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Ramsey theory

Ramsey theory contains many deep results which show that every
very large structure contains a large well-organized substructure.

Ramsey’s theorem guarantees that every very large graph contains
a large clique or independent set.



Ramsey numbers

Definition (Ramsey number)

The Ramsey number r(n) is the minimum N such that every graph

on N vertices contains a clique or independent set of size n.

The 5-cycle has no clique or independent set of size 3.

Every 6-vertex graph has a clique or independent set of size 3.

Hence, r(3) = 6.



Ramsey number

Definition (Ramsey number)

The Ramsey number r(n) is the minimum N such that every graph

on N vertices contains a clique or independent set of size n.

The Paley graph P17 has no clique or independent set of size 4.

Furthermore, r(4) = 18.



Ramsey numbers

Definition (Ramsey number)

The Ramsey number r(n) is the minimum N such that every graph

on N vertices contains a clique or independent set of size n.

What about r(5)? r(6)?

Suppose aliens invade the earth and threaten to obliterate it in a
year’s time unless human beings can find the Ramsey number for
red five and blue five. We could marshal the world’s best minds
and fastest computers, and within a year we could probably
calculate the value. If the aliens demanded the Ramsey number for
red six and blue six, however, we would have no choice but to
launch a preemptive attack.

-Paul Erdős
43 ≤ r(5) ≤ 48.

102 ≤ r(6) ≤ 147.
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Ramsey graphs

Definition (Ramsey graphs)

A graph on N vertices is C-Ramsey if it has no clique or

independent set of size C log2N.

Theorem (Erdős-Szekeres 1935)

There is no 1
2 -Ramsey graph.

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023+)

There is ε > 0 such that there is no (12 + ε)-Ramsey graph.



Ramsey graphs

Definition (Ramsey graphs)

A graph on N vertices is C-Ramsey if it has no clique or

independent set of size C log2N.

Theorem (Erdős 1947)

Almost all graphs on N vertices are 2-Ramsey.

Proof: Let n = 2 log2N. Consider a random N-vertex graph G .

The probability that a given set of n vertices is a clique is 2−(
n
2).

P[G is not 2-Ramsey] ≤ E[# cliques or ind. sets of order n]

= 21−(
n
2)
(N
n

)
= o(1).
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Ramsey graphs

Definition (Ramsey graphs)

A graph on N vertices is C-Ramsey if it has no clique or

independent set of size C log2N.

Theorem (Campos-Griffiths-Morris-Sahasrabudhe 2023+)

There is ε > 0 such that there is no (12 + ε)-Ramsey graph.

Theorem (Erdős 1947)

Almost all graphs on N vertices are 2-Ramsey.

Problem (Erdős)

Explicitly construct C -Ramsey graphs for some constant C .



Searching for hay in a haystack

Sven Sachsalber hunts for a needle in a haystack in a 2014 performance art piece. Photo: Palais de Tokyo, Paris.



Paley graphs

Definition (Paley graph)

For a prime N ≡ 1 (mod 4), the Paley graph PN has vertex set ZN

and vertices x ̸= y are adjacent if x − y is a quadratic residue.

P5, P17 give the tight lower bound on r(3) and r(4), respectively.

Theorem (Montgomery 1972)

Assuming GRH, ω(PN) ≥ c logN log logN for infinitely many N.

Theorem (Graham-Ringrose 1990)

ω(PN) ≥ c logN log log logN for infinitely many N.

Theorem (Hanson-Petrides, Di Benedetto-Solymosi-White 2021)

ω(PN) ≤ (
√
2N − 1 + 1)/2 for all N.
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Cayley graphs

Definition (Cayley graph)

For a group G and symmetric subset S ⊂ G , the Cayley graph GS

has vertex set G and distinct x , y are adjacent if xy−1 ∈ S .

Conjecture (Alon 1989)

There is a constant C such that every finite group has a Cayley

graph which is C -Ramsey.

Question

Are uniform random Cayley graphs Ramsey?
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Clique number of random Cayley graphs

Theorem (Alon)

Asymptotically almost surely, the clique number of a uniform

random Cayley graph on any group G of order N is O(log2N).

Theorem (Green 2005, Green-Morris 2016)

Asymptotically almost surely, for N prime, the clique number of a

uniform random Cayley graph on ZN is (2 + o(1)) log2N.

Theorem (Green 2005, Mrazović 2017)

Asymptotically almost surely, the clique number of a uniform

random Cayley graph on Fd
2 with N = 2d is Θ(logN log logN).
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Clique number of random Cayley graphs

Theorem

The clique number of a uniform random Cayley graph on any group

G of order N is asymptotically almost surely O(logN log logN).



On Alon’s conjecture

Theorem

For almost all N, all abelian groups G of order N have a Cayley

graph which is C -Ramsey.



Counting sets with small product set

AA−1 := {ab−1 : a, b ∈ A}.

A ⊂ G is a clique in the Cayley graph GS iff AA−1 \ {1} ⊂ S .

Theorem

In any group G of order N, the number of subsets A ⊂ G with

|A| = n and |AA−1| ≤ Kn is at most NC(K+log n)(CK )n.
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From additive combinatorics to edge-colored graphs

Consider a group G of order N. Color the edges of the complete
graph on G by assigning each edge (x , y) the color {xy−1, yx−1}.
This edge-coloring of KN is such that each color is 1 or 2-regular.
A Cayley graph on G is the edge-union of some color classes.

This naturally leads to studying a more general graph model:

Consider an edge-coloring c of a complete graph.
An entangled graph is the edge-union of some of the color classes.

The random entangled graph Gc(p) is formed by including each
color class with probability p independently.

c is ∆-bounded if each color class has maximum degree ≤ ∆.

What can we say about ω(Gc(p)) if c is ∆-bounded?
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Counting sets with few colors

Theorem

In a ∆-bounded edge-coloring of KN , the number of n-vertex

subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

By applying Vizing’s theorem, we may assume ∆ = 1
(that is, the edge-coloring is proper).



Counting sets with few colors

Theorem

In a ∆-bounded edge-coloring of KN , the number of n-vertex

subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

By applying Vizing’s theorem, we may assume ∆ = 1
(that is, the edge-coloring is proper).



The clique number of random entangled graphs

Theorem

If an edge-coloring c of KN is ∆-bounded, then a.a.s.

ω(Gc(p)) = Op,∆(logN log logN).



Improved communication through repetition

The nth power Gn of a graph G = (V ,E ) has vertex set V n and
(u, v) ∈ E (Gn) if u ̸= v and for each i , ui = vi or (ui , vi ) ∈ E (G ).

α(Gn) is the maximum number of messages a channel with
confusion graph G can communicate without error in n uses.

α(C5) = 2 realized by the independent set {0, 2}.
α(C 2

5 ) ≥ α(C5)
2 = 4 realized by the independent set {0, 2}2.

α(C 2
5 ) = 5 given by the ind. set {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}.

More generally, if G is self-complementary, then α(G 2) ≥ |G |.
Indeed, {(x , π(x)) : x ∈ V (G )} for π an isomorphism from G to its
complement is an independent set in G 2.
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c(G ) := limn→∞ cn(G ) is the Shannon capacity of the channel.

Alon and Orlitsky proved that there are self-complementary
Ramsey graphs, so c1(G ) = Θ(log |G |) and c2(G ) ≥

√
|G |.

They made the following stronger conjecture, as it would give an
analogous result for the Witsenhausen rate for dual source coding.

Conjecture (Alon and Orlitsky ’95)

There exists self-complementary Ramsey Cayley graphs.
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Improved communication through repetition
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Going beyond uniform random

Let N = 5d . A uniform random symmetric S ⊂ Fd
5 a.a.s. contains

the nonzero elements of a subspace of order Θ(logN log logN) and
hence GS a.a.s. contains a clique of that order.

Theorem

There are self-complementary Ramsey Cayley graphs on Fd
5 .

Theorem

In a ∆-bounded edge-coloring of the complete graph on N vertices,

the number of n-vertex subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

It suffices to pick a random self-complementary Cayley graph on
Fd
5 in which each possible clique A has |A− A| ≥ |A| log |A| and A

has probability of being a clique at most 2−Ω(|A−A|).
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Going beyond uniform random

Theorem

There is a C -Ramsey self-complementary Cayley graph on Fd
5 .

For each nonzero x ∈ Fd
5 , randomly pick exactly one of {x , 4x} or

{2x , 3x} to be a subset of the generating set S . This guarantees:

1 S is symmetric.

2 GS is self-complementary with isomorphism ϕ(x) = 2x .

3 If x ∈ S , then 2x ̸∈ S .

(3) implies if A is a clique, then |A+ 2 · A| = |A|2, so the
Plünnecke-Ruzsa inequality implies

|A|2 = |A+ 2 · A| ≤ |A+ A+ A| ≤ |A− A|3|A|−2,

yielding |A− A| ≥ |A|4/3.
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Ramsey Cayley Graphs on Vector Spaces

Theorem

Every finite vector space of characteristic at least five has a

(2 + o(1))-Ramsey Cayley graph.

Theorem

Every finite vector space of characteristic ≡ 1 (mod 4) has a

self-complementary (2 + o(1))-Ramsey Cayley graph.



General random graph models

Definition: ∆-independent random graphs

Suppose a random graph G is such that each pair e of vertices

appears as an edge of G with probability pe , and appears

independently of all edges apart from those in a graph Ge .

We say G is ∆-independent if ∆(Ge) ≤ ∆ for each pair e.

Examples: Erdős-Renyi random graphs, random Cayley graphs,
random Latin square graphs, random entangled graphs, ...

Theorem

Suppose 0 < p < 1 is fixed. Let G be a ∆-independent random

graph on N vertices with pe = p for all pairs e.

1 If ∆ = No(1), then ω(G ) ≥ (2− o(1)) log1/p N a.a.s.

2 If ∆ = O(1), then ω(G ) ≤ O(logN log logN) a.a.s.
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Conjectures

Conjecture (Alon 1989)

There is a constant C such that every finite group has a Cayley

graph which is C -Ramsey.

An important step in this direction is the following:

Toy Conjecture

There is a two-coloring of Fd
2 \ {0} such that there is no subspace

of size Cd whose nonzero elements are monochromatic.
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