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About me - CV in a nutshell
PhD - Yale 1996
Integrable or near-integrable wave models - solitary wave
analysis and simulation
started in 1988 but interrupted, had children, then slowly
finished.
Marie Curie Fellowship - 1997
more work on wave models, with emphasis on modelling realistic
boundary conditions - development of the Unified Transform
This was the turning point for my career. It took me to
Imperial College. T stayed on for a PDRA position until 2001

2001-2016
Lecturer, then Reader (2005), then Professor (2012) and HoD
at the University of Reading

since 2016
Professor at Heriot-Watt - also Head of School 2016-2022
Also currently Deputy Director at ICMS
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I have worked on a variety of linear/nonlinear boundary value
problems, with an eye to applications but also just for the
appeal and generality of the mathematical tools and structure.
Mostly motivated by fluid modelling.

1. 2-point boundary value problems, such as
4t = Qzxzx, t>0,0<z<L

with 3 boundary + 1 initial conditions.

Using the Unified Transform, I discovered new features in
the spectral structure of the solution operator.

2. Large-scale atmospheric flow models - analysis via
optimal transport with a non-standard cost, numerics via
semi-discrete optimal transport.

3. Mathematical study of the phenomenon of dispersive
quantisation, aka Talbot effect, in nonlocal/aperiodic
systems.
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Ut = Uggg, w(z,0)=wup(x), u(0,t)=mu(l,t)=uy(0,t)=0.
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Solution: complex contour integral
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Civderine1) GOV
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This integral is not equivalent to a series representation
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A semigeostrophic cyclone - work with PhD students
t ~ 16 Days t ~ 20 Days t ~ 25 Days

| |

Velocity and temperature of a twin cyclone
Using a semi-discrete optimal transport scheme, 36k points



Dispersive revivals - work with colleagues

In a seminar talk, Peter Olver showed these pictures for the
solution at various time of the 27-periodic Airy equation
Ut = Ugqr Starting from a step function:
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..and then the solution at special values of the time
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A step back: Talbot and his optical effect

Talbot observations in 1835:

Observing light passing through a diffraction grating, he
observed that, at each rational multiple of a fixed distance, the
diffraction pattern appears to reproduce a finite number of
copies of the grating pattern.

Talbot effect: the self~imaging of a diffraction grating. At regular
distances from the grating, the light diffracted through it forms a
nearly perfect image of the grating itself.
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Free-space Schrodinger on T - step initial condition on

[0,1]
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Free-space Schrodinger on T - box initial profile
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(c) Solution at t = 7 /4
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The periodic, free-space Schrodinger equation

Opu(z,t) = i02u(x,t) zxeT, t>0
u(z,0) = up(x) zeT.

Theorem
Let up € BV(T). Then:

(a)
u(az, 27r§)

for co-prime p,q € N (ug is revived if t € 2wQ);
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The periodic, free-space Schrodinger equation

Opu(z,t) = i02u(x,t) zxeT, t>0
u(z,0) = up(x) zeT.
Theorem
Let up € BV(T). Then:
(a)

1 ik k 2 k
;M ;D

u(az,27r]2> == Z Q2T Q2™ u0<:v — 27T—>
q q

q k,m=0
for co-prime p,q € N (ug is revived if t € 2wQ);

(b) but... Re(u), Im(u) are continuous in z for ¢ ¢ 27Q
(continuous also in ¢ if ug is continuous);

(c) if up & H(T), s > %, for almost all ¢ > 0 the graph of both
Re(u) and I'm(u) has fractal dim = 3 (fractalisation).



True also for the nonlinear PDE- NLS: iu; + ugy + |[uf?u =0

Theorem by Erdogan-Tzirakis stating a weak revival property

t=0 t=251327 (t/pi = 0.8)
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t=6.28319 (t/pi =2) = 6.59734 (t/pi =2.1)
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In summary: Periodic revivals

Periodic revivals: the solution of a linear dispersive periodic
problem, at times equal to rational multiples of (a constant
depending on) the period, is a finite linear combination of
translated and reflected copies of the initial profile

M. B. Erdogan, N. Tzirakis, Dispersive PDEs, (Cambridge University Press, 2016)
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In summary: Periodic revivals
Periodic revivals: the solution of a linear dispersive periodic
problem, at times equal to rational multiples of (a constant
depending on) the period, is a finite linear combination of
translated and reflected copies of the initial profile

Theorem! Consider the dispersive PDE

Owu(z,t) = iP(—idy)u(x,t), wu(z,0)=up(z), ze€T

P(k) a polynomial with integer coefficients.
At t = 27r§, the solution admits the representation

19
u(z, 27r - Gpglk)ug(z —27—),
q k=0
q—1 .
Gp,q(k) _ e—27r7,P(m) e 2mim
m=0

M. B. Erdogan, N. Tzirakis, Dispersive PDEs, (Cambridge University Press, 2016)



Proof sketch

The proof is based on three elementary properties:

» Modularity is preserved by polynomial with integer
coefficients: k =, h mod ¢ = P(k) =, P(h):
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Proof sketch

The proof is based on three elementary properties:

» Modularity is preserved by polynomial with integer
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Proof sketch

The proof is based on three elementary properties:

» Modularity is preserved by polynomial with integer
coefficients: k =, h mod ¢ = P(k) =, P(h):
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» Translation in x corresponds to multiplication of the
Fourier coefficients by an exponential.



Finite sum solution of Airy - step initial condition

1
Solution attime t = E 7T computed via finite representation
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In summary: Fractalisation

Fractalisation: At drrational times (hence a.e. in ¢ > 0) the
solution, starting from a BV (hence possibly discontinuous)
initial profile, is a continuous function of x whose graph has

fractal dimension > 1 - (2 for Schrodinger, in [2, I] for Airy).

2

H. L. Montgomery, Ten lectures on the interface between analytic number theory and
harmonic analysis, (American Mathematical Soc., 1994)

3 Lo . . .
V. Chousionis et al., Proceedings of the London Mathematical Society 110, 543-564 (2014)



In summary: Fractalisation

Fractalisation: At drrational times (hence a.e. in ¢ > 0) the
solution, starting from a BV (hence possibly discontinuous)
initial profile, is a continuous function of x whose graph has
fractal dimension > 1 - (2 for Schrodinger, in [2, I] for Airy).
Hence the solution has better regularity properties at
irrational than at rational times.

The proof is based on number theoretical results? and on

regularity estimates in Besov spaces®.

2 . .
H. L. Montgomery, Ten lectures on the interface between analytic number theory and

harmonic analysis, (American Mathematical Soc., 1994)

3 . . . .
V. Chousionis et al., Proceedings of the London Mathematical Society 110, 543-564 (2014)



What about the periodicity? Airy with
w(0,8) =u(l,t) =0, ux(0,1) = uy(1,7)

= t=g

t=vk =4 +0001

blue: initial condition - magenta: exact solution



What is going on?
The answer is hidden in the spectral asymptotics of the spatial
operator and the interaction with the periodic Hilbert
transform?

4:LA Boulton, G. Farmakis, BP and D.A. Smith, ArXiv preprint: 2403.01117
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What is going on?
The answer is hidden in the spectral asymptotics of the spatial
operator and the interaction with the periodic Hilbert
transform?

Periodic Hilbert transform # on [0, 1]:

1 o A
Hf () = po /0 cot [z — y)] f(y)dy and HI(K) = —isgn(k)f(k)

hence

Hf(x) =iy [Fl=m)e e — f)eme], fe L2(0,1]
n=1

Crucial if elementary identity:

— - TinT __ (Id+'LH)f - f(O)
;f(n)e2 = 5

4tLA Boulton, G. Farmakis, BP and D.A. Smith, ArXiv preprint: 2403.01117



Periodic Hilbert transform H of a step function
H the periodic Hilbert transform:

Hyw) = 5 pve|cot ™ Ygty)dy — Hylh) = ~isgn(t)g(h).

—

gy = —ik%a(k) vs Huga(k) = —ik|k|a(k)

L L L L 1
0.2 0.4 0.6 0.8 1.0
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Figure: A step function (dashed) and its periodic Hilbert transform
(solid). Where the given profile has a point of discontinuity, its
periodic Hilbert transform displays an (infinite) logarithmic cusp



The linearised Benjamin-Ono equation u; = Hu,,
periodic, step initial condition




The periodic linearised BO equation

BO: iugy = —ik2a(k) vs 1S : Huss(k) = —ik|k|a(k)
Hilbert transform identity: for g € L?(T)

— ~ (Id+iH)g - (g)
S njete) = TR,

Lemma Assume ug real-valued, and WLOG (ug) = 0.
For u solution of linear BO, v solution of free-space Schrodinger

u(x,t) = Re [(Id + iH) v(z,1)] .

This implies the result on (cusp) revivals, both for the
continuous/discontinuous dychotomy and the fractal dimension
The weak version appears to hold for the full nonlinear problem



Linearised BO, 2m-periodic, step initial condition
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Numerical evaluation - fractal (box-counting) dimension

Solution Linear BO at time=27e

Figure: A step function (dashed) and its periodic Hilbert transform
(solid). When a given profile has a point of discontinuity, its periodic
Hilbert transform displays a logarithmic cusp °

5LA Boulton, B. Macpherson, BP, ArXiv preprint: 2501.01322



More surprises: Schrodinger with a dislocation at © = b




Dislocation model - step initial condition, b = 0.636619
rational /irrational times, initial discontinuities to the left of b, 250 modes

t=i t=04

blue: initial condition - magenta: exact solution



Summary: dispersive revivals

>

for linear dispersive PDEs, periodic, initial discontinuities
are propagated in the solution for a (measure zero) set of
special values of the time

but for almost all times the solution is continuous
polynomial dispersion: jumps stay jumps

non-polynomial dispersion of d° > 2: jumps may become
cusps

robust phenomenon that survives (in a weaker form) the
perturbation by nonlinearity, quasi-periodicity, stochastic
noise

it can also survive, in weak cusp form, when the boundary
conditions are not periodic

Applications!?!



Thank yous ....

Students: Davinia Chilton, Dave Smith, David Gilbert, Nicolas
Werning, Stefania Lisai, George Farmakis, Charlie Egan, Théo
Lavier

Mentors: Vassilis Dougalis (Athens), Thanasis Fokas
(Cambridge), Jerry Bona (Chicago), Mike Cullen (Met Office)

Colleagues: Lyonell Boulton & David Bourne (HW), Peter
Olver (Minnesota), Bernard Deconink (Washington)



