Computationally efficient simulation of cells that release diffusing compounds in their environment

Qiyao (Alice) Peng 1* 2, Sander C. Hille ²

^{1*} Mathematics for AI in Real-world Systems, School of Mathematical Sciences, Lancaster University. qiyao.peng@lancaster.ac.uk

²Mathematical Institute, Faculty of Science, Leiden University

13 January, 2025

Universiteit Leiden The Netherlands QQ

Qiyao (Alice) Peng (Lancaster University) Nodel Upscaling 13 January, 2025 1/25

Motivations and Issues

Same long-term goal: to apply the model in clinical practice

- "Useful" and realistic model
- **Computationally efficient**
- Physically and mathematically *almost* correct

Wound Contraction and Cancer Cell Metastasis Model

Wound contraction (C++, ∼ 4000 cells, ∼ 30 min) Cancer cell metastasis and invasion (Python-Fenics, 3 cells, ∼ 30 min/ cell)

イロト イ押ト イヨト イヨト

 $2Q$

Approaches to Improve the Computational Efficiency

- **Computational perspective:** Neural Network (NN) approach
- **Mathematical perspective:** Upscaling the PDEs from microscale to \bullet (semi-)macroscale

∢ □ ▶ ∢ *□*

つへへ

Point Source in Diffusion Equation

重

 $2Q$

←ロト ← 伊

Point Source in Diffusion Equation

Dirac delta distribution

⇐⇒

$$
<\delta, f>=f(\mathbf{0}), \text{ if } f\in C^{\infty}(\mathbb{R}^n)
$$

$$
\int_{\Omega \ni \mathbf{x}_0} f(\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}_0) d\Omega = f(\mathbf{x}_0)
$$

Qiyao (Alice) Peng (Lancaster University) [Model Upscaling](#page-0-0) 13 January, 2025 5/25

Spatial exclusion and point source model

Spatial exclusion model

$$
\left(\text{BVP}_{\text{S}}\right) \left\{\begin{array}{ll}\frac{\partial u_{\text{S}}(\mathbf{x},t)}{\partial t} - D\Delta u_{\text{S}}(\mathbf{x},t) = 0, & \text{in } \Omega \setminus \bar{\Omega}_{C}, t > 0, \\ -D \nabla u_{\text{S}}(\mathbf{x},t) \cdot \mathbf{n} = \phi(\mathbf{x},t), & \text{on } \partial \Omega_{C}, t > 0, \\ D \nabla u_{\text{S}}(\mathbf{x},t) \cdot \mathbf{n} = 0, & \text{on } \partial \Omega, t > 0, \\ u_{\text{S}}(\mathbf{x},0) = u_{0}(\mathbf{x}), & \text{in } \Omega \setminus \bar{\Omega}_{C}, t = 0,\end{array}\right.
$$

Point source model

$$
\text{(BVPP)} \begin{cases} \frac{\partial u_P(\mathbf{x},t)}{\partial t} - D\Delta u_P(\mathbf{x},t) = \Phi(\mathbf{x},t)\delta(\mathbf{x}-\mathbf{x}_c), & \text{in } \Omega, t > 0, \\ D\nabla u_P \cdot \mathbf{n} = 0, & \text{on } \partial\Omega, t > 0, \\ u_P(\mathbf{x},0) = \bar{u}_0(\mathbf{x}), & \text{in } \Omega, t = 0. \end{cases}
$$

重

 $2Q$

イロト (個) (注) (注)

Consistency between two models

Proposition

Denote by $u_S(\mathbf{x},t)$ and $u_P(\mathbf{x},t)$ the weak solutions to the spatial exclusion model (BVP_S) and the point source model (BVP_P), respectively, and let $\partial \Omega_C$ be the boundary of the cells, from which the compounds are released, with normal vector **n** pointing into Ω_c . Then

$$
\frac{1}{2}\frac{d}{dt}\|u_S - u_P\|_{L^2(\Omega \setminus \Omega_C)}^2 = -D \int_{\Omega \setminus \Omega_C} |\nabla (u_S - u_P)|^2 d\Omega \qquad (1)
$$

$$
+ \int_{\partial \Omega_C} (u_S - u_P)(\phi - D \nabla u_P \cdot \mathbf{n}) d\Gamma.
$$

Assume moreover, that $u_S(\cdot,0) = u_P(\cdot,0)$ a.e. on $\Omega \setminus \Omega_C$. Then, $u_S(\bm{x},t)$ = $u_P(\bm{x},t)$ a.e. in $\Omega\smallsetminus \bar{\Omega}_C\smalltimes[0,\infty)$ if and only if

 $\phi(\mathbf{x}, t) - D \nabla u_P(\mathbf{x}, t) \cdot \mathbf{n} = 0$, a.e. on $\partial \Omega_C \times [0, \infty)$.

 Ω

イロト イ母 トイヨ トイヨト

Homogeneous flux density: $\Phi = \int_{\partial \Omega_C} \phi \, d\Gamma = 2\pi R \phi$, $\phi = 1$

A systematic time delay between the solutions.

Qiyao (Alice) Peng (Lancaster University) Nodel Upscaling 13 January, 2025 8/25

Ξ D. \prec

 4 **D** \rightarrow 4 \overline{m} \rightarrow 4 \overline{m}

 $\sqrt{2Q}$

Gaussian-shaped initial conditions

• Fundamental solution of the diffusion equation is given by

$$
P_t^D(\mathbf{x}, \mathbf{x}_c) = \begin{cases} \frac{1}{(4\pi Dt)^{d/2}} \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}_c\|^2}{4Dt}\right\}, & t > 0, \mathbf{x} \in \mathbb{R}^n, \\ 0, & t < 0, \mathbf{x} \in \mathbb{R}^n, \end{cases}
$$

We assume that the initial condition in the point source model is

$$
\bar{u}_0(\boldsymbol{x}) = \begin{cases} p_0 P_{t_0}^D(\boldsymbol{x}, \boldsymbol{x}_c), & \boldsymbol{x} \in \bar{\Omega}_C, \\ 0, & \boldsymbol{x} \in \Omega \setminus \bar{\Omega}_C, \end{cases}
$$

where $p_0, t_0 > 0$ determine the amplitude and the variance of the Gaussian kernel.

Qiyao (Alice) Peng (Lancaster University) Nodel Upscaling 13 January, 2025 9/25

 QQ

イロト イ押ト イヨト イヨト

Gaussian-shaped initial condition helps

目

 $2Q$

イロト (例) イヨト (目)

Flux over the cell boundary in the point source model

Flux produced by the **Gaussian initial condition**:

$$
\phi_1(R,t) = \frac{p_0 R}{2(t+t_0)} P_{t+t_0}^D(R).
$$

Flux produced by the **point source**:

$$
\phi_2(R,t)=\frac{\Phi(\boldsymbol{x}_c)}{2\pi R}\exp\left\{-\frac{R^2}{4Dt}\right\}.
$$

$$
\Rightarrow \phi(\mathbf{x},t) \approx -D\nabla u_P \mathbf{n} := \phi_{\text{sum}} = \phi_1(R,t) + \phi_2(R,t)
$$

$$
= \frac{p_0 R}{2(t+t_0)} P_{t+t_0}^D(R) + \frac{\Phi(\mathbf{x}_c)}{2\pi R} \exp\left\{-\frac{R^2}{4Dt}\right\}.
$$

Let $t = 0$, then

$$
p_0(t_0) \approx \frac{2t_0\phi(\mathbf{x},t)}{RP_{t_0}^D(R)}.
$$

 Ω

 \rightarrow 3 \mp 3 3 \mp 3

∢ □ ▶ ∢ *□*

Various Options to select (p_0, t_0) (I/III)

Recall the important equation in Proposition:

$$
\phi(\mathbf{x},t)-D\nabla u_P(\mathbf{x},t)\cdot \mathbf{n}=0, \text{ over }\partial\Omega_C,
$$

and the shape of the analytical expression of ϕ_{sum} (i.e. $D\nabla u_P(\mathbf{x}, t) \cdot \mathbf{n}$):

Qiyao (Alice) Peng (Lancaster University) [Model Upscaling](#page-0-0) 13 January, 2025 12/25

 $2Q$

Various Options to select (p_0, t_0) (II/III)

重

 $2Q$

イロト (例) イヨト (目)

Various Options to Compute (p_0, t_0) (III/III)

 $2Q$

イロト (例) イヨト (目)

Computational Efficiency

目

イロト (個) (注) (注)

 299

Inhomogeneous flux density: multiple Dirac delta points

 $2Q$

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow

Extreme points over the cell boundary (I/II)

In the **Point Source Model**, the flux density is computed by

$$
\phi_P(\mathbf{x},t) = D \nabla u_P(\mathbf{x},t) \cdot \mathbf{n}
$$

= $\sum_{i=0}^N \int_0^t \frac{\Phi_i(s)}{4\pi D(t-s)} \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}^{(i)}\|^2}{4D(t-s)}\right\} \frac{(\mathbf{x} - \mathbf{x}_C) \cdot (\mathbf{x} - \mathbf{x}^{(i)})}{2(t-s)R} ds.$

 QQ

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\land}$ \rightarrow

Extreme points over the cell boundary (I/II)

In the **Point Source Model**, the flux density is computed by

$$
\phi_P(\mathbf{x},t) = D \nabla u_P(\mathbf{x},t) \cdot \mathbf{n}
$$

= $\sum_{i=0}^N \int_0^t \frac{\Phi_i(s)}{4\pi D(t-s)} \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}^{(i)}\|^2}{4D(t-s)}\right\} \frac{(\mathbf{x} - \mathbf{x}_C) \cdot (\mathbf{x} - \mathbf{x}^{(i)})}{2(t-s)R} ds.$

Assume $\Phi_i(s) = \widetilde{\Phi}_i(t) + \delta_i(s)$, $s \in [0, t]$. Then the flux density above yields

$$
\hat{\phi}(\mathbf{x},t) \coloneqq \sum_{i=0}^{N} \frac{\widetilde{\Phi}_{i}(t)}{2\pi R} \frac{(\mathbf{x}-\mathbf{x}_{C})\cdot(\mathbf{x}-\mathbf{x}^{(i)})}{\|\mathbf{x}-\mathbf{x}^{(i)}\|^{2}} \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}^{(i)}\|^{2}}{4Dt}\right\},\,
$$

and at steady state

$$
\hat{\phi}_{\infty}(\boldsymbol{x}) \coloneqq \sum_{i=0}^{N} \frac{\widetilde{\Phi}_{i}^{\infty}}{2\pi R} \frac{(\boldsymbol{x} - \boldsymbol{x}_C) \cdot (\boldsymbol{x} - \boldsymbol{x}^{(i)})}{\|\boldsymbol{x} - \boldsymbol{x}^{(i)}\|^2}
$$

 QQ

イロト イ押ト イヨト イヨト

Extreme points over the cell boundary (II/II)

Qiyao (Alice) Peng (Lancaster University) Nodel Upscaling 13 January, 2025 18/25

Intensities of Dirac delta points

$$
\begin{cases}\n\widetilde{\Phi}_D(t) = \frac{4\pi A(R+r)(R-r)}{(R+r)\exp\left\{-\frac{(R-r)^2}{4Dt}\right\} - (R-r)\exp\left\{-\frac{(R+r)^2}{4Dt}\right\}} \\
\widetilde{\Phi}_C(t) = 2\pi R \exp\left\{\frac{R^2}{4Dt}\right\} \left(\phi_0 + A - \frac{2A(R+r)}{(R+r) - (R-r)\exp\left\{-\frac{Rr}{Dt}\right\}}\right)\n\end{cases}
$$

Take $t \rightarrow +\infty$:

$$
\begin{cases}\n\widetilde{\Phi}_D^{\infty} = \frac{2\pi A(R+r)(R-r)}{r} \\
\widetilde{\Phi}_C^{\infty} = 2\pi R\left(\phi_0 - A\frac{R}{r}\right)\n\end{cases}
$$

Parameter Values

$$
D = R = \phi_0 = A = 1.0, r = 0.1, T = 40.0, dt = 0.04
$$

Qiyao (Alice) Peng (Lancaster University) [Model Upscaling](#page-0-0) 13 January, 2025 19/25 19:25

 \equiv

 299

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Flux density over the cell boundary: $t \rightarrow +\infty$

$$
\hat{\phi}_{\infty}\left(\boldsymbol{x}\right)\coloneqq\sum_{i=0}^{N}\frac{\widetilde{\Phi}_{i}^{\infty}}{2\pi R}\frac{\left(\boldsymbol{x}-\boldsymbol{x}_{C}\right)\cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\left(i\right)}\right)}{\|\boldsymbol{x}-\boldsymbol{x}^{\left(i\right)}\|^{2}}
$$

Qiyao (Alice) Peng (Lancaster University) [Model Upscaling](#page-0-0) 13 January, 2025 20/25

 $2Q$

Flux density over cell boundary: *r* = 0.05

$$
\hat{\phi}(\mathbf{x},t) \coloneqq \sum_{i=0}^{N} \frac{\widetilde{\Phi}_{i}(t)}{2\pi R} \frac{(\mathbf{x}-\mathbf{x}_{C}) \cdot (\mathbf{x}-\mathbf{x}^{(i)})}{\|\mathbf{x}-\mathbf{x}^{(i)}\|^2} \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}^{(i)}\|^2}{4Dt}\right\}, \text{ with } r=0.05
$$

Qiyao (Alice) Peng (Lancaster University) [Model Upscaling](#page-0-0) 13 January, 2025 21/25

 $2Q$

Numerical results of model comparison

 $2Q$

 4 D \rightarrow 4 $\overline{7}$ \rightarrow 4 $\overline{2}$ \rightarrow 4 $\overline{2}$

Conclusions

- Due to the necessary assumptions and simplifications, mathematical modelling is a trade off between loss of information and computational efficiency.
- Upscalling between the models at different scales from the PDE perspective improves the computational efficiency with controlling the information loss.
- The essential and necessary condition has been derived analytically for the consistency between the diffusion models at different scales.
- For **homogeneous** flux density, **one Dirac delta point at cell center** combined with extra initial condition for the intracellular environment is needed for producing the consistent solutions.
- To reproduce the **inhomogeneous** flux density over the cell boundary, **multiple Dirac delta points** are used to represent one cell.

 QQ

イロト (個) (注) (注)

Further Reading...

Q. Peng and S.C. Hille. *Quality of approximating a mass-emitting object by a point source in a diffusion model*. Journal of Computers & Mathematics with Applications 151, 491 - 507 (2023).

Q. Peng and S.C. Hille. *Using multiple Dirac delta points to describe inhomogeneous flux density over a cell boundary in a single-cell diffusion model.* arXiv:2401.16261 (2024).

X. Yang, Q. Peng and S.C. Hille. *Approximation of a compound-exchanging cell by a Dirac point.* arXiv:2410.09495 (2024).

 QQ

イロト イ押ト イヨト イヨト

PhD Vacancies and Thank you!

MARS research application areas

MARS Engineering

MARS Environment

MARS Health

Questions or Comments?

