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Introduction p-adic slopes of modular forms

p-adic slopes of modular forms

Fix a prime p ≥ 5 and a positive integer N that is prime to p.
Let vp(·) be the p-adic valuation of Cp normalized by vp(p) = 1 and
| · |p = p−vp(·) be the corresponding p-adic norm.
For every integer k ≥ 2, let Sk(Γ1(N), Q̄p) be the space of cuspforms of weight k
and level Γ1(N). For a normalized Hecke eigenform f ∈ Sk(Γ1(N), Q̄p) with
q-expansion f =

∑
n≥1

anqn, its p-adic slope is defined to be the number vp(ap).

Motivations to study p-adic slopes of modular forms:
1 computational perspective: Gouvêa conjecture, Gouvêa-Mazur conjecture;
2 automorphic perspective: geometry of eigencurves (finiteness of irreducible

components, spectral halo conjecture etc.);
3 Galois perspective: study of the (crystalline) deformation of the local residual

Galois representation ρ̄ : Gal(Q̄p/Qp)→ GL2(F̄p).
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Introduction ghost conjecture of Bergdall-Pollack

Preliminaries I

Let ∆ = F×p and ω : ∆→ Z×p be the Teichmüller character. We identify ∆ with
the torsion subgroup of Z×p via ω. Fix a topological generator γ = exp(p) of
1 + pZp.
For every character ε : ∆→ Z×p , letWε be the rigid analytic space
parametrizing continuous p-adic valued characters κ : Z×p → C×p such that
κ|∆ = ε. For such a κ, we define its coordinate onWε to be

wκ := κ(γ)− 1.

Every integer k ≥ 2 gives rise to a classical p-adic weight κk : z 7→ zk−2 with
coordinate wk = exp(p(k − 2))− 1.
Set Γ = Γ1(N) ∩ Γ0(p). For every p-adic weight κ, let S†κ(Γ) be the sapce of
overconvergent cuspforms of weight κ and level Γ, equipped with a compact
operator Up. By a theorem of Coleman, we have

Sk(Γ, Q̄p) = S†k(Γ)Up−slope≤? k−1

So it suffices to determine the ‘overconvergent slopes’, i.e. the p-adic valuations
of Up-eigenvalues in the space S†k(Γ), or equivalently, to determine the Newton
polygon of the characteristic power series of the Up-operator on S†k(Γ).
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Introduction ghost conjecture of Bergdall-Pollack

Preliminaries II

Let GQ = Gal(Q̄/Q) be the Galois group of Q, GQp = Gal(Q̄p/Qp) be its
p-decomposition group and IQp ⊂ GQp be the inertia subgroup. Let
ω1 : GQ → F×p be the mod p cyclotomic character.

Fix a continuous irreducible residual Galois representation r̄ : GQ → GL2(F̄p)
that is modular of level N. Assume that the restriction r̄|GQp

is reducible and
satisfies a certain generic assumption.
Let b be the unique integer in {2, . . . , p} such that det(r̄)|IQp

= ωb−1
1 . Set

ε(b) = ωb−2 : ∆→ Z×p .

For every p-adic weight κ ∈ Wε(b), let S†κ(r̄) be the r̄-isotypic component of the
space S†κ(Γ). It is stable under the Up-operator and let

Cr̄(wκ, t) = det(1− tUp|S†κ (̄r))

be the characteristic power series of Up on S†κ(r̄).
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Introduction ghost conjecture of Bergdall-Pollack

Statement of the conjecture

Bergdall and Pollack constructed a formal series Gr̄(w, t) ∈ ZpJw, tK (called the
ghost series), which only depends on the dimensions of certain subspaces of
classical modular forms. This series will serve as a ‘model’ of the characteristic
power series of the Up-operator.

Ghost conjecture of Bergdall-Pollack

For every p-adic weight κ ∈ Wε(b), the Newton polygon of Gr̄(wκ, t) coincides with
the Newton polygon of Cr̄(wκ, t).

The assumption that r̄|GQp
is reducible is crucial. The conjecture is false without

this assumption.
We will formulate a local version of ghost conjecture and prove it under mild
assumptions.
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Local ghost conjecture Abstract automorphic forms

Set up

Let E/Qp be a finite extension with integer ring O, a uniformizer $ and residue
field F.
Define the following subgroups of GL2(Qp):

Kp := GL2(Zp) ⊃ Iwp :=

(
Z×p Zp

pZp Z×p

)
⊃ Iwp,1 :=

(
1 + pZp Zp

pZp 1 + pZp

)
.

Fix a reducible nonsplit residual Galois representation ρ̄ : IQp → GL2(F):

ρ̄ '
(
ωa+b+1

1 ∗ 6= 0
0 ωb

1

)
for 1 ≤ a ≤ p− 4 and 0 ≤ b ≤ p− 2.

Let σa,b = SymaF⊕2 ⊗ detb be the Serre weight of ρ̄, considered as a right
F-representation of GL2(Fp) (the transpose of the usual left representation).
Denote by Proja,b the projective envelope of σa,b in the category of (right)
F[GL2(Fp)]-module.
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Local ghost conjecture Abstract automorphic forms

Augmented modules

An OJKpK-projective augmented module H̃ is a finitely generated right
projective OJKpK-module equipped with an right O[GL2(Qp)]-module structure
such that the two induced O[Kp]-structures on H̃ coincide. We say that H̃ is of
type ρ̄ with multiplicity m(H̃) if

(Serre weight) H := H̃/($, I1+pM2(Zp)) is isomorphic to a direct sum of m(H̃)
copies of Proja,b as a right F[GL2(Fp)]-module, where I1+pM2(Zp) is the
augmentation ideal of OJ1 + pM2(Zp)K.

We say H̃ is primitive if m(H̃) = 1.
H̃ naturally appears in the complete homology groups of certain Shimura
varieties. Fix an absolutely irreducible residual Galois representation
r̄ : GQ → GL2(F) such that r̄|IQp

∼= ρ̄. Fix a neat tame level Kp ⊆ GL2(Ap
f ). For

an open compact subgroup K ⊆ GL2(Af ), write Y(K) for the corresponding
open modular curve over Q. The r̄-localized completed homology with tame
level Kp defined by

H̃(Kp)mr̄ := lim←−
m

HBetti
1

(
Y
(
Kp(1 + pmM2(Zp))

)
C, O

)cplx=1
mr̄

.

is an OJKpK-projective augmented module.
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Local ghost conjecture Abstract automorphic forms

Abstract classical forms I

We will define various spaces of automorphic forms in our abstract setting that
are analogues of notions in modular forms.

modular forms abstract automorphic forms

Sk(Γ1(N), Q̄p)r̄ Sur
k (ε1)

Sk(Γ1(N) ∩ Γ0(p), Q̄p)r̄ SIw
k (ψ)

S†k(Γ1(N) ∩ Γ0(p), Q̄p)r̄ S†k(ψ)

family of overconvergent modular forms S†,(ε)

family of p-adic modular forms S(ε)
p-adic

Fix a character ε = ε1 × ε2 = ω−s+b × ωa+s+b : ∆2 → Z×p for some
s ∈ {0, . . . , p− 2}.
For α ∈ Zp, let ᾱ be its mod p reduction. We view ε as a character of Iwp via the
formula

ε
(( α β

γ δ

))
= ε(ᾱ, δ̄),

( α β
γ δ

)
∈ Iwp.
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Local ghost conjecture Abstract automorphic forms

Abstract classical forms II

For every integer k ≥ 2, let O[z]≤k−2 denote the space of polynomials in O of
degree ≤ k − 2. It carries an action of the monoid M2(Zp)det6=0:

h|(α β
γ δ

)(z) = (γz + δ)k−2h
(αz + β

γz + δ

)
, for

( α β
γ δ

)
∈ M2(Zp).

We define the space of abstract classical forms of weight k and character
ψ = ε · (1× ω2−k) to be the space

SIw
k (ψ) := HomO[Iwp]

(
H̃, O[z]≤k−2 ⊗ ψ

)
.

Fix a decomposition of the double coset Iwp
(

p−1 0
0 1

)
Iwp =

∐p−1
j=0 vjIwp with

vj =
(

p−1 0
j 1

)
. Define the Up-operator on the spaces SIw

k (ψ) by the formula

Up(ϕ)(x) =

p−1∑
j=0

ϕ(xvj)|v−1
j

for all x ∈ H̃ and ϕ ∈ SIw
k (ψ).
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Local ghost conjecture Abstract automorphic forms

Abstract classical forms III

For k ≥ 2 satisfying k ≡ 2 + a + 2s mod (p− 1), the character
ψ = ε · (1× ω2−k) is of the form ψ = ε1 × ε1 with ε1 = ω−s+b. Define the
space of abstract classical forms with Kp-level of weight k and central character
ε1 to be

Sur
k (ε1) := HomO[Kp]

(
H̃, O[z]≤k−2 ⊗ ε1 ◦ det

)
.

classical modular forms abstract automorphic forms

Sk(Γ1(N), Q̄p)r̄ Sur
k (ε1) = HomO[Kp]

(
H̃, O[z]≤k−2 ⊗ ε1 ◦ det

)
Sk(Γ1(N) ∩ Γ0(p), Q̄p)r̄ SIw

k (ψ) = HomO[Iwp]

(
H̃, O[z]≤k−2 ⊗ ψ

)
S†k(Γ1(N) ∩ Γ0(p), Q̄p)r̄ ?
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Local ghost conjecture Abstract automorphic forms

Abstract automorphic forms I

Let C0(Zp;OJwK) denotes the space of continuous functions on Zp with values in
OJwK.
We can define right actions of the monoid

M1 =
{( α β

γ δ

)
∈ M2(Zp); p|γ, p - δ, αδ − βγ 6= 0

}
.

on C0(Zp;OJwK) and the Tate algebra O〈w/p〉〈z〉. When endowed with such an
action, these spaces will be denoted by C0(Zp;OJwK(ε)) and O〈w/p〉(ε)〈z〉.
We define the space of abstract p-adic forms and the space of family of abstract
overconvergent forms to be

S(ε)
p-adic := HomO[Iwp]

(
H̃, C0(Zp;OJwK(ε))

)
,

S†,(ε) := HomO[Iwp]

(
H̃, O〈w/p〉(ε)〈z〉

)
.

We can define Up-operator on these spaces by the same formula as on SIw
k (ψ).

For any k ≥ 2, we have an M1-equivariant inclusion

O[z]≤k−2 ⊗ ψ ↪→ O〈w/p〉(ε)〈z〉 ⊗O〈w/p〉,w7→wk O

and a similar inclusion for C0(Zp;OJwK(ε)).
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Local ghost conjecture Abstract automorphic forms

Abstract automorphic forms II

For every integer k, we define the space of abstract overconvergent forms of
weight k and character ψ = ε · (1× ω2−k) by evaluating S†,(ε) at
w = wk := exp((k − 2)p)− 1:

S†k(ψ) := S†,(ε) ⊗O〈w/p〉,w7→wk O.

When k ≥ 2, we have a Up-equivariant inclusion SIw
k (ψ) ↪→ S†k(ψ).

The characteristic power series of the Up-action on S†,(ε) and S(ε)
p-adic are

well-defined and are equal; we denote it by

C(ε)(w, t) =
∑
n≥0

c(ε)
n (w)tn ∈ OJw, tK.

For any integer k, the evaluation C(ε)(wk, t) ∈ OJtK is the characteristic power
series of Up-operator on S†k(ψ).
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Local ghost conjecture Abstract automorphic forms

A digestion of notations

modular forms abstract automorphic forms

Sk(Γ1(N), Q̄p)r̄ Sur
k (ε1) = HomO[Kp]

(
H̃, O[z]≤k−2 ⊗ ε1 ◦ det

)
Sk(Γ1(N) ∩ Γ0(p), Q̄p)r̄ SIw

k (ψ) = HomO[Iwp]

(
H̃, O[z]≤k−2 ⊗ ψ

)
S†k(Γ1(N) ∩ Γ0(p), Q̄p)r̄ S†k(ψ) = S†,(ε) ⊗O〈w/p〉,w7→wk O

family of overconvergent modular forms S†,(ε) = HomO[Iwp]

(
H̃, O〈w/p〉(ε)〈z〉

)
family of p-adic modular forms S(ε)

p-adic = HomO[Iwp]

(
H̃, C0(Zp;OJwK(ε))

)
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Local ghost conjecture Construction of local ghost series

Local ghost series I

From now on, we assume that H̃ is primitive.
For every integer k ≥ 2, we set

dIw
k (ψ) := rankOSIw

k (ψ).

For k ≡ 2 + a + 2s mod (p− 1), we set

dur
k (ε1) := rankOSur

k (ε1) and dnew
k (ε1) := dIw

k (ε̃1)− 2dur
k (ε1)

We know that dnew
k (ε1) is always an even integer.

For k ≡ 2 + a + 2s mod (p− 1), we define a sequence (m(ε)
n (k))n≥1 of integers

as

0, . . . , 0︸ ︷︷ ︸
dur

k (ε1)

, 1, 2, 3, . . . , 1
2 dnew

k (ε1)−1, 1
2 dnew

k (ε1), 1
2 dnew

k (ε1)−1, . . . , 3, 2, 1, 0, 0, . . . ,
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Local ghost conjecture Construction of local ghost series

Local ghost series II

Let ρ̄ =
( ωa+b+1

1 ∗6=0
0 ωb

1

)
: IQp → GL2(F) be a reducible, nonsplit, and generic

residual representation with a ∈ {1, . . . , p− 4} and b ∈ {0, . . . , p− 2}. Let H̃
be a primitive OJKpK-projective augmented module of type ρ̄.
Fix a character ε = ω−s+b × ωa+s+b : ∆2 → Z×p as before. Define the ghost
series of type ρ̄ to be the formal power series

G(ε)(w, t) = G(ε)
ρ̄ (w, t) = 1 +

∞∑
n=1

g(ε)
n (w)tn ∈ Zp[w]JtK ⊂ OJw, tK,

where each coefficient g(ε)
n (w) is a product

g(ε)
n (w) =

∏
k≥2

k≡2+a+2s mod p−1

(w− wk)
m(ε)

n (k) ∈ Zp[w]

We call wk = exp(p(k − 2))− 1 a ghost zero of g(ε)
n (w) and the integer m(ε)

n (k)
its ghost multiplicity.
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Local ghost conjecture Main result

Local ghost conjecture

Local ghost conjecture

Let ρ̄ =
( ωa+b+1

1 ∗6=0
0 ωb

1

)
: IQp → GL2(F) be a reducible, nonsplit, and generic residual

representation with a ∈ {1, . . . , p− 4} and b ∈ {0, . . . , p− 2}. Let H̃ be a primitive
OJKpK-projective augmented module of type ρ̄. Let C(ε)(w, t) be the characteristic
power series of Up-operator and G(ε)(w, t) be the ghost series for H̃ defined before.
Then for every w? ∈ mCp , we have NP(G(ε)(w?,−)) = NP(C(ε)(w?,−)).

Theorem (Liu-Truong-Xiao-Z.)

The local ghost conjecture holds when p ≥ 11 and 2 ≤ a ≤ p− 5.

From now on, we assume that b = 0 and the matrix
( p 0

0 p

)
acts trivially on H̃. We will

fix a character ε : ∆2 → Z×p and suppress it from notations.
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Proof of the main theorem Ghost zeroes and ghost multiplicities

Intuition on ghost zeroes

Let f ∈ Sk(Γ0(Np), Q̄p) be a normalized Hecke eigenform. We have the
following facts about the slopes of classical modular forms:

1 When f is new at p, we have a2
p = pk−2 and hence f has slope k−2

2 ;
2 The other Up-eigenvalues in Sk(Γ0(Np), Q̄p) come in pairs: for a normalized

eigenform g ∈ Sk(Γ0(N), Q̄p) with Tp-eigenvalue ap, it has two p-stabilizations
fα(z) = f (z)− βf (pz), fβ(z) = f (z)− αf (pz) in Sk(Γ0(Np), Q̄p) with
Up-eigenvalues α and β, where α, β are the roots of X2 − apX + pk−1. So the slopes
of these two p-old forms sum to k − 1. In particular, vp(ap) can usually be read off
from vp(α) and vp(β).

The slopes of p-oldforms behave very different from those of p-newforms. Let
f ∈ Sk(Γ0(N), Q̄p)r̄ with r̄|IQp

∼= ρ̄ be a eigenform with Tp-eigenvalue ap.
Berger-Li-Zhu proved that vp(ap) ≤ b k−2

p−1c (conjecturally this can be
strengthened to b k−2

p+1c).

The Newton polygon of Up-operator on Sk(Γ0(Np), Q̄p)r̄ should have a line
segment of length dnew

k and slope k−2
2 . In particular, the point (i, vp(ci(wk))) is

not a vertex of NP(C(wk,−)), for i = dur
k + 1, . . . , dur

k + dnew
k − 1. These integers

i’s are exactly those integers with the property gi(wk) = 0.
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Proof of the main theorem Ghost zeroes and ghost multiplicities

dur
kO dur

k + dnew
k dIw

k
x

y

slope = k−2
2

Newton polygon of C(wk,−)
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Proof of the main theorem Ghost zeroes and ghost multiplicities

Power basis of abstract automorphic forms

H̃ is free of rank 2 as an OJIwp,1K-module. There exists a basis {e1, e2} of H̃
such that

(
∆ 0
0 ∆

)
⊂ Iwp acts on them via the characters 1× ωa and ωa × 1 and

ei
( 0 1

p 0
)

= e3−i for i = 1, 2.
For i = 1, 2 and h(z) ∈ O〈w/p〉〈z〉, we use e∗i h(z) to denote the element in
S†,(ε) = HomO[Iwp]

(
H̃, O〈w/p〉〈z〉

)
which sends ei to h(z) and e3−i to 0.

We have a basis of the space S†,(ε) as well as the space S†k(ψ) for every k ∈ Z:

B = B(ε) :=
{

e∗1 zs, e∗1 zp−1+s, . . . ; e∗2 z{a+s}, e∗2 zp−1+{a+s}, . . .
}
.

It is called the power basis of the above spaces. When k ≥ 2, the subsequence Bk

consisting of terms whose power in z is less than or equal to k − 2 forms a basis
of SIw

k

(
ε · (1× ω2−k)

)
. We order the elements in B with increasing degrees on z.

The rank dIw
k (ψ) := rankOSIw

k (ψ) can be computed from the above expression
for all k ≥ 2. For k ≡ 2 + a + 2s mod (p− 1), the rank dur

k (ε1) = rankOSur
k (ε1)

can be computed using representation theory of GL2(Fp).
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Proof of the main theorem Ghost zeroes and ghost multiplicities

Atkin-Lehner involution

For k ≡ 2 + a + 2s mod (p− 1), write ε̃1 = ε1 × ε1 = ε · (1× ω2−k). We have a
well-defined Atkin-Lehner involution on the space of classical automorphic
forms SIw

k (ε̃1) = HomO[Iwp]

(
H̃, O[z]≤k−2 ⊗ ε̃1

)
:

AL(k,ε̃1) : SIw
k (ε̃1) // SIw

k (ε̃1)

ϕ � // ( AL(k,ε̃1)(ϕ) : x 7→ ϕ
(
x
(

0 p−1

1 0

))∣∣(
0 1
p 0

) ).

Let Bk = {e1, . . . , edIw
k
} be the power basis of SIw

k (ε̃1). The degree of an element
ei is the exponent of z in ei.
Let Lk ∈ MdIw

k
(O) be the matrix of the map AL(k,ε̃1) under the basis Bk. Then

Lk =


0 · · · 0 pdeg e1

0 · · · pdeg e2 0
0 · · · 0 0

p
deg edIw

k · · · 0 0


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Proof of the main theorem Ghost zeroes and ghost multiplicities

p-stabilization of abstract classical forms I

We define the following four maps

Sur
k (ε1) = HomOJKpK

(
H̃, O[z]≤k−2 ⊗ ε̃1

)
ι1

((

ι2

��

SIw
k (ε̃1) = HomOJIwpK

(
H̃, O[z]≤k−2 ⊗ ε̃1

)proj1

hh

proj2

[[

given by, for φ ∈ Sur
k (ε1), ϕ ∈ SIw

k (ε̃1), and x ∈ H̃,

ι1(φ) = φ, proj1(ϕ)(x) =
∑

j=0,...,p−1,?

ϕ
(
xuj)
∣∣
u−1

j
,

ι2(φ)(x) = AL(k,ε̃1)(ι1(φ))(x), proj2(ϕ)(x) = proj1(AL(k,ε̃1)(ϕ))(x).

Here uj =
( 1 0

j 1
)

for j = 0, . . . , p− 1 and u? =
(

0 1
1 0

)
form a set of coset

representatives of Iwp\Kp.
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Proof of the main theorem Ghost zeroes and ghost multiplicities

p-stabilization of abstract classical forms II

For classical modular forms, we have the stabilization maps
Sk(Γ0(N))→ Sk(Γ0(Np)), f (z) 7→ f (z) and f (z) 7→ f (pz). The two embeddings
ι1, ι2 : Sur

k (ε1)→ SIw
k (ε̃1) are their analogues in our abstract context.

The KEY equality is:

Up = ι2 ◦ proj1︸ ︷︷ ︸
rank≤dur

k

− AL(k,ε̃1)︸ ︷︷ ︸
antidiagonal

: SIw
k (ε̃1)→ SIw

k (ε̃1).

The matrix UIw
k of the Up-operator on SIw

k (ε̃1) with respect to the power basis Bk

is the sum of the anti-diagonal matrix −Lk and a matrix with rank ≤ dur
k .

n

dIw
k =⇒

Rank of upper left n× n
submatrix of UIw

k is
≤ n− mn(k)
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Proof of the main theorem Ghost zeroes and ghost multiplicities

p-stabilization of abstract classical forms III

Let U† ∈ M∞(O〈w/p〉) be the matrix of Up-operator on S† with respect to the
power basis B. The upper left dIw

k × dIw
k submatrix of U†|w=wk is UIw

k .
The determinant of upper left n× n submatrix of U† has zero of multiplicity
mn(k) at w = wk.
The matrix U† ∈ M∞(O〈w/p〉) has a (row) Hodge bound so that one should
expect

cn(w) ≈ det
(

upper-left n× n minor of U†
)
.

In summary it is natural to expect cn(w) ≈ gn(w).

Bin Zhao (CNU) On the ghost conjecture of Bergdall and Pollack, I July 8, 2024 23 / 32



Proof of the main theorem Properties of ghost series

Properties of ghost series

When studying the local conjecture, it is natural and necessary to consider the
following equation:
given w? ∈ mCp and a positive integer n, how can we determine whether the
point (n, vp(gn(w?))) is a vertex of the Newton polygon NP(G(w?,−))?
When k ≡ 2 + a + 2s mod (p− 1) and mn(k) 6= 0, it is clear that (n, vp(gn(wk)))
is not a vertex. The intuition is that when w? is sufficiently p-adically close to
such a wk, then (n, vp(gn(w?))) cannot be a vertex either.
Fix k ≡ 2 + a + 2s mod (p− 1). Write gn,̂k(w) := gn(w)

/
(w− wk)

mn(k). Set

∆′k,` = ∆
(ε)′
k,` := vp

(
g 1

2 dIw
k +`,̂k(wk)

)
− k−2

2 `, for ` = − 1
2 dnew

k , . . . , 1
2 dnew

k .

Let ∆k = ∆
(ε)
k denote the convex hull of the points (`,∆′k,`) for

` = − 1
2 dnew

k ,. . . , 1
2 dnew

k , and let (`,∆k,`) denote the corresponding points on ∆k.
We have the ghost duality equalities

∆′k,` = ∆′k,−` and ∆k,` = ∆k,−` for all ` = − 1
2 dnew

k , . . . , 1
2 dnew

k .
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Proof of the main theorem Properties of ghost series

near Steinberg range I

For k ≡ 2 + a + 2s mod (p− 1) and w? ∈ mCp , let Lw?,k denote the largest
number (if it exists) in {1, . . . , 1

2 dnew
k } such that

vp(w? − wk) ≥ ∆k,Lw?,k
−∆k,Lw?,k−1.

When such Lw?,k exists, we call the interval

nSw?,k :=
( 1

2 dIw
k − Lw?,k,

1
2 dIw

k + Lw?,k
)

the near Steinberg range for (w?, k).
For a positive integer n, we say that (w?, n) is near-Steinberg if n belongs to the
near-Steinberg range nSw?,k for some k.

Proposition

For every n ∈ N, the point
(
n, vp(gn(w?))

)
is a vertex of NP(G(w?,−)) if and only if

(w?, n) is not near-Steinberg.
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Proof of the main theorem Properties of ghost series

near Steinberg range II

dur
kO dur

k + dnew
k dIw

k
x

y

vp(w? − wk) ≥ ∆k, 1
2 dnew

k
−∆k, 1

2 dnew
k −1

vp(w? − wk) ≥ ∆k, 1
2 dnew

k −1 −∆k, 1
2 dnew

k −2

vp(w? − wk) ≥ ∆k, 1
2 dnew

k −2 −∆k, 1
2 dnew

k −3

dur
k + 1dur

k + 2

Newton polygon of G(w?,−) when w? leaves away from wk
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Proof of the main theorem Properties of ghost series

near Steinberg range III

For a fixed n ∈ N, the set of elements w? ∈ mCp for which
(
n, vp(gn(w?))

)
is a vertex

of NP
(
G(w?,−)

)
form a quasi-Stein open subset of the weight diskW(ε)

Vtx(ε)
n :=W(ε)\

⋃
k

{
w? ∈ mCp

∣∣∣ vp(w? − wk) ≥ ∆k,| 1
2 dIw

k (ε̃1)−n|+1 −∆k,| 1
2 dIw

k (ε̃1)−n|

}
,

where the union is taken over all k = kε + (p− 1)k• with k• ∈ Z such that
n ∈

(
dur

k (ε1), dIw
k (ε̃1)− dur

k (ε1)
)
, i.e. wk is a ghost zero of gn(w).

·wk

·wk′

W(ε)

Shape of the space Vtx(ε)
n
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Proof of the main theorem Lagrange interpolation formula

Lagrange interpolation I

The key tool to compare the Newton polygon of the characteristic power series

C(w, t) =
∑
n≥0

cn(w)tn ∈ OJw, tK

and the ghost series

G(w, t) =
∑
n≥0

gn(w)tn ∈ Z[w]JtK

is Lagrange interpolation formula.
Fix a positive integer n and a positive integer k ≡ 2 + a + 2s mod (p− 1) with
mn(k) > 0, let gn,̂k(w) = gn(w)

/
(w− wk)

mn(k) as before. We consider the formal
expansion in EJw− wkK:

cn(w)

gn,̂k(w)
=
∑
i≥0

A(n)
k,i (w− wk)

i,

and let A(n)
k (w) =

mn(k)−1∑
i=0

A(n)
k,i (w− wk)

i be its truncation up to the term

(w− wk)
mn(k)−1.
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Proof of the main theorem Lagrange interpolation formula

Lagrange interpolation II

Langrange interpolation formula

There exists hn(w) ∈ E〈w/p〉, such that we have an equality in E〈w/p〉:

cn(w) =
∑

k≡2+a+2s mod (p−1)
mn(k)6=0

(
A(n)

k (w) · gn,̂k(w)
)

+ hn(w) · gn(w).

It is called the Lagrange interpolation of cn(w) along gn(w).

The main technical result of our proof is the following:

Proposition

To prove the local ghost conjecture, it suffices to prove that for any positive integer n
and every ghost zero wk of gn(w), we have

vp(A(n)
k,i ) ≥ ∆k, 1

2 dnew
k −i −∆′k, 1

2 dnew
k −mn(k) for i = 0, 1, . . . ,mn(k)− 1.
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Proof of the main theorem Lagrange interpolation formula

Lagrange interpolation III

cn(w) =
∑

k≡2+a+2s mod (p−1)
mn(k)6=0

(
A(n)

k (w) · gn,̂k(w)
)︸ ︷︷ ︸

error term

+ hn(w) · gn(w)︸ ︷︷ ︸
main term

.

The estimate vp(A(n)
k,i ) ≥ ∆k, 1

2 dnew
k −i −∆′k, 1

2 dnew
k −mn(k) implies vp(A(n)

k,i ) > 0. Since
cn(w) ∈ OJwK and gn(w) ∈ O[w], we have hn(w) ∈ OJwK. We can actually
show hn(w) is a unit in OJwK. Hence vp(hn(w?)) = 1 for all w? ∈ mCp .
Assuming the estimate in the proposition, we can prove the following facts for
all w? ∈ mCp , every positive integer n and every ghost zero wk of gn(w):

1 The point
(
n, vp

(
A(n)

k (w?)gn,̂k(w?)
))

lies on or above the Newton polygon
NP(G(w?,−)); and

2 moreover if
(
n, vp(gn(w?))

)
is a vertex of NP(G(w?,−)), then

vp
(
A(n)

k (w?)gn,̂k(w?)
)
> vp

(
gn(w?)

)
.

The first statement implies that NP(C(w?,−)) always lies on or above
NP(G(w?,−)), while the second statement says that these two polygons meet at
all vertices of NP(G(w?,−)). So the local ghost conjecture follows!
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Proof of the main theorem Lagrange interpolation formula

Ingredients to prove the technical proposition

Let ζ = {ζ1, . . . , ζn} and ξ = {ξ1, . . . , ξn} be two sets of n positive integers. We
apply the Lagrange interpolation to det(U†(ζ × ξ)) along gn(w) and we have

det
(
U†(ζ × ξ)

)
=

∑
k≡kε mod (p−1)

mn(k)6=0

(
A

(ζ×ξ)
k (w) · gn,̂k(w)

)
+ hζ×ξ(w) · gn(w).

We prove a similar estimate:

vp(A
(ζ×ξ)
k,i ) ≥ ∆k, 1

2 dnew
k −i −∆′k, 1

2 dnew
k −mn(k) + 1

2

(
deg(ζ)− deg(ξ)

)
.

A decomposition U† = Tk − Lk which allows us to express det
(
U†(ζ × ξ)

)
in

term of determinants of smaller minors;
A refined halo bound on the infinite matrix U† ∈ M∞(O〈w/p〉).
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Thank you!
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