Eigenvalue Bounds for Perturbed Periodic Dirac Operators

GHADA JAMEEL

Consider the one-dimensional Dirac operator $H=H_0+V$ \$ in $L^2(\mathbb A)$ $R)^2$ \$, $$H = -i \sigma_2 d/dx + m \sigma_3 + q(x) + V(x)$ (x \in \mathbb R), \\$ where σ_2 , \sigma $3\$ are Pauli matrices, and $\rm\$ \ge 0\$ is the particle mass, $\rm\$ is real-valued and periodic of period \$a\$ and \$V\$ is a \$2 \times 2\$ matrix-valued function with entries in $L^1(\mathbb{R})$. The free Dirac operator H_0 is self-adjoint and its spectrum has a band-gap structure, i.e. it is purely absolutely continuous and consists of a sequence of closed intervals in $\mathbb R\$. The Dirac operator $H=\mathbb C$ H $o+V\$ has the same essential spectrum as $H \circ \$ but can have additional eigenvalues in \$\mathbb C\$. We aim to establish regions in \$\mathbb C\$ which contain all eigenvalues of $H\$. We have proved that $\lambda \in \mathbb{S}$ cannot be an eigenvalue if $\mathcal{N}(\lambda) \qquad + (\lambda) \qquad -$ (\lambda),\$\$

where $M(\lambda)$ is the monodromy matrix of the periodic problem and Γ is is a matrix function related to the angle between the eigenvectors of the matrix; $\gamma +$ $(\lambda), \gamma - (\lambda)$ relate to the size of Floquet solutions of the periodic problem. We then show that \$\gamma_\pm (\lambda)\$ are strictly positive and that \$\Gamma(M(\lambda))\$ is strictly positive except at the end-points of spectral bands, where it tends to 0.