Anomalies and Manipulation in Scottish Single Transferable Vote Elections

How common are voting anomalies in STV elections? An empirical analysis

Adam Graham-Squire, Ph.D. High Point University

David McCune, Ph.D. William Jewell College

$$
\text { June 10, } 2024
$$

What is STV (in Scotland)?

- Voters rank candidates by preference (no ties) to select multiple election winners, n candidates running for S seats
- First-place rankings are totaled
- Candidates win seat after exceeding quota $\left(q=\frac{v}{s+1}+1\right)$, excess votes distributed proportionally ($d_{i}=\frac{e}{t} \cdot b_{i}$) to 2nd place
- If no candidate exceeds quota, lowest candidate eliminated and (whole) votes distributed to 2nd place
- Process continues until all seats filled-last seats can be filled by candidates who do not achieve quota
- STV to select 1 candidate is Instant Runoff Voting-our focus is on multiwinner elections

The STV data

- Local government council elections in Scotland 2007-2022
- 1100 elections, 30 IRV (1 seat) and 1070 multiwinner ($2-5$ seats)
- Most elections are for 3 or 4 seats
- Number of candidates ranges 3-14, most have 6-8
- Average ballot length is 3 to 4
- Almost all are "close" for at least one seat (98\% have multiple rounds)
- Many political parties (SNP, Labour, Con, LD, Green, Ind)
- We use code to find (monotonicity) anomalies in the elections

Example STV election

$S=2, \quad n=4, \quad V=501, \quad q=\frac{501}{2+1}+1=168$

Votes	19	41	60	15	73	51	19	57	12	40	8	47	59
1st	A	A	A	A	B	B	B	C	C	C	D	D	D
2nd	B	B	C	D	C	A	D	A	B	D	A	C	B
3rd		C	D		A	D	C		A	B	C	B	
4th		D				C	A		D	A			

Quota =168				
Candidate	Votes By Round			
A	135	$\mathbf{1 9 2}$		
B	143	155	162.500	
C	109			
D	114	154	163.375	$\mathbf{2 3 3 . 3 7 5}$

Note: $\frac{24}{192} \cdot 75=9.375$ excess votes distributed from A to D

(Monotonicity) anomaly types

- Committee-size anomaly: if you reduce number of candidates to be elected, and new winner set is NOT a subset of larger winner set
- Upward anomaly: raise a winning candidate's rank on some ballots, and that makes them LOSE their seat
- Downward anomaly: lower a losing candidate's rank on some ballots, and that makes them WIN a seat
- No-show anomaly: a group of voters gets a better result (more favored candidates win) if they do NOT vote

Real-world: Committee-size anomaly

Original election: 2017 Moray, Buckie Ward 3

$$
S=3, \text { quota }=786
$$

Candidate	Votes By Round		
Cowie (Ind)	673	$\mathbf{8 2 6 . 2 8}$	
Eagle (Con)	$\mathbf{1 0 6 0}$		
McDonald (SNP)	691	701.60	710.27
Warren (SNP)	$\mathbf{7 1 6}$	$\mathbf{7 2 8 . 1 5}$	$\mathbf{7 3 4 . 3 6}$

Modified: $S=2$, quota $=1047$

Candidate	Votes By Round		
Cowie	673	680.27	
Eagle	$\mathbf{1 0 6 0}$		
McDonald	691	691.50	$\mathbf{8 4 9 . 5 0}$
Warren	$\mathbf{7 1 6}$	$\mathbf{7 1 6 . 5 8}$	830.26

Even worse committee-size anomaly

Original election: 2017 Moray, Buckie Ward 3

$$
S=3, \text { quota }=786
$$

Candidate	Votes By Round		
Cowie (Ind)	673	$\mathbf{8 2 6 . 2 8}$	
Eagle (Con)	$\mathbf{1 0 6 0}$		
McDonald (SNP)	691	701.60	$\mathbf{7 1 0 . 2 7}$
Warren (SNP)	$\mathbf{7 1 6}$	$\mathbf{7 2 8 . 1 5}$	$\mathbf{7 3 4 . 3 6}$

$$
S=1, \text { quota }=1571
$$

Candidate	Votes By Round		
Cowie	673		
Eagle	1060	1390	1431
McDonald	691	791	$\mathbf{1 4 6 2}$
Warren	716	780	

Other monotonicity anomalies: Highland 2012, Ward 7

Original election:

$$
S=4, \text { quota }=651
$$

Candidate	Votes By Round						
Finlayson	389	429.4	452.3	519	519.8	621.3	$\mathbf{7 7 7 . 1}$
Fletcher	464	469.5	470.6	489.2	495	547.95	
MacInnes	324	332.2	336.5	367.4	367.9		
McCaffery	299	307.1	313.2				
Rattray	361	378.7	394.6	481.4	483.4	547.97	$\mathbf{6 3 1}$
Rous	65	68.5					
Smith	584	604.7	606.9	$\mathbf{6 6 0 . 8}$			
Wilson	$\mathbf{7 6 8}$						

Winners: Wilson, Smith, Finlayson, Rattray. Note razor-thin margin in round of three candidates.

Upward anomaly: Highland 2012, Ward 7

Original winners: Wilson, Smith, Finlayson, Rattray Modified election: change 25 MacInnes>Rattray> ... to $\underline{\text { Rattray }}>$ Maclnnes $>\ldots$, and now Rattray does not win a seat:

$$
S=4, \text { quota }=651
$$

Candidate	Votes By Round						
Finlayson	389	429.4	452.3	524.3	614.0	618.5	$\mathbf{8 5 6 . 4}$
Fletcher	464	469.5	470.6	506.1	530.0	559.2	$\mathbf{6 2 2 . 9}$
MacInnes	299	307.2	311.5				
McCaffery	299	307.1	313.3	348.1			
Rattray	386	403.7	419.6	445.8	539.9	550.3	
Rous	65	68.5					
Smith	584	604.7	606.9	644.5	$\mathbf{7 0 1 . 7}$		
Wilson	768						

(Weak) Downward anomaly: Highland 2012, Ward 7

Original winners: Wilson, Smith, Finlayson, Rattray. Modified election: change 9 Fletcher>McCaffery> ... votes to McCaffery>Fletcher> ..., and 15 Fletcher bullet votes to McCaffery>Fletcher, and now Fletcher wins a seat

$$
S=4, \text { quota }=651
$$

Candidate	Votes By Round						
Finlayson	389	429.4	452.3	524.3	614.0	618.5	$\mathbf{8 5 6 . 4}$
Fletcher	440	445.5	446.6	482.1	530	559.2	$\mathbf{6 2 2 . 9}$
Maclnnes	324	332.2	336.5				
McCaffery	323	331.1	337.2	372.1			
Rattray	361	378.7	394.6	445.8	539.9	550.3	
Rous	65	68.5					
Smith	584	604.7	606.9	644.5	$\mathbf{7 0 1 . 7}$		
Wilson	768						

Note Strong vs Weak downward anomaly

No-show anomaly: Highland 2012, Ward 7

Original winners: Wilson, Smith, Finlayson, Rattray. Modified election: Remove 17 Smith $>$ Fletcher ballots, and now Fletcher wins a seat (and Smith still wins a seat).

$$
S=4, \text { quota }=648
$$

Candidate	Votes By Round						
Finlayson	389	430.4	453.3	520.2	615.2	618.6	$\mathbf{8 5 6 . 0}$
Fletcher	464	469.6	470.8	489.4	530.2	551.2	$\mathbf{6 1 4 . 3}$
Maclnnes	324	332.4	336.8	367.7			
McCaffery	299	307.3	313.4				
Rattray	361	379.1	395.1	481.9	540.5	548.3	
Rous	65	68.6					
Smith	567	588.25	590.4	644.3	$\mathbf{6 8 5 . 3}$		
Wilson	$\mathbf{7 6 8}$						

Anomaly results from 1070 multiwinner elections

- Scotland STV data includes political parties
- Can investigate anomaly percentages for individuals or parties
- 9 (0.9\%) Committee-size events, party= 4
- 17 (1.6\%) Downward monotonicity, 7 strong, 10 weak, party $=15$
- 22 (2.1\%) Upward monotonicity, party= 15
- 38 (3.6\%) No-show, party= 29
- 21 of 60 overlap: 4 with upward, downward and no-show. Committee-size have no overlap
- Upward/downward anomaly \% is approximately same as USA IRV ($2.2 \% / 1.6 \%$) but no-show is much higher for STV (0.5% vs $3.6 \%)$. Perhaps due to seat order and quota changes (15 vs 23)?

Vote spreading for political parties

- Party voter: voter who lists all party members at top of ballot, eg: $A B C, B A C_{-}$, etc
- Note: cannot say for sure party voter is actually a party voter
- Can use party data to look for benefits to Vote Spreading within a party
- Specifically: Could a party do better (or worse) if party voters spread votes more equitably?
- Suppose A and B are in same party:
- $1300 / 400$ votes for A / B vs $900 / 800$
- If spreading votes results in a change, call it an "event", not an "anomaly"
- Type I vote spreading event: a party spreads votes, resulting in their winning more seats
- Type II vote spreading event: a party spreads votes, resulting in their winning less seats

Example election: E. Ayrshire 2017, Cumnock Ward

Original election:

$$
S=4, \text { quota }=893
$$

Candidate	Votes By Round						
Bircham (Other)	27	28.5	32.7				
Black (Grn)	127	136.1	143.3	150.0			
Crawford (Lab)	$\mathbf{1 2 7 9}$						
McMahon (SNP)	641	656.4	659.1	660.1	626.1	743.2	$\mathbf{8 1 2 . 3}$
Mochan (Lab)	295	577.5	599.7	605.1	626.1	736.8	
Owens (Ind)	371	390.9	411.4	418.5	461.3		
Todd (SNP)	731	740.7	743.0	745.0	773.7	831.6	$\mathbf{8 9 8 . 1}$
Young (Con)	$\mathbf{9 9 1}$						

Note Crawford (1279) has more votes than Mochan (295), both Labour candidates.

Vote spreading event: E. Ayrshire 2017, Cumnock

- Change 50 Crawford>Mochan votes to Mochan>Crawford

$$
S=4, \text { quota }=893
$$

Candidate	Votes By Round						
Bircham (Other)	27	28.4	32.5				
Black (Grn)	127	135.2	142.4	149.0			
Crawford (Lab)	$\mathbf{1 2 2 9}$						
McMahon (SNP)	641	654.9	657.6	660.1	626.1	743.2	
Mochan (Lab)	345	587.2	609.5	614.8	635.5	745.8	$\mathbf{7 9 0 . 2}$
Owens (Ind)	371	389.0	409.5	416.6	459.4		
Todd (SNP)	731	739.7	742.1	744.1	772.7	830.4	$\mathbf{1 4 3 2 . 5}$
Young (Con)	$\mathbf{9 9 1}$						

- Swap 31 to 909 Crawford>Mochan> ... votes to get Type I vote spreading event. Is vote spreading a "better" result? (1574 Labour vs 1372 SNP)
- Can also have Type II:

Type II event: 2017 East Renfrewshire, Ward 1

$S=4$, quota $=1415$, Original Election

Candidate	Votes By Round							
Aitken (Con)	1297	1355.9	1372.3	1390.4	1412.1	$\mathbf{1 4 2 6 . 5}$		
Allison (Grn)	220	243.8	249.2					
Convery (SNP)	1199	1242.0	1242.0	1330.2	1346.7	1357.2	1358.1	$\mathbf{2 3 7 0 . 5}$
Cunningham (Lab)	1020	1110.5	1113.5	1160.0	$\mathbf{1 5 0 6 . 2}$			
Devlin (Ind)	$\mathbf{1 8 4 0}$							
Ferguson (Other)	34	42.5						
Hay (Lab)	404	462.9	465.3	481.4				
Reilly (SNP)	1059	1125.1	1126.3	1167.1	1204.6	1218.1	1218.6	

$S=4$, quota $=1415,358$ Cunn. $>$ Hay Ballots Modified

Candidate	Votes By Round							
Aitken (Con)	1297	1355.9	1372.3	1390.4	$\mathbf{1 4 6 3 . 8}$			
Allison (Grn)	220	243.8	249.2					
Convery (SNP)	1199	1242.0	1242.0	1330.2	1405.0	1407.0	$\mathbf{1 5 6 4 . 4}$	
Cunningham (Lab)	662	752.5	755.5	801.9				
Devlin (Ind)	$\mathbf{1 8 4 0}$							
Ferguson (Other)	34	42.5						
Hay (Lab)	762	820.9	823.3	839.4	1214.3	1227.4		
Reilly (SNP)	1059	1125.1	1126.3	1167.1	1268.8	1269.8	$\mathbf{1 4 5 4 . 7}$	

-Note Strong vs Weak Type II events

Results: the tables

	Single Type I event	Single Type II event	Two Type I events	Both Types of events	Total num- ber of elec- tions	Total number of events
Only (2,1) situations	157	6	12	1	176	189
(3,2)/(3,1) situation	11	4	0	0	15	15
Multiple situations	XXXX	XXXX	2	1	3	6

Situation type	$(2,0)$	$(2,1)$	$(2,2)$	$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	4 candidates
Frequency	12	673	563	0	9	71	26	0

Discussion of vote spreading results

- 194 elections with Vote spreading events (18.1\%, or $194 / 855=22.7 \%$)
- 210 total events out of 1354 situations, or $210 / 1354=15.5 \%$
- Elections: 182 Type I only, 10 Type I/ only , 2 both
- 194 events in $(2,1)$ situations.
- 3 cands: 13 from (3,2), 3 from (3,1): 14/4 split for Type.
- Generally, parties put up good number of candidates
- Parties should manipulate voters to spread votes, if possible
- Big winners: larger parties. Independents/Greens tend to lose
- SNP: 1324 total seats, could have 111 more seats if vote spread

Potential "fix" to vote spreading

- Allow "equal party" voting: votes for a party distributed equally to all permutations
- Example: suppose A, B, C all SNP candidates. Voter votes $S N P>D>E$
- Ballot does 1/6 ABCDE, 1/6 ACBDE, 1/6 BACDE, etc
- Rest of election runs the same
- Voters can vote for parties, or individuals, up to the voter
- We supposed all $A B C, C B A$, etc voters were party voters, and distributed their votes as above (note: NOT realistic)

Ex. EP election: 2017 E. Ayrshire, Cumnock ward

Candidate	Votes By Round						
Bircham (Other)	27	28.5	32.7				
Black (Grn)	127	136.1	143.3	150.0			
Crawford (Lab)	1279						
McMahon (SNP)	641	656.4	659.1	660.1	626.1	743.2	812.3
Mochan (Lab)	295	577.5	599.7	605.1	626.1	736.8	
Owens (Ind)	371	390.9	411.4	418.5	461.3		
Todd (SNP)	731	740.7	743.0	745.0	773.7	831.6	898.1
Young (Con)	991						
$S=4$, quota $=893$, EP election							
Candidate	Votes By Round						
Bircham (Other)	27	31.2	31.3				
Black (Grn)	127	134.2	135.3	141.4			
Crawford (Lab)	926.5						
McMahon (SNP)	685	687.7	689.5	690.5	714.1	770.7	
Mochan (Lab)	647.5	669.8	690.8	695.4	714.1	820.7	860.2
Owens (Ind)	371	391.5	393.9	400.9	443.0		
Todd (SNP)	687	689.4	690.5	692.5	719.9	776.2	1419.7
Young (Con)	991						

-Get the "correct" winner without needing to do vote spreading

Discussion of Code

- All code in Python
- We are not really good at code
- Targeted vs Brute-force?
- Committee-size was easy (just change S)
- Targeted: Upward, Downward, No-show. At each stage, change elimination or election order-then check if new winner set. Need to double-check the targeted code
- Brute-force: Vote-spreading events. Also shows range of event
- All/most results were double-checked by hand

Future research

- Fill in truncated votes, any difference in anomalies?
- Compare winner set, anomaly \% to other multiwinner methods (Some work has been done: (1) Chamberlin-Courant and vote spreading, (2) STV vs SRCV, (3) AQ STV, Meek, etc)
- New algorithms to find more anomalies? Use AI?
- Find theoretical conditions (necessary/sufficient) for anomalies
- Certainly many other things as well
- And if we have time. . . anomaly hunting!

Slippery upward anomaly: Argyll-Bute, 2012, Ward 5

$S=4$, quota $=727$, Original election

Candidate	Votes By Round										
Doyle	125	126.9	136.1								
Glen-Lee	707	715.6	721.9	732.02							
MacDonald	361	372.7	380.0	410.8	411.1	437.8	476.8	542.6	$\mathbf{6 4 5 . 3}$		
Maclntyre	421	436.2	443.7	471.86	472.2	509.6	611.3	726.7	$\mathbf{8 1 1 . 4}$		
Mackay	222	231.3	239.0	243.1	243.3	264.3					
McIntosh	58	61.3									
Melville	410	415.9	420.0	445.1	448.8	471.0	517.2	541.9			
Neal	188	196.7	201.1	206.3	206.5						
Robertson	807										
Rutherford	332	340.1	343.3	353.5	353.6	384.4	409.2				

- Note: tiny margin (0.7 votes) in penultimate round
- Note: GL barely gets seat in round 4

Slippery upward anomaly: Argyll-Bute, 2012, Ward 5

$S=4$, quota $=727$, Change $5.1 \mathrm{GL}>$ MacD to $\mathrm{MacD}>\mathrm{GL}$

Candidate	Votes By Round								
Doyle	125	126.9	136.1						
Glen-Lee	701.9	710.5	715.8	726.92	$\mathbf{7 4 6 . 7}$				
MacDonald	366.1	377.8	385.1	415.9	440.6	441.9	480.9	546.8	
MacIntyre	421	436.2	443.7	471.86	506.2	507.6	609.4	724.9	$\mathbf{8 8 2 . 5}$
Mackay	222	231.3	239.0	243.1	263.0	263.8			
McIntosh	58	61.3							
Melville	410	415.9	420.0	445.1	462.9	477.2	522.6	547.4	$\mathbf{6 6 6 . 8}$
Neal	188	196.7	201.1	206.3					
Robertson	807								
Rutherford	332	340.1	343.3	353.5	384.3	384.7	409.5		

- Moving MacDonald UP in 5.1 ballots made MacDonald lose the election.
- Of course, can't change 5.1 ballots, only whole numbers

Slippery upward anomaly: Argyll-Bute, 2012, Ward 5

$$
S=4, \text { quota }=727, \text { Change } 6 \mathrm{GL}>\mathrm{MacD} \text { to } \mathrm{MacD}>\mathrm{GL}
$$

Candidate	Votes By Round								
Doyle	125	126.9	136.1						
Glen-Lee	701	709.6	714.9	726.02	$\mathbf{7 4 5 . 8}$				
MacDonald	367	378.7	386.0	416.8	441.5	442.8	481.7	547.6	$\mathbf{6 5 0 . 3}$
MacIntyre	421	436.2	443.7	471.9	506.2	507.5	609.3	724.8	$\mathbf{8 0 9 . 6}$
Mackay	222	231.3	239.0	243.1	263.0	263.7			
McIntosh	58	61.3							
Melville	410	415.9	420.0	445.1	462.9	476.6	521.9	546.7	
Neal	188	196.7	201.1	206.3					
Robertson	807								
Rutherford	332	340.1	343.3	353.5	384.3	384.7	409.5		

- Moving MacDonald UP in 6 ballots does NOT make MacDonald lose the election.
- Help! Changing 5.03 to 5.5 GL $>$ MacD to MacD $>$ GL creates anomaly, but more or less doesn't work

The actual anomaly: Argyll-Bute, 2012, Ward 5

Do 5 GL>MacD to MacD>GL, AND 2 Rob $>G L>$ MacD to Rob $>\mathrm{MacD}>\mathrm{GL}$

$S=4$, quota $=727$									
Candidate	Votes By Round								
Doyle	125	126.9	136.1						
Glen-Lee	702	710.4	716.7	726.8	$\mathbf{7 4 6 . 6}$				
MacDonald	366	377.9	385.2	415.0	440.7	442.	481.0	546.9	
MacIntyre	421	436.2	443.7	471.9	506.2	507.6	609.4	724.9	$\mathbf{8 8 2 . 5}$
Mackay	222	231.3	239.0	243.1	263.0	263.7			
McIntosh	58	61.3							
Melville	410	415.9	420.0	445.1	462.9	477.1	522.5	547.3	$\mathbf{6 6 6 . 6}$
Neal	188	196.7	201.1	206.3					
Robertson	807								
Rutherford	332	340.1	343.3	353.5	384.3	384.7	409.5		

- Moving the Rob $>G L>$ MacD gave enough fractional ballots to make MacDonald lose

That's a wrap!

Any questions?

Adam Graham-Squire High Point University agrahams@highpoint.edu

David McCune
William Jewell College
mccuned@william.jewell.edu

References

- Vote Spreading article (in preparation)
- Monotonicity anomalies in Scottish local government elections, McCune and Graham-Squire, Social Choice and Welfare (2024)
- An Examination of Ranked Choice Voting in the United States, 2004-2022, Graham-Squire and McCune, Representation (2023)

