Eigenvalue Bounds for Perturbed Periodic Dirac Operators

GHADA JAMEEL

Consider the one-dimensional Dirac operator $H=H_0+V$ in $L^2(\mathbb{R})^2$, $H=-i \sum_{i=1}^2 d/dx + m \sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb R), \$ where $\sum_{i=1}^3 q(x) + m \sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb R), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C), \$ where $\sum_{i=1}^3 q(x) + V(x)$ (x \in \mathbb C),

where $M(\lambda)$ is the monodromy matrix of the periodic problem and $\Delta = 0$ and a matrix function related to the angle between the eigenvectors of the matrix; $\Delta = 0$ (lambda), \gamma_- (\lambda) relate to the size of Floquet solutions of the periodic problem. We then show that $\Delta = 0$ (lambda) are strictly positive and that $\Delta = 0$ (lambda) is strictly positive except at the end-points of spectral bands, where it tends to 0.