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Triangle removal

Triangle removal lemma

Any graph on n vertices with o(n3) triangles can be made
triangle-free by deleting o(n2) edges.

Application: Roth’s theorem

A subset A of [n] := {1, 2, . . . , n} with no 3-term arithmetic
progression has size o(n).
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Triangle removal =⇒ Roth

X = ZN

Y = ZN Z = ZN

x

y
z

x ∼ y iff
2x + y ∈ A

x ∼ z iff
x − z ∈ A

y ∼ z iff
−y − 2z ∈ A
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More applications of triangle removal

Definition

Let f (n, v , e) be the largest number of edges in a 3-uniform
hypergraph (that is, edges have size three) where there is no
collection of v vertices that contain e edges.

Theorem (Ruzsa–Szemerédi, 1977)

f (n, 6, 3) = o(n2).

Theorem

A 3-uniform hypergraph on n vertices with girth greater than 3 has
o(n2) edges.
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Proving the removal lemma

The proof of the removal lemma has two main ingredients:

Szemerédi’s regularity lemma

‘The vertex set of every graph can be partitioned into a bounded
number of parts so that the graph between most pairs of parts is
random-like.’

Counting lemma

‘A tripartite graph between vertex sets X , Y and Z , each pair of
which induces a sufficiently random-like graph, contains
asymptotically the same number of triangles xyz as if the graphs
were truly random.’

The combination of these two tools is usually known as the
regularity method.
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Proving the removal lemma

X

Y Z

x

y z
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Bounds for the removal lemma

Triangle removal lemma - quantitative version

For every ε > 0, there exists δ > 0 such that any graph on n
vertices with at most δn3 triangles can be made triangle-free by
deleting at most εn2 edges.

Moreover, one can take

δ−1 ≤ 22
. .

.2︸︷︷︸ε−O(1).

Theorem (Fox, 2011)

In the removal lemma, one can take

δ−1 ≤ 22
. .

.2︸︷︷︸O(log(ε−1)).

For a lower bound, we only have Behrend!

Open problem

Improve these bounds.
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Other removal lemmas

Graph removal lemma

For any fixed graph H, any graph on n vertices with o(nv(H))
copies of H can be made H-free by deleting o(n2) edges.

Hypergraph removal lemma

For any fixed k-uniform hypergraph H, any k-uniform hypergraph
on n vertices with o(nv(H)) copies of H can be made H-free by
deleting o(nk) edges.

Application: Szemerédi’s theorem

For any fixed integer k ≥ 3, a subset A of [n] := {1, 2, . . . , n} with
no k-term arithmetic progression has size o(n).
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Bounds for hypergraph removal

The bounds in the hypergraph removal lemma are of Ackermann
type. For instance, in the 3-uniform case we have the following.

3-uniform simplex removal

For any ε > 0, there exists δ > 0 such that any 3-uniform

hypergraph on n vertices with at most δn4 copies of K
(3)
4 can be

made K
(3)
4 -free by deleting at most εn3 edges. Moreover, one can

take

δ−1 ≤ 22
. .

.2︸︷︷︸2. . .2︸︷︷︸· · ·︸ ︷︷ ︸
ε−O(1)

.

The lower bound is again of Behrend type.

Open problem

Improve the bounds for the hypergraph removal lemma.
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Other removal lemmas

Induced removal lemma (Alon–Fischer–Krivelevich–Szegedy, 2000)

For any fixed graph H, any graph on n vertices with o(nv(H))
induced copies of H can be made induced-H-free by modifying
o(n2) edges.

Induced removal lemma - quantitative version (C.–Fox, 2012)

For any fixed graph H and any ε > 0, there exists δ > 0 such that
any graph on n vertices with at most δnv(H) induced copies of H
can be made induced-H-free by modifying at most εn2 edges.
Moreover, one can take

δ−1 ≤ 22
. .

.2︸︷︷︸ε−O(1).

David Conlon Removal lemmas, dense and sparse



Other removal lemmas

Induced removal lemma (Alon–Fischer–Krivelevich–Szegedy, 2000)

For any fixed graph H, any graph on n vertices with o(nv(H))
induced copies of H can be made induced-H-free by modifying
o(n2) edges.

Induced removal lemma - quantitative version (C.–Fox, 2012)

For any fixed graph H and any ε > 0, there exists δ > 0 such that
any graph on n vertices with at most δnv(H) induced copies of H
can be made induced-H-free by modifying at most εn2 edges.

Moreover, one can take

δ−1 ≤ 22
. .

.2︸︷︷︸ε−O(1).

David Conlon Removal lemmas, dense and sparse



Other removal lemmas

Induced removal lemma (Alon–Fischer–Krivelevich–Szegedy, 2000)

For any fixed graph H, any graph on n vertices with o(nv(H))
induced copies of H can be made induced-H-free by modifying
o(n2) edges.

Induced removal lemma - quantitative version (C.–Fox, 2012)

For any fixed graph H and any ε > 0, there exists δ > 0 such that
any graph on n vertices with at most δnv(H) induced copies of H
can be made induced-H-free by modifying at most εn2 edges.
Moreover, one can take

δ−1 ≤ 22
. .

.2︸︷︷︸ε−O(1).

David Conlon Removal lemmas, dense and sparse



The Brown–Erdős–Sós problem

Problem (Brown–Erdős–Sós, 1973)

Estimate f (n, v , e), the largest number of edges in a 3-graph where
there is no collection of v vertices that contain e edges.

Theorem (Ruzsa–Szemerédi, 1977)

f (n, 6, 3) = o(n2).

Problem (Special case of Brown–Erdős–Sós)

For which v and e is f (n, v , e) = o(n2)?
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The Brown–Erdős–Sós problem

Conjecture (Erdös–Frankl–Rödl, 1986)

For any fixed e ≥ 3, f (n, e + 3, e) = o(n2).

Open already for e = 4, the (7, 4)-problem.

Theorem (Sárközy–Selkow, 2004)

f (n, v , e) = o(n2) provided v ≥ e + blog2 ec+ 2.

Theorem (C.–Gishboliner–Levanzov–Shapira, 2023)

f (n, v , e) = o(n2) provided v ≥ e + 50 log2 e
log2 log2 e

.

The proof of this last result uses hypergraph removal at every
uniformity to prove a result about 3-uniform hypergraphs.
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The Brown–Erdős–Sós problem

Conjecture (Erdös–Frankl–Rödl, 1986)
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The Brown–Erdős–Sós problem

Conjecture (Gowers–Long, 2021)

For any fixed e ≥ 3, there exists ε > 0 such that

f (n, e + 4, e) ≤ n2−ε.

In particular, the e = 5 case would solve the following question of
Ruzsa in the positive.

Question (Ruzsa, 1993)

Is there ε > 0 such that the largest subset A of [n] with no
non-trivial solution to 2x + 2y = 3z + w has size at most n1−ε?
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Induced matching lemma

A (roughly) equivalent reformulation of the triangle removal
lemma is the following.

Induced matching lemma

An n-vertex graph which is the union of at most n induced
matchings has o(n2) edges.

The following little known problem asks for a generalisation to
hypergraphs.

Conjecture (Frankl–Rödl)

An n-vertex linear 3-graph which is the union of at most n induced
matchings has o(n2) edges.
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Sparse removal lemmas

Problem

When does a removal lemma hold ‘relative to’ a given sparse
graph?

Problem

Can we develop a regularity method for sparse graphs?

Finding a sparse regularity lemma is comparatively straightforward,
going back to work of Kohayakawa and Rödl in the 1990s. The
difficulty lies with finding appropriate counting lemmas.
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Counting lemmas in random graphs

Theorem (Work of many, including C.–Gowers–Samotij–Schacht)

A counting lemma holds with high probability for subgraphs of a
binomial random graph. E.g., for triangles, a counting lemma
holds with high probability for subgraphs of Gn,p where p � n−1/2.

... and Kohayakawa– Luczak–Rödl, Gerke–Schickinger–Steger,
C.–Gowers, Schacht, Balogh–Morris–Samotij, Saxton–Thomason.

Theorem (Kohayakawa– Luczak–Rödl)

For any ε > 0, there exist positive constants δ and C such that if
p ≥ Cn−1/2, then the following holds a.a.s. in Gn,p. Every
subgraph of Gn,p which contains at most δp3n3 triangles may be
made triangle-free by removing at most εpn2 edges.

Extended to all (balanced) hypergraphs by C.–Gowers.
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Szemerédi’s theorem in random sets

Theorem (C.–Gowers, Schacht)

For any k ≥ 3 and δ > 0, there exists a positive constant C such
that if p ≥ Cn−1/(k−1), then the following holds a.a.s. in [n]p.
Every subset of [n]p of size at least δpn contains a k-AP.

Unlike in the dense case, this does not follow automatically from
the sparse removal lemma.
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Removal lemmas in pseudorandom graphs

Theorem (C.–Fox–Zhao)

A counting lemma (and hence a removal lemma) holds for
subgraphs of sufficiently pseudorandom (hyper)graphs.

This does carry across to the arithmetic setting.

Corollary (Green–Tao, C.–Fox–Zhao)

Let A be a sufficiently pseudorandom subset of the integers. Then
A is Szemerédi, that is, any subset A′ of A with positive relative
density contains arbitrarily long arithmetic progressions.

Such a ‘relative Szemerédi theorem’ is the main component in the
proof of the Green–Tao theorem, that the primes contain arbitrarily
long arithmetic progressions.
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Removal lemmas in pseudorandom graphs

Definition

We say that a graph is (n, d , λ) if it has n vertices, is d-regular and
all non-trivial eigenvalues have absolute value at most λ.

Theorem (Kohayakawa–Rödl–Schacht–Skokan)

For any ε > 0, there exist positive constants δ and c such that if
λ ≤ cp3n, where p = d/n, then any (n, d , λ)-graph G has the
property that every subgraph of G which contains at most δp3n3

triangles may be made triangle-free by removing at most εpn2

edges.

Open problem

Can the condition be improved to λ ≤ cp2n, which is sufficient for
the appearance of triangles?
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For any ε > 0, there exist positive constants δ and c such that if
λ ≤ cp3n, where p = d/n, then any (n, d , λ)-graph G has the
property that every subgraph of G which contains at most δp3n3

triangles may be made triangle-free by removing at most εpn2

edges.

Open problem

Can the condition be improved to λ ≤ cp2n, which is sufficient for
the appearance of triangles?

David Conlon Removal lemmas, dense and sparse



A possible application

Open problem

Can the condition be improved to λ ≤ cp2n, which is sufficient for
the appearance of triangles?

This would potentially allow removal lemmas in pseudorandom sets
down to density n−1/3, which might (maybe) make the following
conjecture approachable.

Conjecture

There are 3-APs of Friedlander–Iwaniec primes, that is, primes of
the form x2 + y4.
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Regularity in C4-free graphs

Together with Fox, Sudakov and Zhao, we developed a sparse
regularity method relative to graphs with few 4-cycles. This gives
several natural applications in extremal and additive combinatorics
with few hypotheses about the setting.

‘Theorem’ (C.–Fox–Sudakov–Zhao)

‘In graphs with few 4-cycles, a counting lemma holds for 5-cycles.’
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Applications: removal lemmas

Theorem (C.–Fox–Sudakov–Zhao)

Any C4-free graph on n vertices with o(n5/2) 5-cycles can be made
5-cycle-free by deleting o(n3/2) edges.

Writing p = n−1/2, this can be restated as saying that for any
ε > 0, there exists δ > 0 such that any C4-free graph on n vertices
with at most δp5n5 5-cycles may be made 5-cycle-free by removing
at most εpn2 edges.

Theorem (C.–Fox–Sudakov–Zhao)

Any graph on n vertices with o(n2) 5-cycles can be made
triangle-free by deleting o(n3/2) edges.
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Applications: hypergraphs

Definition

Let f (n, v , e) be the largest number of edges in a 3-graph where
there is no collection of v vertices that contain e edges.

Theorem (C.–Fox–Sudakov–Zhao)

f (n, 10, 5) = o(n3/2).

Theorem (C.–Fox–Sudakov–Zhao)

A 3-uniform hypergraph on n vertices with girth greater than 5 has
o(n3/2) edges.
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Applications: number theory

Theorem (C.–Fox–Sudakov–Zhao)

Fix positive integers a and b. Every subset of [n] without a
non-trivial solution to the equation

ax1 + ax2 + bx3 = ax4 + (a + b)x5

has size o(n1/2). Here a trivial solution is one of the form
(x1, . . . , x5) = (x , y , y , x , y) or (y , x , y , x , y) (or (y , y , x , x , y) if
a = b) for some x , y ∈ Z.

For example, this holds for

x1 + x2 + 2x3 = x4 + 3x5.

Open problem

Can the bound be improved to n1/2−ε for some ε > 0?
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Applications: number theory

Theorem (C.–Fox–Sudakov–Zhao)

Fix positive integers a1, . . . , a4. The maximum size of a Sidon
subset of [n] without a solution in distinct variables to the equation

a1x1 + a2x2 + a3x3 + a4x4 = (a1 + a2 + a3 + a4)x5

is o(n1/2) and at least n1/2−o(1).

For example, this holds for

x1 + x2 + x3 + x4 = 4x5.

An alternative proof of this result was given by Sean Prendiville
using Fourier methods.
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Applications: compactness

On the previous slide, we are simultaneously avoiding

(a) solutions to the Sidon equation x1 + x2 = x3 + x4 and

(b) solutions to the linear equation x1 + x2 + x3 + x4 = 4x5.

There exist Sidon sets of size (1 + o(1))n1/2, as well as sets of size
n1−o(1) avoiding (b). However, our theorem shows that by
simultaneously avoiding non-trivial solutions to both equations, the
maximum size is substantially reduced.

This is the first example showing that ‘compactness’ does not hold
for linear equations. A similar example for graphs remains an
important open problem.
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Which graphs can be counted in C4-free graphs?

Necessary conditions:

H must have girth at least 5.

Heuristic that any subgraph H ′ has e(H ′) ≤ 2v(H ′)− 4.

Sufficient that H has an ‘islands and bridges’ decomposition.
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Islands and bridges
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Islands and bridges
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Can these graphs be counted?
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A final problem

Open problem

Prove a removal lemma for 7-cycles in graphs with few 6-cycles.

Potential application

A 3-uniform hypergraph on n vertices with girth greater than 7 has
o(n4/3) edges.

Potential application

The maximum size of a B3-set in [n] without a solution in distinct
variables to the equation

x1 + · · ·+ x6 = 6x7

is o(n1/3).
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Thank you for listening!
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