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Motivation and framework



Quadratic map

Let 𝐐 ∈ ℝ𝑁×𝑁 be a symmetric positive semi-definite (SPSD)
matrix, with 𝑁 ∈ ℕ and consider 𝒄 ∈ span{𝐐}, (𝒄 ≠ 𝟎).

Define the convex quadratic map

𝐷(𝒙) = 𝒙𝑇𝐐𝒙 − 2𝒄𝑇𝒙 + 𝒄𝑇𝜶, 𝒙 ∈ ℝ𝑁 .

with 𝜶 = 𝐐†𝒄 (so that min
𝒙∈ℝ𝑁

𝐷(𝒙) = 𝐷(𝜶) = 0).

Remark: in practice, 𝜶 is unknown.
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Existing techniques

For large 𝑁 , direct approaches are intractable.

Instead, use iterative solvers:

∙ Conjugate-gradient method
⋄ Converges in 𝑁 iterations.
⋄ Worst-case time-complexity per iteration is (𝑁2), so

intractable for very large problems.

∙ Coordinate-descent methods (e.g. Gauss-Seidel)
⋄ Sparse solvers.
⋄ Slow convergence.
⋄ Worst-case time-complexity per iteration is (𝑁), so

suitable for very large problems.
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Invariance under rescaling

We define the relaxed map

𝑅(𝒙) = min
𝑠⩾0

𝐷(𝑠𝒙) =

{
𝒄𝑇𝜶 − (𝒄𝑇𝒙)2∕(𝒙𝑇𝐐𝒙) if 𝒙 ∈ 𝒜 ,

𝒄𝑇𝜶 otherwise,

with 𝒜 = {𝒙 ∈ ℝ𝑁 | 𝒄𝑇𝒙 > 0}.

We have 𝑅(𝒙) = 𝐷(𝑠𝒙𝒙), with

𝑠𝒙 =

{
(𝒄𝑇𝒙)∕(𝒙𝑇𝐐𝒙) if 𝒙 ∈ 𝒜 ,

0 otherwise.

The relaxed map 𝑅 is invariant under rescaling, that is,
𝑅(𝑠𝒙) = 𝑅(𝒙), 𝒙 ∈ ℝ𝑁 and 𝑠 > 0.
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Properties of the relaxed map



Directional derivative and gradient

Setting 𝒵 = {𝒙 ∈ ℝ𝑁 | 𝐐𝒙 = 0}, the directional derivative Λ(𝒙; 𝒗)
of 𝑅 at 𝒙 ∈ ℝ𝑁 along 𝒗 ∈ ℝ𝑁 is

Λ(𝒙; 𝒗) = lim
𝑡→0+

1
𝑡
[
𝑅(𝒙+𝑡𝒗)−𝑅(𝒙)

]
=

{
−∞ if 𝒙 ∈ 𝒵 and 𝒗 ∈ 𝒜 ,

2𝑠𝒙𝒗
𝑇 (𝑠𝒙𝐐𝒙 − 𝒄) otherwise.

The gradient of 𝑅 at 𝒙 ∉ 𝒵 is ∇𝑅(𝒙) = 2𝑠𝒙(𝑠𝒙𝐐𝒙 − 𝒄).
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Properties of 𝑅

Theorem 1 (Pseudoconvex relaxation)

The map 𝑅 is quasiconvex on ℝ𝑁, and pseudoconvex on the
real convex cone 𝒜 .

Quasiconvexity: For 𝝃 = 𝒙+ 𝜌(𝒙− 𝒖), 𝒙, 𝒖 ∈ ℝ𝑁, 𝜌 ∈ [0, 1], we have
𝑅(𝝃) ⩽ max{𝑅(𝒙), 𝑅(𝒖)}.

Pseudoconvexity: For 𝒙, 𝒖 ∈ 𝒜 , if Λ(𝒙; 𝒖 − 𝒙) ⩾ 0, then
𝑅(𝒙) ⩽ 𝑅(𝒖).
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𝐱 ↦ 𝐷(𝐱)

𝜶𝑥1
𝑥2

𝐱 ↦ 𝑅(𝐱)

𝜶𝑥1
𝑥2

Figure 1: Graphical representation of the maps 𝐷 and 𝑅 over ℝ𝑁
⩾0,

𝑁 = 2 (illustration).
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Exact line search

We can characterise the descent directions along which 𝑅 can be
minimised via exact line search.

Due to the invariance under scaling of 𝑅, the iterate of an exact line
search from 𝒙 along 𝒗 minimises 𝑅 over span{𝒙, 𝒗}.

To simplify the expression for the optimal step size, we set

Υ(𝒙; 𝒗) = (𝒄𝑇𝒗)(𝒙𝑇𝐐𝒙) − (𝒄𝑇𝒙)(𝒗𝑇𝐐𝒙).
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Theorem 2 (Optimal step size)

Consider 𝒙 ∈ 𝒜 and 𝒗 ∈ ℝ𝑁 and set 𝒛𝑡 = 𝒙 + 𝑡𝒗, 𝑡 ∈ ℝ. If 𝐐𝒙
and 𝐐𝒗 are non-collinear, the following assertions hold.

(i) If Υ(𝒗;𝒙) > 0, then the function 𝑡 ↦ 𝑅(𝒛𝑡), 𝑡 ∈ ℝ, is mini-
mum at 𝜏 = Υ(𝒙; 𝒗)∕Υ(𝒗;𝒙); we in this case have 𝒛𝜏 ∈ 𝒜 and
𝑅(𝒛𝜏) = min

𝒛∈span{𝒙,𝒗}
𝑅(𝒛).

(ii) If Υ(𝒗;𝒙) ⩽ 0, then the function 𝑡 ↦ 𝑅(𝒛𝑡), 𝑡 ∈ ℝ, is monotonic,
and inf 𝑡∈ℝ𝑅(𝒛𝑡) = min{𝑅(−𝒗), 𝑅(𝒗)}.

9/18



𝒙

𝒗

𝒛𝜏

{𝒛𝑡|𝑡 ∈ ℝ}

𝒜

{𝑠𝒛𝒙,𝒗|𝑠 > 0} 𝒙
𝒗

{𝒛𝑡|𝑡 ∈ ℝ}

𝒜

{𝑠𝒛𝒙,𝒗|𝑠 > 0}

Figure 2: Schematic representation of the situations discussed in
Theorem 2. The left plot corresponds to the case Υ(𝒗;𝒙) > 0, and the
right plot to Υ(𝒗;𝒙) ⩽ 0. In each plot, the grey region indicates the set
{𝒙 ∈ ℝ𝑁 |𝒄𝑇𝒙 ⩽ 0}, and the grey lines are level sets of the map 𝑅 on
span{𝒙, 𝒗}. The direction 𝒛𝒙,𝒗 ∈ 𝒜 is defined as
𝒛𝒙,𝒗 = Υ(𝒗;𝒙)𝒙 + Υ(𝒙; 𝒗)𝒗; it verifies

arg min
𝒛∈span{𝒙,𝒗}

𝑅(𝒛) = {𝑠𝒛𝒙,𝒗|𝑠 > 0}.
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Improvement score

Introduce 𝑅(𝒙; 𝒗) = 𝑅(𝒙) − min
𝒛∈span{𝒙,𝒗}

𝑅(𝒛) ⩾ 0.

Lemma 1 (Improvement score for 𝑅)

Consider 𝒙 ∈ 𝒜 and 𝒗 ∈ ℝ𝑁 , we have

𝑅(𝒙; 𝒗) =
(
𝒗𝑇 (𝑠𝒙𝐐𝒙 − 𝒄)

)2/((𝒗𝑇𝐐𝒗) − (𝒗𝑇𝐐𝒙)2∕(𝒙𝑇𝐐𝒙)
)
;

if 𝐐𝒙 and 𝐐𝒗 are non-collinear, and (𝒙; 𝒗) = 0 otherwise.
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Improvement scores

Setting 𝐷(𝒙; 𝒗) = 𝐷(𝒙) − min
𝑡∈ℝ

𝐷(𝒙 + 𝑡𝒗), 𝒙 and 𝒗 ∈ ℝ𝑁 , we have

𝐷(𝒙; 𝒗) =
{ (

𝒗𝑇 (𝐐𝒙 − 𝒄)
)2/(𝒗𝑇𝐐𝒗) if 𝒗 ∉ 𝒵 ,

0 otherwise.

Link between improvement scores, and corrective term

For 𝒙 ∈ 𝒜 and 𝒗 ∈ ℝ𝑁 such that 𝐐𝒙 and 𝐐𝒗 are non-collinear,
we have 𝑅(𝒙; 𝒗) = 𝐷(𝑠𝒙𝒙; 𝒗)(𝒙; 𝒗), with

(𝒙; 𝒗) =
(
1 − (𝒗𝑇𝐐𝒙)2

(𝒗𝑇𝐐𝒗)(𝒙𝑇𝐐𝒙)

)−1

.
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Minimisation of the relaxed
map



Coordinate descent with gradient-based rules

We minimise the relaxed map 𝑅 using exact coordinate descent (i.e.
iterations consist of exact line searches along directions in {𝒆𝑖}𝑖∈[𝑁]):

∙ Select an initial iterate 𝒙(0) ∈ .

∙ Set 𝒙(𝑘+1) = 𝒙(𝑘) + 𝜏 (𝑘)𝒆𝑖(𝑘) , 𝑘 ∈ ℕ0, with 𝑖(𝑘) selected using some
selection rule and 𝜏 (𝑘) given by Theorem 2.

For the coordinate selection, we consider gradient-based rules.
Other rules, such as cyclic or randomised, could be considered.
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Coordinate selection

A natural rule for the selection of a coordinate is

𝑖𝑅,BI,𝒙 ∈ argmax
𝑖∈[𝑁]

𝑅(𝒙; 𝒆𝑖), (𝒙 ∈ 𝒜 ).

This corresponds to the coordinate leading to the best improvement
(BI) of 𝑅.

Another selection rule is the -coordinate,

𝑖𝑅,,𝒙 ∈ argmax
𝑖∈[𝑁]

𝐷(𝑠𝒙𝒙; 𝒆𝑖).

This corresponds to the coordinate potential 𝐐𝒆𝑖, 𝑖 ∈ [𝑁], that
aligns the most with ∇𝑅(𝒙) in the reproducing kernel Hilbert space
 = span{𝐐}.
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Convergence properties

Define

𝜄𝐐 =
𝜆min(𝐐)

𝑁 max𝑖∈[𝑁] 𝐐𝑖,𝑖
∈ (0, 1].

Theorem 3 (Convergence)

Consider the minimisation of 𝑅 over ℝ𝑁 ; the sequence of iterates
{𝒙(𝑘)}𝑘∈ℕ0

generated by an exact coordinate descent with  rule

verifies lim𝑘→∞ 𝑅(𝒙(𝑘)) = 0, with

𝑅(𝒙(𝑘)) ⩽ (1 − 𝜄𝐐)
𝑘𝑅(𝒙(0)), 𝑘 ∈ ℕ0.

The assertions of Theorem 3 also hold for the BI rule.
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Experiments



Experiment 1

Figure 3: Decay of the map 𝐷 for different ranges of the corrective
terms ; 18 - 31, 5 - 7, 1.03 - 1.07 (left to right). We compare BI and 
for the relaxed map 𝑅 with popular methods (conjugate gradient and
coordinate descent for 𝐷) by the number of matrix-column calls. The
quadratic maps are generated using random 𝐐, 𝐜 and 𝜶 for 𝑁 = 500 and
rank(𝐐) = 250.
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Experiment 2

Figure 4: Decay of the map 𝐷 for varying values of "nugget" added to
𝐐; 0, 0.2, 2, 20 (left to right). We compare BI and  for the relaxed
map 𝑅 with popular methods (conjugate gradient and coordinate descent
for 𝐷) by the number of matrix-column calls. The quadratic maps are
generated using random 𝐐, 𝐜 and 𝜶 for 𝑁 = 500 and rank(𝐐) = 250.
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Concluding remarks

Summary

∙ Study of the properties of the maps resulting from the
introduction of an invariance under rescaling into convex
quadratic maps.

∙ Investigation of behaviours of coordinate descent algorithms
arising from the minimisation of such maps.

Ongoing investigations and future work

∙ Explore more numerical experiments and applications of the
presented method.

∙ Gain a better understanding of the situations in which the
acceleration occurs.
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Thank you for your attention
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