an error term of smaller
order. As r tends to infinity, this gives the density bound pi / sqrt(18) = 0.74+, which is
the density of the face-centered-cubic packing.

The term the_nonlinear_inequalities is defined as a conjunction of several hundred
nonlinear inequalities. The domains of these inequalities have been partitioned to create
more than 23,000 inequalities. The verification of all nonlinear inequalities in HOL Light on
the Microsoft Azure cloud took approximately 5000 processor-hours. Almost all verifications
were made in parallel with 32 cores, hence the real time is about 5000 / 32 = 156.25 hours.
Nonlinear inequalities were verified with compiled versions of HOL Light and the verification
tool developed in Solovyev's 2012 thesis.

To check that no pieces were overlooked in the distribution of inequalities to various cores,
the pieces have been reassembled in a specially modified version of HOL Light that allows
the import of theorems from other sessions of HOL light. In that version, we obtain a formal
proof of the theorem

|- the_nonlinear_inequalities
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Computers were once human

Referees were once human




Kaliszyk-Chollet-Szegedy

Published as a conference paper at ICLR 2017

HOLSTEP: A MACHINE LEARNING DATASET FOR
HIGHER-ORDER LOGIC THEOREM PROVING

Cezary Kaliszyk Francois Chollet, Christian Szegedy

University of Innsbruck Google Research

cezary.kaliszyk@uibk.ac.at {fchollet, szegedy}@google.com
ABSTRACT

Large computer-understandable proofs consist of millions of intermediate logical
steps. The vast majority of such steps originate from manually selected and man-
ually guided heuristics applied to intermediate goals. So far, machine learning has
generally not been used to filter or generate these steps. In this paper, we introduce
a new dataset based on Higher-Order Logic (HOL) proofs, for the purpose of de-
veloping new machine learning-based theorem-proving strategies. We make this
dataset publicly available under the BSD license. We propose various machine
learning tasks that can be performed on this dataset, and discuss their significance
for theorem proving. We also benchmark a set of simple baseline machine learn-
ing models suited for the tasks (including logistic regression, convolutional neural
networks and recurrent neural networks). The results of our baseline models show
the promise of applying machine learning to HOL theorem proving.



Kaliszyk-Chollet-Szegedy

1.1 CONTRIBUTION AND OVERVIEW

First, we develop a dataset for machine learning based on the proof steps used in a large interactive
proof section 2. We focus on the HOL Light (Harrison, 2009) ITP, its multivariate analysis library
(Harrison, 2013), as well as the formal proof of the Kepler conjecture (Hales et al., 2010). These for-
malizations constitute a diverse proof dataset containing basic mathematics, analysis, trigonometry,
as well as reasoning about data structures such as graphs. Furthermore these formal proof devel-

opments have been used as benchmarks for automated reasoning techniques (Kaliszyk & Urban,
2014).

The dataset consists of 2,013,046 training examples and 196,030 testing examples that originate
from 11,400 proofs. Precisely half of the examples are statements that were useful in the currently
proven conjectures and half are steps that have been derived either manually or as part of the auto-
mated proof search but were not necessary in the final proofs. The dataset contains only proofs of
non-trivial theorems, that also do not focus on computation but rather on actual theorem proving.
For each proof, the conjecture that 1s being proven as well as its dependencies (axioms) and may
be exploited in machine learning tasks. Furthermore, for each statement both its human-readable
(pretty-printed) statement and a tokenization designed to make machine learning tasks more man-
ageable are included.
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(_TRACTS

"he relationship between the computer and mathematics is
decisively different from the relationship between the computer and
the empirical sciences. The essential difference is that mathematics
Is capable of exact representation by computer, but the external
world only admits approximate representation by computer. This
difference has enormous implications for the correct architecture of
mathematical databases. A database of formal math abstracts can
capture true mathematical content in a way that say a database of
chemical compounds never will.




A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it 1s not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

e (ives a statement of the main theorem(s) of each
published mathematical paper in a language that is both
human and machine readable,

e Links each term in theorem statements to a precise

definition of that term (again in human/machine readable
form), and

e (Grounds every statement and definition 1s the system in
some foundational system for doing mathematics.

Wednesday, January 6, 2016



On Digital Math Libraries

We should not compromise rigorous mathematical standards
as we move from paper to computer. In fact, this is an
opportunity to drastically improve standards. Many computer
bugs are simply slips in logical and mathematical reasoning
made by programmers and software designers.

e Mathematics influences the standards of scientific
discourse, in the statistical sciences, in computer science,
and throughout the sciences. If we promote sloppy
platforms, the entire world will be worse off.

e Bugs in computer systems can lead to disaster: Intel
Pentium FDIV bug, Ariane V explosion, . ..

e Bugs and design weaknesses in cryptographic software
can be exploited by adversaries: Heartbleed, Logjam,
Freak bug, . ..

Wednesday, January 6, 2016



Why?

e bring the benefits of proof assistants to the general
mathematical community;

e sect standards for the sciences:;

e sct the stage for applications to ML in mathematical
proofs;

e move math closer to the computer.



HOL Light Mizar

Once the clear front-runner, it now shows signs of age. Coq is built of modular components

HOL Light has an exquisite minimal Do not expect on a foundation of dependent type
deSigIl. It haS the Smallést kernd Of any to understand the inner workings of this system unless theor y. This System has grown one
system. John Harrison is the sole you have been PhD thesis at a time.

|lsabelle Metamath | ean

Designed for use with multiple foundational Does this really work? Defying expectations, Lean is ambitious, and it will be massive. Do
architectures, Isabelle’s early Metamath seems to function not be fooled by the name.
development featured classical constructions in set ~ shockingly well for those who are happy to “Construction area keep out” signs are

theory. However, live without plumbing. prominently posted on the perimeter fencing.



HOL Light

HOL Light has an exquisite minimal
design. It has the smallest kernel of any
system. John Harrison is the sole

| ean

Lean is ambitious, and it will be massive. Do
not be fooled by the name.

“Construction area keep out” signs are
prominently posted on the perimeter fencing.



| ean Theorem
Prover

* Lean has a small kernel.
* Its logical foundations are similar to those of Coq.
* Lean 1s its own metalanguage.



This example illustrates how Lean is both a programming language and a theorem
prover, allowing formal mathematics and its metadata to be combined seamlessly into a
single document. We stress that the mathematics is machine readable by a computer
proof assistant. We display the formal abstract in its raw (computer) form, but we
anticipate that viewing tools will convert this raw format into English text, Mathematica
notebook data, user friendly web browser display, MathSciNet data, and so forth:

—— the statement of Fermat's Last Theorem
axiom fermats_last_theorem :
VixXyzn:N), x>0-y>0->n>2->xXx"“n+y”™n#z"n

def paper : document := {

authors := [ {name := "Andrew Wiles"} 1,

title := "Modular elliptic curves and Fermat's last theorem",
doi := "10.2307/2118559"

b

definition fabstract : fabstract := {

description := "This theorem bearing Fermat's name

was stated without proof by Pierre de Fermat in 1637
in the margins of his copy of Diophantus' Arithmetica.
Andrew Wiles announced a proof in 1994,

and his corrected proof was published in 1995."
sources := [cite.Document paper],

results := [result.Proof fermats_last_theorem]

}



Here is a fragment of the formal abstract for the statement of the Riemann hypothesis.
The full formal abstract will include links to each of the definitions (such as the
specification of the field of complex numbers):

def holomorphic_on (domain : set C) (f : subtype domain - C) :=
(V z : subtype domain, 3 f'z,
has_complex_derivative_at (extend_by_zero domain f) f'z z)

class holomorphic_function :=

(domain : set C)

(f : subtype domain - C)

(open_domain : is_open domain)
(has_derivative : holomorphic_on domain f)

—— notation f(z), for holomorphic functions
instance : has_coe_to_fun holomorphic_function :=
{ F := A h, subtype h.domain -» C, coe := A h, h.f }

—-— converges for Re(s) > 1
def riemann_zeta_sum (s : C) : C :=
¥ (A n, complex.pow n (-s) )

—— trivial zeros at -2, -4, -6,...
def riemann_zeta_trivial_zero (s : C) : Prop :=
(3 n:N, n>0As = (=2)xn)

—— analytic continuation of Riemann zeta function.
axiom riemann_zeta_exists :
(3! T : holomorphic_function, C.domain

= (set.univ \ {1}) A
YV s : subtype C.domain, re(s) > 1 -» T(s) =

riemann_zeta_sum S)
def ¢ := classical.some riemann_zeta_exists

—— (s # 1) implicit in the domain constraints:
def riemann_hypothesis :=

(V s, Ts) = @ A =(riemann_zeta_trivial_zero s) -
re (s) = 1/2)



What is great about LEAN?

* Lean sounds wonderful: open source, a small trusted kernel, a powerful elaboration engine
including a Prolog-like algorithm for type-class resolution, multi-core support, incremental
compilation, support for both constructive and classical mathematics, successful projects in
homotopy type theory, excellent documentation, and a web browser interface.

* |n more detail, a “minimalist and high performance kernel” was an explicit goal of the Lean. _
Independent implementations of the kernel can have have been given (Selsam 2000 lines,
etc.) alleviating any concerns about a bug in the C++ implementation of Lean.

« The semantics of Lean are now completely spelled out (thanks to Mario Carneiro, building on
[Werner]). In particular, Carneiro has built a model of Lean’s logic (CiC with non-cumulative
universes) in ZFC set theory (augmented by a countable number of inaccessible cardinals).

* Lean has a clean syntax. For example, to add two elements in an abelian group, one can
simply write x+y and Lean correctly infers the group in which the addition is to be performed. |
have more to say about Lean’s syntax later.

* Lean makes it easy to switch from constructive to classical logic (you just open the classical
logic module). Lean makes quotient types easy (unlike Coqg, when tends to work with awkward
setoids).

e Lean is its own meta language. | find this very appealing. Contrast this with HOL-Light, which
has OCaml as meta-language or Coqg which has a domain-specific language Ltac for tactics.

* Finally, there was a personal reason. CMU is the center of Lean library development. | live in
Pittsburgh and am a regular participant in CMU’s Lean group meetings.



« The kernel is bloated. Specifically, from WLan Ear, for p‘eborlmaﬁce reasons, mutually inductive types will

soon be moved into the kernel. This bloats the kernel and kills the former claims of a minimalistic kernel.

« Lean is not backwards compatible. Lean 3 broke the Lean 2 libraries, and old libraries still haven’t been ported
to Lean 3. After nearly 2 years, it doesn’t look like that will ever happen. Instead new libraries are being built
(at great cost). Lean 4 is guaranteed to break the Lean 3 libraries (at what cost?). In short, Lean is
experimental, evolving, and unstable.

 The learning curve is steep. It is very hard to learn to use Lean proficiently. Are you a graduate student at
Stanford or CMU writing a thesis on Lean? Are you a student at Imperial being guided by Kevin Buzzard? If
not, Lean might not be for you.

« Lean is its own metalanguage. Lean is new, and the language libraries are almost non-existant. 10 million
programmers know Java. Hardly any major programs have been written in Lean (Lewis’s thesis is a notable
exception). It 1s impossible to do any serious programming in Lean.

« Typing is nominal rather than structural.

« There are performance issues. It is not clear (to me or perhaps even to anyone) why performance is such a big
problem, because Lean was implemented in C++ for the sake of performance. However in fact, the compilation
of the math libraries is currently very slow. Something is wrong here.

« Ugly projection chains are required.

- Structure depends on notation. Lean has a library of results about multiplicative groups and a separate library
of results about additive groups. The only difference is that one uses the symbol * for the group operation and
the other uses the symbol + for the group operation. Mathematician will find it absurd that the theorems in
group theory depend on the symbol used for composition.

- No diamonds are allowed. (For a review of diamonds in OOP, see https://en.wikipedia.org/wiki/
Multiple_inheritance.)

- Structures are meaninglessly parameterized from a mathematical perspective. To briefly introduce the topic of
parameters and bundling, users choose whether data appears as an external parameter.

- Lean discards valuable information that is later reconstructed (at a cost) by its type class resolution engine.


https://en.wikipedia.org/wiki/Multiple_inheritance
https://en.wikipedia.org/wiki/Multiple_inheritance

Even proof assistants based on set theory need to make
decisions about subsets. In ZFC, we do not naturally have

NCcZcQcRcC.

The Mizar proof assistant achieves these inclusions by an act
of butchery. The image of N in Z is excised from Z and
replaced by N, and so forth. But these decisions are quite
arbitrary. Why not Q C Q,?

The HOL Light proof assistant maintains the explicit
embeddings:

N—Z, Z—R, etc.,
(but Q C R).



Proof assistants also need to deal with 1identifications.

For example, we identify Q,, (the completion of the field
with respect to the p-adic norm) with the field of fractions of
Z,, (defined as an inverse limit of Z/p"Z).

We identify
GL(2,A) and II'GL(2,Q,),

where A = II) Q,. However, the elements of one are matrices
with coefficients in a restricted product of fields, but the right
hand side 1s are restricted product of groups.

We identify X x (X x X) with (X x X) x X, except when
we don’t.



Abuses of Language

Structured math objects. Is a group a set G or a tuple (G,*,1,inv)?

Structured math objects. A topological group is neither a group nor a
topological space. A metric space is not a topological space.

A polynomial is both a function and an element of R[x]. (This distinction must
be preserved.)

The ring of integers is not really a subset of the field of rational numbers. A
complex vector space is not really a real vector space.

Complete ordered fields (such as the field of real numbers) are only unique up
to unique isomorphism.

A measurable function is an equivalence class of functions. “f is continuous.”

XX (YxZ)=(XxY)xZmeans canonical isomorphism between the two.



Capturing Definitions

The definitions of mathematics

The Oxford English dictionary (2nd edition) has 273,000
headwords and over 600,000 word forms. (The longest entry
1s for the word set, which continues for 25 pages).

Medicine has a specialized terminology of approximately
250,000 i1tems [Kucharz].

The Math Subject Classification (MSC) lists over 6000
subfields of mathematics.
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Supreme Court Justices, law professor play with words

Tuesday, January 12, 2010 TOOLBOX

[T 1] Resize AL Print

Supreme Court justices deal in words, and they are
up Ju = : y & E-mail [ ¥ Reprints

always on the lookout for new ones.

University of Michigan law professor Richard D. Friedman discovered that Monday when
he answered a question from Justice Anthony M. Kennedy, but added that it was "entirely
orthogonal" to the argument he was making in Briscoe v. Virginia.

Friedman attempted to move on, but Chief Justice John G. Roberts Jr. stopped him.
"I'm sorry," Roberts said. "Entirely what?"

"Orthogonal," Friedman repeated, and then defined the word: "Right angle. Unrelated.
Irrelevant."

 p— "Oh," Roberts I'Cplied-

Friedman again tried to continue, but he had caught the interest of Justice Antonin Scalia,
who considers himself the court's wordsmith. Scalia recently criticized a lawyer for using
"choate" to mean the opposite of "inchoate," a word that has created a debate in the
dictionary world.

"What was that adjective?" Scalia asked Monday. "I liked that."
"Orthogonal," Friedman said.

"Orthogonal," Roberts said.

"Orthogonal," Scalia said. "Ooh."

Friedman seemed to start to regret the whole thing, saying the use of the word was "a bit of
professorship creeping in, I suppose,” but Scalia was happy.

"I think we should use that in the opinion," he said.
"Or the dissent," added Roberts, who in this case was in rare disagreement with Scalia.

-- Robert Barnes



Sylvester, "On a theory of Syzygetic

Relations™
allotrious, apocapated, Bezoutic, Bezoutoid, co-bezoutiant,
cogredient, contragredient, combinant, concomitant,
conjunctive, contravariant, covariant, cumulant, determinant,
dialytic, discriminant, disjunctive, effluent, emanant,
endoscopic, exoscopic, Hessian, hyperdeterminant,
iInertia, intercalation, invariance, invariant, Jacobian,
kenotheme, matrix, minor determinant, monotheme,
persymmetrical, quadrinvariant, resultant, rhizoristic,
signaletic, semaphoretic, substitution, syrrhizoristic,
syzygetic, transform, umbral.




Math Words

lluf subcategory = full backwards

rng = ring without i

clopen = closed and open, bananaman = Banach analytic manifold,

bra and ket (from bracket), parahori = parabola + Iwahori,

icthyomorphisms = transformations between Poisson manifolds

pointless topology, killing fields, abstract nonsense

alfalfa (derived from alpha by the lowa school of representation theory)

the unknot (a circle) was coined during 7-ups uncola advertising campaign.
Conwayisms: nimber, moonshine, baby monster

buildings (apartment, chamber, wall, etc.), tree (forest, leaf, root, etc.), quivers (arrows).
cepstrum (spectrum) in quefrency analysis

Pin is to O, what Spin is to SO.

iff, xor, wlog, nth,

snark, quark, fluxion, gerbe, totient, heteroscedasticity, anabelian, zenzizenzizenzic, Nullstellensatz,
Entscheidungsproblem



VOCABULARY OF THE KEPLER CONJECTURE

* quoin, negligible, fcc-compatible, decomposition star, score,

score

adjustment, quasi-regular tetrahedron, contravening, tame graph,

pentahedral prism, crown, quarter, upright, flat, quartered octahedron,

strict quarter, enclosed vertex, central vertex, corners, isolated quarter,

isolated pair, conflicting diagonals, Q-system, S-system, V-ce
obstructed, face with negative orientation, Delaunay star, co

spaces, compression, quad cluster, mixed quad cluster, stanc

|s, barrier,
ored
ard cluster,

standard region, vertex type, quad cluster, Rogers simplex, anchor,
anchored simplex, erasing, loops, subcluster, corner cell, truncated

corner cell , tame graph, weight assignment, contravening circuit,

crowded diagonal, n-crowded, masked, confined, penalties, penalty-free
score, exceptional region, special simplex, distinguished edge,
nonexternal edge, concave corner, concave vertex, t-cone, partial plane

graph, patch, aggregated face,




VOCABUARY OF IUT1/ABC (MOCHIZUKI)

* inter-universal Teichmuller theory, semi-graphs of anabelioids, Frobenioids,
etale theta function, log-shells, log-theta-lattices, log-link, log-volume, initial
Theta-data, Hodge theaters, absolute anabelian geometry, absolute
anabelian reconstruction, tempered fundamental group, prime-strips, local
arithmetic holomorphic structure, mono-analyticizations, mono-analytic core,
global realified Frobenioid, labels, label crushing, conjugate synchronization,
Frobenioid-theoretic theta function, full poly-isomorphisms, multiradiality,
alien ring structures, alien arithmetic holomorphic structure, cyclotomic
rigidity isomorphism, real analytic container, mono-analytic container, Theta-
link, Theta-dilation, Belyi cuspidalization, topological pseudo-monoid,
capsule of objects, capsule indices, connected temperoid, commensurably
terminal, co-holomorphicization, base-NF-bridges, poly-action, cyclotomes,
coric structure, Kummer black-out, Kummer-blind, solvable factorization,
dismantling, functorial dynamics, holomorphic procession, entangled
structures, indigenous bundle
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Chinfse remainder theorem
prime number theorem

central limit theorem
Fermat's Last theorem
Hahn-Banach theorem
Atiyah-Singer index theorem
implicit function theorem
Riemann-Roch theorem

spectral theorem

Riemann mapping theorem

Riesz representation theorem
Gauss—Bonnet theorem
Dirichlet's theorem

Jordan curve theorem
incompleteness theorem
Liouville's theorem

Fubini's theorem

Brouwer fixed point theorem
universal coefficient theorem
intermediate value theorem
Whitehead theorem

mean value theorem
uniformization theorem
Ramsey's theorem

Peter-Weyl theorem

inverse function theorem
Baire category theorem
Mordell-Weil theorem
Frobenius theorem

Stokes theorem

Pythagorean theorem
Cayley-Hamilton theorem
Perron-Frobenius theorem
Birkhoff ergodic theorem

Main theorem

Lefschetz fixed point theorem
Bertini's theorem

Hodge theorem

Sylow theorem

fundamental theorem of algebra
Stone-Weierstrass theorem
Roth's theorem

Second Incompleteness theorem
Riemann Existence theorem
Cauchy's theorem

residue theorem

Torelli theorem

dominated convergence theorem
Chevalley's theorem

open mapping theorem

Sobolev embedding theorem
fundamental theorem of calculus
Tychonoff's theorem

Taylor's theorem

Tarski's theorem

comparison theorem

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
43
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Recursion theo
Radon-Nikodym
Value theorem
theorem
Whitney embedding theorem
Lowenheim-Skolem theorem
Minkowski's theorem

Vanishing theorem

van Kampen theorem

Cayley's theorem

Noether's theorem

Rolle's theorem

Lebesgue density theorem
Kodaira vanishing theorem
Weierstrass approximation theoren3
Hall's marriage theorem

MRDP theorem

Krull-Schmidt theorem
Wilson's theorem

Whitney extension theorem
Whitney's theorem

Tauberian theorem

Weyl's theorem

Schwartz kernel theorem
Rice's theorem

Weil's theorem
Thue-Siegel-Roth theorem
Hodge decomposition theorem
Their theorem

Wedderburn's theorem

Stone representation theorem
Unit theorem

Turan's theorem

Yau's theorem

Tate's theorem

Mean Value theorem

Chinese Remainder theorem
binomial theorem

intermediate value theorem
Pythagorean theorem

Value theorem

residue theorem

squeeze theorem

dominated convergence theorem
Fermat's little theorem
fundamental theorem of calculus
Central Limit theorem
Lagrange's theorem

Fubini's theorem

implicit function theorem
first isomorphism theorem
Cauchy's theorem

Sylow theorem

inverse function theorem
rank-nullity theorem

spectral theorem

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
133
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Trott’s MathOverflow data

Cayley-Hamilton theorem
prime number theorem
Liouville's theorem

Fermat's Last theorem
Green's theorem

open mapping theorem
Monotone Convergence theorem
Heine-Borel theorem

Cauchy's integral theorem
fundamental theorem of algebra
rational root theorem
Bolzano-Weierstrass theorem
Stokes theorem

Master theorem

identity theorem

Bayes theorem

Banach fixed point theorem
fundamental theorem of arithmetic
Baire category theorem
isomorphism theorem
Dirichlet's theorem
Stone-Weierstrass theorem
Riemann mapping theorem
Pythagoras theorem

Factor theorem

Wilson's theorem

Jordan curve theorem
Fermat's theorem

Weierstrass theorem
Weierstrass approximation theorem
closed graph theorem
Cantor's theorem
orbit-stabilizer theorem
Radon-Nikodym theorem
Tonelli's theorem
convolution theorem
incompleteness theorem
fundamental theorem of calculus.
universal coefficient theorem
Arzela-Ascoli theorem
uniqueness theorem

Picard's theorem

Sandwich theorem

Tychonoff's theorem
correspondence theorem
Bezout's theorem

Remainder theorem

Rouche's theorem
Cantor-Bernstein theorem
Tietze extension theorem
multinomial theorem

Kampen theorem



Capturing Definitions

@ & https://en.wikipedia.org/wiki/Normal eee @ % | Q Search v IN @

What is normal in math?

There are many unrelated notions of "normality" in mathematics.

Algebra and number theory [ edit source |

o Normal basis (of a Galois extension), used heavily in cryptography

Normal degree, a rational curve on a surface that meets certain conditions

Normal domain (integrally closed domain), a ring integrally closed in its fraction field

o Normal ring, a reduced ring whose localizations at prime ideals are integrally closed domains
o Normal scheme, an algebraic variety or scheme that meets certain conditions

Normal extensions (or quasi-Galois) field extensions, splitting fields for a set of polynomials over the base field

Normal variety, a projective variety embedded by a complete linear system, as in a rational normal scroll (unrelated to the
concept of normal scheme above)

Normal order of an arithmetic function, a type of asymptotic behavior useful in number theory

Normal subgroup, a subgroup invariant under conjugation

Analysis [ edit source |

e Normal family, a pre-compact family of continuous functions

e Normal number, a real number with a "uniform" distribution of digits

e Normal number (computing), a floating-point number within the balanced range supported by a given format (unrelated to the
previous notion)

o Normal operator, an operator that commutes with its Hermitian adjoint

o Normal matrix, a complex square matrix that meets certain conditions
e Normal modes of vibration in an oscillating system



Capturing Definitions

Geometry | edit source |

o Normal (geometry), a vector perpendicular to a surface (normal vector)

Normal bundle, a term related to the preceding concept

Normal cone, of a subscheme in algebraic geometry

Normal coordinates, in differential geometry, local coordinates obtained from the exponential map (Riemannian geometry)

Normal invariants, in geometric topology

Normal polytopes, in polyhedral geometry and computational commutative algebra
Normal space (or T} ) spaces, topological spaces characterized by separation of closed sets

Logic and foundations | edit source ]

e Normal function, in set theory
o Normal measure, in set theory

Mathematical physics | edit source ]

e Normal order or Wick order in Quantum Field Theory

Probability and statistics [ edit source ]

e Normal, the middle 95% of a bell curve (see 1.96)
o Normal distribution, the Gaussian continuous probability distribution

Other mathematics | edit source ]

e Normal form (disambiguation)
o Normalization (disambiguation)



Capturing Definitions

WIEIRERERG[(ol8Ie¥d  Definitions of group (algebra)

e A group is a set with a binary operation, identity element,
and inverse operation, satisfying axioms of associativity,
inverse, and identity.

e A group object in a category. A group in the first sense is
a group object in the category of sets. A Lie group is a
group object in the category of smooth manifolds. A
topological group 1s a group object in the category of
topological spaces. An affine group scheme 1s a group
object in the category of affine schemes. (Caution: the
Zariski product topology is not the product topology.)

e A Poisson-Lie group a group object in the category of
Poisson manifolds, except that the inverse operation is
not required to be a morphism of Poisson manifolds. (In



What is a group?

general, the inverse is an anti-Poisson morphism.)

A quantum group is an object in the opposite category to
the category of Hopf algebras.

A compact matrix quantum group is a C'*-algebra with
additional structure (Woronowicz).

A strict 2-group is a group object in the category of
categories (or a category object in the category of

groups).
A 2-group ...

An n-group ...

A formal group

Capturing Definitions



Mathematics Subject Classification - MSC2010

00
01
03

05
06

08
11
12
13
14
15

16
17

18

19
20

22
26
28
30

31
32

ki1

General mathematics
History and biography
Mathematical logic and
foundations
Combinatorics

Order, lattices, ordered
algebraic structures

General algebraic systems
Number theory

Field theory and polynomials
Commutative algebra
Algebraic geometry

Linear and multilinear algebra;
matrix theory

Associative rings and algebras

Nonassociative rings and
algebras

Category theory, homological
algebra

K-theory

Group theory and
generalizations

Topological groups, Lie groups
Real functions

Measure and integration

Functions of a complex
variable

Potential theory

Several complex variables and
analytic spaces

Snecial fuinctions

34
35
37

39

40

41
42

43
44

45
46
47
49

51
52
53
54
55
57
58

60

Ordinary differential equations
Partial differential equations

Dynamical systems and
ergodic theory

Difference and functional
equations

Sequences, series,
summability

Approximation and expansions

Harmonic analysis on
Euclidean spaces

Abstract harmonic analysis

Integral transforms, operational
calculus

Integral equations
Functional analysis
Operator theory

Calculus of variations and
optimal control; optimization

Geometry

Convex and discrete geometry
Differential geometry

General topology

Algebraic topology

Manifolds and cell complexes

Global analysis, analysis on
manifolds

Probability theory and
stochastic processes

62
65
68
70

74

83

85
86
90

91

92

93
94

97

Statistics
Numerical analysis
Computer science

Mechanics of particles and
systems

Mechanics of deformable
solids

Fluid mechanics
Optics, electromagnetic theory

Classical thermodynamics,
heat transfer

Quantum Theory

Statistical mechanics, structure
of matter

Relativity and gravitational
theory

Astronomy and astrophysics
Geophysics

Operations research,
mathematical programming

Game theory, economics,
social and behavioral sciences

Biology and other natural
sciences

Systems theory; control

Information and
communication, circuits

Mathematics education



14B99
14Cxx
14C05
14C15
14C17

14C20
14C21
14C22
14C25
14C30

14C34
14C35
14C40
14C99
14Dxx
14D05
14D06
14D07
14D10
14D15
14D20

14D21

14D22
14D23
14D24

14D99
14Exx
14E05
14E07
14E08
14E15

14E16
14E18
14E20
14E22
14E25
14E30
14E99
14Fxx
14F05

14F10

14F17
14F18
14F20
14F22
14F25
14F30
14F35
14F40
14F42
14F43

None of the above, but in this section
Cycles and subschemes

Parametrization (Chow and Hilbert schemes)
(Equivariant) Chow groups and rings; motives

Intersection theory, characteristic classes, intersection multiplicities
[See also 13H15]

Divisors, linear systems, invertible sheaves

Pencils, nets, webs [See also 53A60]

Picard groups

Algebraic cycles

Transcendental methods, Hodge theory [See also 14D07, 32G20,
32J25, 32835), Hodge conjecture

Torelli problem [See also 32G20]

Applications of methods of algebraic K-theory [See also 19Exx]
Riemann-Roch theorems [See also 19E20, 19L10]

None of the above, but in this section

Families, fibrations

Structure of families (Picard-Lefschetz, monodromy, etc.)
Fibrations, degenerations

Variation of Hodge structures [See also 32G20]

Arithmetic ground fields (finite, local, global)

Formal methods; deformations [See also 13D10, 14B07, 32Gxx]
Algebraic moduli problems, moduli of vector bundles {For analytic
moduli problems, see 32G13}

Applications of vector bundles and moduli spaces in mathematical
physics (twistor theory, instantons, quantum field theory)

[See also 32125, 81Txx]

Fine and coarse moduli spaces

Stacks and moduli problems

Geometric Langlands program: algebro-geometric aspects

[See also 22E57]

None of the above, but in this section

Birational geometry

Rational and birational maps

Birational automorphisms, Cremona group and generalizations
Rationality questions [See also 14M20]

Global theory and resolution of singularities [See also 14B05, 32520,
32545]

McKay correspondence

Arcs and motivic integration

Coverings [See also 14H30]

Ramification problems [See also 11S15]

Embeddings

Minimal model program (Mori theory, extremal rays)

None of the above, but in this section

(Co)homology theory [See also 13Dxx]

Sheaves, derived categories of sheaves and related constructions
[See also 14H60, 14J60, 18F20, 32Lxx, 46M20]

Differentials and other special sheaves; D-modules; Bernstein-Sato
ideals and polynomials [See also 13Nxx, 32C38]

Vanishing theorems [See also 321.20]

Multiplier ideals

Etale and other Grothendieck topologies and (co)homologies
Brauer groups of schemes [See also 12G05, 16K50]

Classical real and complex (co)homology

p-adic cohomology, crystalline cohomology

Homotopy theory; fundamental groups [See also 14H30]

de Rham cohomology [See also 14C30, 32C35, 32L10]

Motivic cohomology; motivic homotopy theory [See also 19E15]
Other algebro-geometric (co)homologies (e.g., intersection,
equivariant, Lawson, Deligne (co)homologies)

14G99
14Hxx
14HO05
14H10
14H15
14H20
14H25
14H30
14H37
14H40
14H42
14H45
14H50
14H51
14H52
14H55
14H57
14H60
14H70
14H81
14H99
14Jxx

14710
14715

14717
14720
14725
14726
147327
14728
14329
14330
14332
14333
14335
14740
14745
14350
14760

14370
14780

14781
14799
14Kxx
14K02
14K05
14K10
14K12
14K15
14K20
14K22
14K25
14K30
14K99
14Lxx

None of the above, but in this section
Curves

Algebraic functions; function fields [See also 11R38]

Families, moduli (algebraic)

Families, moduli (analytic) [See also 30F10, 32G15]

Singularities, local rings [See also 13Hxx, 14B05]

Arithmetic ground fields [See also 11Dxx, 11G05, 14Gxx]
Coverings, fundamental group [See also 14E20, 14F35]
Automorphisms

Jacobians, Prym varieties [See also 32G20]

Theta functions; Schottky problem [See also 14K25, 32G20]
Special curves and curves of low genus

Plane and space curves

Special divisors (gonality, Brill-Noether theory)

Elliptic curves [See also 11G05, 11G07, 14Kxx]

Riemann surfaces; Welerstrass points; gap sequences [See also 30Fxx]
Dessins d’enfants theory {For arithmetic aspects, see 11G32}
Vector bundles on curves and their moduli [See also 14D20, 14F05]
Relationships with integrable systems

Relationships with physics

None of the above, but in this section

Surfaces and higher-dimensional varieties {For analytic theory, see
32Jxx}

Families, moduli, classification: algebraic theory

Moduli, classification: analytic theory; relations with modular forms
[See also 32G13]

Singularities [See also 14B05, 14E15]

Arithmetic ground fields [See also 11Dxx, 11G25, 11G35, 14Gxx]
Special surfaces {For Hilbert modular surfaces, see 14G35}
Rational and ruled surfaces

Elliptic surfaces

K3 surfaces and Enriques surfaces

Surfaces of general type

3-folds [See also 32QQ25]

Calabi-Yau manifolds

Mirror symmetry [See also 11G42, 53D37]

4-folds

n-folds (n > 4)

Fano varieties

Automorphisms of surfaces and higher-dimensional varieties
Vector bundles on surfaces and higher-dimensional varieties, and
their moduli [See also 14D20, 14F05, 32Lxx]

Hypersurfaces

Topology of surfaces (Donaldson polynomials, Seiberg-Witten
invariants)

Relationships with physics

None of the above, but in this section

Abelian varieties and schemes

Isogeny

Algebraic theory

Algebraic moduli, classification [See also 11G15]

Subvarieties

Arithmetic ground fields [See also 11Dxx, 11Fxx, 11G10, 14Gxx]
Analytic theory; abelian integrals and differentials

Complex multiplication [See also 11G15]

Theta functions [See also 14H42]

Picard schemes, higher Jacobians [See also 14H40, 32G20]

None of the above, but in this section

Algebraic groups {For linear algebraic groups, see 20Gxx; for Lie
algebras, see 17B45}

Formal groups, p-divisible groups [See also 55N22]



Sign Manifesto

Pierre Deligne and Daniel S. Freed

§1. Standard mathematical conventions

e We apply the sign rule relentlessly.

§2. Choices

o A hermitian inner product on a complex vector space V 1is conjugate
linear in the first variable:

(3) (A1v1, Agvz) = A1 Ao vy, va), MeC, v;eV.

e IfV=VO@ V! is a super Hilbert space, then
(4) —i{v,v) > 0, ve V9

§7. Miscellaneous signs

o Let X be a smooth manifold, £ a vector field on X, ¢, the one-

parameter group of diffeomorphisms generated, and T a tensor
field. Then

d

(39) Lle(f)T = dt IL—O (pt dt It'-O ((P- )



Hartshorne (Residues and Duality): “And since the chore of invent-
ing these diagrams and checking their commutativity is almost me-
chanical, the reader would not want to read them, nor I write them.”

“the reader [of Hartshorne] is left with checking lots and lots of com-
mutative diagrams, some of them depending on very subtle sign con-
ventions in homological algebra!”
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A formalization of forcing and the unprovability of
the continuum hypothesis

Jesse Michael Han'

Department of Mathematics, University of Pittsburgh
https://www.pitt.edu/~jmh288
jessemichaelhan@gmail.com

Floris van Doorn

Department of Mathematics, University of Pittsburgh
http://florisvandoorn.com/

fpvdoorn@gmail.com

—— Abstract

We describe a formalization of forcing using Boolean-valued models in the Lean 3 theorem prover,
including the fundamental theorem of forcing and a deep embedding of first-order logic with a Boolean-
valued soundness theorem. As an application of our framework, we specialize our construction to
the Boolean algebra of regular opens of the Cantor space 2“?** and formally verify the failure of
the continuum hypothesis in the resulting model.
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Continuum Hypothesis

Introduction

Projects

The continuum hypothesis states that there are no sets strictly larger than the countable
natural numbers and strictly smaller than the uncountable real numbers. It was introduced by
Cantor [7] in 1878 and was the very first problem on Hilbert’s list of twenty-three outstanding
problems in mathematics. Godel [14] proved in 1938 that the continuum hypothesis was
consistent with ZFC, and later conjectured that the continuum hypothesis is independent
of ZFC, i.e. neither provable nor disprovable from the ZFC axioms. In 1963, Paul Cohen
developed forcing [10, 11], which allowed him to prove the consistency of the negation of the
continuum hypothesis, and therefore complete the independence proof. For this work, which
marked the beginning of modern set theory, he was awarded a Fields medal—the only one to
ever be awarded for a work in mathematical logic.

In this paper we discuss the formalization of a Boolean-valued model of set theory where
the continuum hypothesis fails. The work we describe is part of the Flypitch project, which
aims to formalize the independence of the continuum hypothesis. Our results mark a major
milestone towards that goal.
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Example. ZF set theory can be embedded into Lean. The
construction 1s due to Aczel and Benjamin Werner and the
implementation in Lean was done by Mario Carneiro. It can
be done with a single constructor.

im : II(A : Type), (A — Set) — Set
Interpret im A f as the image of f : A — Set on A. So ZFC
sets in Lean consist of all images of functions into sets.

Equality is defined recursively: im A f isequal toim B g if
for every a : A there exists a b : B such that f(a) and g(b) are
equal, and vice versa.


https://github.com/digama0/lean-type-theory

Continuum Hypothesis

N . olle

Recent and Current

Projects

inductive pSet : Type (u+1)
| mk (o : Type u) (A : o — pSet) : pSet

The Aczel-Werner encoding is closely related to the recursive definition of names, which is
used in forcing to construct forcing extensions:

—

inductive bSet (B : Type u) [complete_boolean_algebra B] : Type (utl)
| mk (@ : Type u) (A : o« — bSet) (B : a — B) : bSet
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| mathoverflow

Home
Questions
Tags
Users

Unanswered

Which mathematical definitions should be formalised in Lean?

90

The question.

Which mathematical objects would you like to see formally defined in the Lean
Theorem Prover?

Examples.

In the current stable version of the Lean Theorem Prover, topological groups have
been done, schemes have been done, Noetherian rings got done last month,
Noetherian schemes have not yet been done (but are probably not going to be too
difficult, if anyone is interested in trying), but complex manifolds have not yet been
done. In fact | think we are nearer to perfectoid spaces than complex manifolds --
maybe because algebra is closer to the axioms than analysis. But actually we also
have Lebesgue measure (it's differentiability we're not too strong at), and today we
got modular forms. There is a sort of an indication of where we are.

asked 3 months ago
viewed 8,986 times

active 2 months ago

BLOG

() Adios to Winter Bash 2018

Linked

36  On proof-verification using Coq
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LIST OF FINITE SIMPLE GROUPS Projects

1. BACKGROUND

This article assumes basic facts about K-algebras (such as tensor products, ideals,
radical ideals), topological spaces (connectedness), and category theory.

Building on those foundations, the article gives a complete specification of all
finite simple groups. The definition of a finite simple group of Lie type appears in
Definition 3. Unexplained notation from this section will be precisely defined later.

Theorem 1. Every finite simple group is isomorphic to

(1) a cyclic group of prime order,

(2) an alternating group Alt, on n letters for some n > 5,
(3) a finite simple group of Lie type, or

(4) one of the 26 sporadic groups.

FEvery group these four families is a finite simple group.

Finite simple groups of Lie type are classified by certain data of the form (D, p, p, e)
(written as ?D,.(p¢)), where D, is a connected Dynkin diagram with » nodes, p is an
arrow-forgetful isomorphism of the Dynkin diagram, p is a prime number, and ¢ € Q
is an exponent. The explicit list of such tuples appears in Definition 1.
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CLASSIFICATION OF FSG Projects

GROUP OBJECTS - CATEGORIFICATION ALGORITHM

25 lines (18 sloc) 980 Bytes Raw Blame @ History

Copyright (c) 2019 Jesse Han. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jesse Han

import .finite_limits

open category_theory category_theory.limits category_theory.limits.binary_product
category_theory.limits.finite_limits

universes u v
local infix * x “:60 := binary_product
local infix ° x.map ":60 := binary_product.map

structure group_object (C : Type u) [® : category.{v u} C] [H : has_binary_products C] [H' : has_limits_of_shape
(G : Q)

(mul : G x G — G)

(mul_assoc : (by exact reassoc_hom G) » (by apply (1 _) x.map mul) » mul = (by apply mul x.map (1 _) ) » mul)
(one : term — G)

(one_mul : (1 G) = one_mul_inv _ » (by apply one x.map (1 G)) » mul)

(mul_one : (1 G) = mul_one_inv _ » (by apply (1 G) x.map one) » mul)

(inv : G — G)

(mul_left_inv : (1 G) = (map_to_product.mk (inv) (1 G)) » mul )

categorify( Az y z,z *xyx 2 = (x *xy) * 2)
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Machine Learning Projects
and Mathematical Definitions

e |uis Berlioz is using machine learning to capture
mathematical definitions from arXiv papers.

Objective

Create a machine learning system that can find the definitions and the
terms being defined in large collections of mathematical texts.

The problem is broken down into two parts:
The Classifier: Tells if a given paragraph is a definition or not

A Named Entity Recognition system: given a definition, returns the term
that is being defined (definiendum).

For each part | will describe how to:
» Get and process the relevant data.

» Train and take a look at the results.
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A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it 1s not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

e Gives a statement of the main theorem(s) of each
published mathematical paper in a language that is both
human and machine readable,

e Links each term in theorem statements to a precise
definition of that term (again in human/machine readable
form), and

e Grounds every statement and definition is the system in
some foundational system for doing mathematics.

Wednesday, January 6, 2016



The language of math

Ganaselingam “The language of Math” (linguistics
of mathematics)

Wolfram Research (Wolfram Alpha)

Controlled natural languages for mathematics:
Mizar, Naproche, MathNat

Dyngenpar (a parser that allows extendible
grammars, Neumaier and students)
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Controlled Natural Projects
Language (CNL)
* |t is based on a single natural language (such as English).

* |t has restricted syntax and semantics. Its design is
deliberate and explicit.

 Speakers of the natural language can largely understand the
controlled language at least intuitively. (see Tobias Kuhn)

* The definition is intended to exclude artificial languages
such as Esperanto and programming languages.
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Controlled Natural Projects
Languages

e Math Vernacular, (deBruijn, 1987)

e Mizar -which inspired Mizar styles in many proof
assistants such as Isar in Isabelle
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Examples of CNLs Projects
for Mathematics

e Naproche-SAD (and variants Forthel, Naproche, EA,...).
(Paskevich, 2007) (Koepke, Cramer, Frerix, 2018) The
target is first-order logic.

e MathNat (and variants CLM controlled language of
mathematics). (Humayoun’s thesis) The target is first-

order logic.

e FMathL (formal mathematical language, CONCISE). The
target is a graphical representation (sems).



Lessons from
Naproche-SAD CNL

Naproche-SAD ( ~ 8K lines of Haskell) gives a template for the
design of Math CNLs

Specifically, parsing with (Haskell) parser combinators,
monadic, lazy, continuation style,... For example, Parsec

Not quite a context-free grammar (CFG). It has a fixed
collection of non-terminals, but certain “primitive” non-terminals
can be dynamically augmented with new production rules.

Very little linguistics is required to achieve passable English.
Various tricks make this possible: canned/stock phrases,
synonyms, filler words, etc.
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75 Definition 7 (binary relation). A binary relation is a structure with

76 - a parametric element : Type

77 - a relation : element — element — Prop

78 In this section, let R denote a fixed binary relation.

79 In this section, let (s, =, y, z: R element).

go In this section, let < y stand for R relation x y.

81 Definition 8 (reflexive). We say R is reflexive iff for all x, v < z.

82 Definition 9 (transitive). We say R is transitive iff forallxz y z, x <
8 YAYSEIEX Z

g4 Definition 10 (symmetric). We say R is symmetric iff for all x y, © <
85 Yy — Yy < T

g6 Definition 11 (preorder). We say R is a preorder iff R is symmetric
87 and transitive.

g8 Definition 12 (equivalence relation). We say R is an equivalence relation
89 iff R is reflexive, symmetric and transitive.

90 Definition 13 (antisymmetric). We say R is antisymmetric iff for
o1 allry, x<yandy <z implyxr=y.
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144 Definition 34 (has le). A has_le is a notational structure with

145 - a typeable o : Type
146 - notation_le : « — o — Prop

147 Assuming (implicit C' : has_le), let < y denote C"notation_le = y
148 with precedence 70 and no associativity.

149 Let z < y stand for x < y and x # y with precedence 70 and no
150 assoclativity.

151 Let x > y stand for y < x with precedence 70 and no associativity.
152 Let x > y stand for y < x with precedence 70 and no associativity.
153 Let m is at most n stand for m < n.

154 Let n is at least m stand for n > m.

155 Let m is less than n stand for m < n.

156 Let n is greater than m stand for n > m.
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357 In this section, let G denote a fixed finite group.

358 Definition 73 (conjugate). Assume that (g : G). Assume that H is a
359 subgroup of G. The conjugate of H by g in G is the subgroup H' of
360 G such that for allx, v € H < g*xx+x g ' € H. This exists and is
361 UNique.

362 Definition 74 (normalizer). Assume that H is a subgroup of G. The
363 normalizer of H in G 1is the subgroup N of G such that for all x,
364 £ € N <> forallh € H we have x=' x hxx € H. This exists and is
365 UNIGUE.

366 Let |G| denote the order of G.

367 In this section, let p denote a fixed prime number.

368 Let m denote the multiplicity of p in |G].

369 Definition 75 (Sylow). A Sylow p subgroup of G is a subgroup P
370 of G such that the subgroup order of P is p™.

371 Definition 76. Let Syl(p, G) ={P | (P is a Sylow p subgroup of G)}.

372 Let n(p, G) the size of Syl(p,G). This is well subtyped (that is, it is
373 finite).



CNL f()r Lean (pr‘OpcsaI Recent and Current

Projects

374 Definition 77. let [Norm| be equal to the size of the normalizer of
375 each and every Sylow p subgroup in G. This exists, is unique, and s

376 well-defined.
377 Theorem 78 (Sylowl). There exists a Sylow p subgroup of G.

378 Theorem 79 (Sylow 2). If P, P' are Sylow p subgroups of G then there
379 exists (g : G) such that P" is the conjugate of P by g in G.

380 Theorem 80 (Sylow 3a). Assume that |G| = p'xp™. We have n(p, G)
381 divides p'.

3822 Theorem 81 (Sylow 3b). We have p divides (n(p,G) — 1).
383 Theorem 82 (Sylow 3c). We have n(p,G) x [Norm| = |G]|.
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