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What is higher-order Fourier analysis?

Certainly some scope for argument!

Studying additive-combinatorial or number-theoretic problems using (gen-
eralised) polynomial phases

Usually involves, implicitly or explicitly, Gowers norms and inverse
theorems for them.

I will be talking mostly about discrete questions and techniques though
techniques (and problems) in ergodic theory form an important part of the
subject.
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Gowers norms on G

Let G be a finite abelian group. Mostly we’ll talk about the cases
G � Z{NZ and G � Fn

p for Fp some fixed finite field.

Let f : G Ñ C be a function. Define

}f }Uk :�
�
En,h1,...,hkPG

¹
~ωPt0,1uk

C|ω|f pn � ~ω � ~hq
�1{2k

.

Here C is complex conjugation,

|ω| � ω1 � � � � � ωk , ω � ~h �
ķ

i�1

ωihi .

}f }U2pGq :�
�
En,h1,h2f pnqf pn � h1qf pn � h2qf pn � h1 � h2q

�1{4
.
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Gowers norms on G

}f }U3pGq :�
�
En,h1,h2,h3f pnqf pn � h1qf pn � h2qf pn � h3q�

� f pn � h1 � h2qf pn � h1 � h3qf pn � h2 � h3q�

� f pn � h1 � h2 � h3q
�1{8

.

This is a kind of sum of f over 3-dimensional parallelepipeds.

If f pxq � e2πiφpxq,

}f }2k

Uk � Eh1,...,hkExe
2πi∆h1

∆h2
���∆hk

φpxq,

where ∆hψpxq :� ψpxq � ψpx � hq.
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Gowers norms on rNs

If f : rNs Ñ C is a function, let N 1 be sufficiently large (say
N 1 ¥ pk � 1qN).

By abuse of notation consider f as a function f̃ on Z{N 1Z. Then define

}f }Uk rNs :�
}f̃ }Uk pZ{N 1Zq

}1rNs}Uk pZ{N 1Zq
.

Note that }f }Uk rNs ¤ 1 for all 1-bounded f (that is, f with |f pxq| ¤ 1
pointwise).

Exercise: If f : rNs Ñ C is 1-bounded and }f }Uk � 1, then f pxq � e2πiφpxq

for some degree pk � 1q polynomial phase φ : Z Ñ R{Z.
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Motivation for Gowers norms

The primary motivation for considering Gowers norms is that via
‘Generalised von Neumann Theorems’ they control the behaviour of rather
general (‘finite complexity’) types of linear pattern in sets A � G .

The most prominent example is arithmetic progressions.

Theorem (Generalised von Neumann Theorem)

Suppose that A � Z{NZ is a set of size αN such that the number of pairs
px , dq such that x , x � d , . . . , x � pk � 1qd is not within εN2 of αkN2.
Then }fA}Uk�1 "k ε, where fA � 1A � α.

In particular, Gowers norms come up when studying asymptotics for
progressions of primes, or Szemerédi’s theorem.

Gowers norms control any ‘finite-complexity’ linear pattern.
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Gowers norms control any ‘finite-complexity’ linear pattern.

Ben Green (Oxford) Higher-Order Fourier Analysis 22nd July 2024 6 / 29



Inverse theorems

Everything so far is just the Cauchy-Schwarz inequality. To be doing
Higher-Order Fourier Analysis, we need to be linking Gowers norms to
polynomial-type objects via Inverse Theorems.

}f }Us�1 � 1 if and only if f has some ‘degree s behaviour’.

The U2-norm is the domain of traditional Fourier analysis.

Theorem (Inverse theorem for the U2pG q-norm)

Suppose that f : G Ñ C is a 1-bounded function with }f }U2 ¥ δ. Then
there is γ P Ĝ such that |f̂ pγq| ¥ δ2.

Here Ĝ is the group of characters γ : G Ñ C, and

f̂ pγq � ExPG f pxqγpxq �
1

|G |

¸
xPG

f pxqγpxq.
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Inverse theorem for the U2pG q-norm

Proof: we have
}f }4

U2 �
¸
γ

|f̂ pγq|4

and Parseval’s identity

¸
γ

|f̂ pγq|2 � }f }2 ¤ 1.

Therefore

δ4 ¤
¸
γ

|f̂ pγq|4 ¤ sup
γ
|f̂ pγq|2

¸
γ

|f̂ pγq|2 ¤ sup
γ
|f̂ pγq|2.
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Local U3 Inverse theorem

The modern era started with Gowers’s local U3-inverse theorem (1997)
which also introduced fundamental tools such as Balog-Szemerédi–Gowers.

Theorem (Gowers, 1997)

Suppose that f : rNs Ñ C is a 1-bounded function, and }f }U3 ¥ δ. Then
we may partition rNs �

�
j Pj into progressions of the same common

difference and length at least Nδ1 , and find quadratic phase functions qj ,
such that ¸

j

|
¸
xPPj

f pxqe�2πiqj pxq| "δ N. (1)

Inequality (1) is not a necessary and sufficient condition for }f }U3 � 1. It
is impossible to check for arithmetic functions such as f � µ.
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difference and length at least Nδ1 , and find quadratic phase functions qj ,
such that ¸

j

|
¸
xPPj

f pxqe�2πiqj pxq| "δ N. (1)

Inequality (1) is not a necessary and sufficient condition for }f }U3 � 1. It
is impossible to check for arithmetic functions such as f � µ.
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U3 Inverse theorem

Gowers’s local U3rNs inverse theorem was made global in by G.–Tao in
2005 and also adapted to finite fields of odd order (and other groups of
odd order).

Theorem (Finite field U3 inverse, G.-Tao 2005)

Suppose that p is odd and that f : Fn
p Ñ C is 1-bounded. Suppose that

}f }U3pFn
pq
¥ δ. Then there is some quadratic phase q : Fn

p Ñ Fp such that

|ExPFn
p
f pxqe�2πiqpxq{p| ¥ δ1 � δ1pδ, pq. (2)

Samorodnitsky (2006) handled the case p � 2, which is the one of most
interest in CS.

Inequality (2) is necessary and sufficient for }f }U3pFn
pq
� 1.
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Insufficiency of quadratic phases

For the U3rNs-norm, the most obvious generalisation fails: there exist
1-bounded functions f : rNs Ñ C with }f }U3rNs � 1 which do not

correlate with any quadratic phase e2πiqpxq.

An example is a bracket quadratic phase f pnq � e2πiαntβnu for suitable
α, β P R.

G.–Tao (2005) showed that such phases are enough:

Theorem (G.–Tao 2005)

Suppose that f : rNs Ñ C is 1-bounded and that }f }U3rNs ¥ δ. Then

there is a bracket quadratic phase qpnq �
°K

j�1 αjntβjnu� θn2 � θ1n,

K � Oδp1q, such that |EnPrNsf pnqe
�2πiqpnq| ¥ δ1 � δ1pδq.

Conversely, if this holds then }f }U3rNs � 1.
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Nilsequences

Bracket polynomials can be very difficult to work with.

It has long been known (particularly due to work of Bergelson and
Leibman) that there is a close link between bracket polynomials and
nilpotent groups.

Consider
G �

�
1 R R
0 1 R
0 0 1

	
, Γ �

�
1 Z Z
0 1 Z
0 0 1

	

The quotient ΓzG is called the Heisenberg nilmanifold and may be
identified as a set with r0, 1q3:

�
1 a c
0 1 b
0 0 1

	�
1 x z
0 1 y
0 0 1

	
�

�
1 txu tz�ytxuu
0 1 tyu
0 0 1




a � �txu, b � �ty u, c � �tz � y txuu.
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Nilsequences

Define F : ΓzG Ñ C by

F
�

1 x z
0 1 y
0 0 1

	
� e2πipz�ytxuq.

Then
F
�

1 αn 0
0 1 βn
0 0 1

	
� e�2πiαntβnu.

An example of a 2-step nilsequence. (Not quite accurate, since here F is
not continuous on ΓzG .)
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Nilsequences

Let G be a simply-connected, s-step nilpotent Lie group.

G1 � G ,G2 � rG ,G s,G3 � rG ,G2s, . . . ,Gs�1 � t1u.

Note the Heisenberg group G �
�

1 R R
0 1 R
0 0 1

	
is such a group with s � 2.

Let ΓzG be a lattice. Let F : G Ñ C be Γ-automorphic, i.e.
F pγgq � F pgq.

Let p : Z Ñ G be a polynomial sequence (for instance ppnq �
�

1 αn 0
0 1 βn
0 0 1

	
on the Heisenberg group).

Then ψpnq � F pppnqq is an s-step (polynomial) nilsequence.

Complexity: dimpG q, structure constants of G , Lipschitz/smoothness
properties of F (but not anything to do with ppnq).
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Note the Heisenberg group G �
�

1 R R
0 1 R
0 0 1

	
is such a group with s � 2.

Let ΓzG be a lattice. Let F : G Ñ C be Γ-automorphic, i.e.
F pγgq � F pgq.

Let p : Z Ñ G be a polynomial sequence (for instance ppnq �
�

1 αn 0
0 1 βn
0 0 1

	
on the Heisenberg group).

Then ψpnq � F pppnqq is an s-step (polynomial) nilsequence.
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U3 inverse theorem: nilsequence formulation

Theorem (G.– Tao 2005)

Suppose that f : rNs Ñ C is 1-bounded and that }f }U3rNs ¥ δ. Then
there is a 2-step nilsequence F pppnqq of complexity Oδp1q, such that

|EnPrNsf pnqF pppnqq| ¥ δ1 � δ1pδq. (3)

Conversely, if (3) holds then }f }U3 � 1.

In fact the theorem was shown with the a priori stronger conclusion that
we can take ppnq � an for some a P G .

The notion of polynomial nilsequence, which is important for further
analysis, was not fully clarified until a little later.
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Nilsequences: some history

The role of nilpotent groups was understood in analogous contexts in the
ergodic community much earlier.

Nilmanifolds ΓzG we studied by Malcev in the 1950s and nilflows
(sequences anx : n � 1, 2, . . . ) have been studied since at least the 1960s
from the dynamical point of view (Auslander–L. Green–Hahn, Parry).

Connections that we now see as relevant to additive combinatorics came
later. In the ergodic setting the role of nilpotent groups, at least in the
2-step case, seems to have crystallised towards the end of the 1980s, with
an ergodic analogues of the theorem that 2-step nilsequences control the
behaviour of 4-term arithmetic progressions due to Conze and Lesigne
(1988).

In this paper they point out a major oversight in their earlier work from
1984. They say that the need for nilpotent groups was pointed out to
them by Furstenberg and Weiss.
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Nilsequences: some history

I am not sure that explicit conjectures about possible generalisations of
this to longer progressions/higher-step nilpotent groups were made.

Such statements were proven by Host-Kra (2003) and independently and
slightly later by Ziegler. The Host–Kra proof has structures (semi-norms)
which are closely analogous to Gowers norms.

The notion of nilsequence F pppnqq itself (with ppnq � an) was introduced
by Bergelson, Host and Kra (2005).
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Higher UkrNs norms

The inverse theorem for higher Uk rNs norms was explicitly conjectured by
G.–Tao in 2006 and proven by G.–Tao–Ziegler in 2010/2011.

Theorem (GTZ 2010/11)

Suppose that f : rNs Ñ C is 1-bounded and that }f }Us�1rNs ¥ δ. Then
there is an s-step nilsequence F pppnqq of complexity Oδp1q, such that

|EnPrNsf pnqF pppnqq| ¥ δ1 � δ1pδ, sq.

In fact one can take ppnq � an and this is how it was originally conjectured.

Gowers (1997) had previously proven a ‘local’ version of this.
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Higher UkrNs norms

Theorem (GTZ 2010/11)

ThSuppose that f : rNs Ñ C is 1-bounded and that }f }Us�1rNs ¥ δ. Then
there is an s-step nilsequence F pppnqq of complexity Oδp1q, such that
|EnPrNsf pnqF pppnqq| "s,δ 1.

Strong motivation for conjecturing this result was provided by the work of
Host–Kra (2003, Annals 2005). Here is a rough statement.

Theorem (Host–Kra 2005, rough statement)

Suppose X � pX , µ,T q ergodic. They define a (Host-Kra) seminorm
~f ~s�1 and a ‘factor’ Zs of X such that ~f ~s�1 � 0 if and only if
Epf |Zsq � 0, and show that Zs is an inverse limit of nilsystems.

Szegedy (et al) has given a different proof of the inverse theorem.
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Finite fields

Recall the U3 inverse theorem over finite fields.

Theorem (G.-Tao, Samorodnitsky)

Suppose that f : Fn
p Ñ C is 1-bounded and that }f }U3pFn

pq
¥ δ. Then there

is some quadratic phase q : Fn
p Ñ Fp such that

|ExPFn
p
f pxqe�2πiqpxq{p| "δ,p 1.

Natural to conjecture the following generalisation.

Conjecture

Suppose that f : Fn
p Ñ C is 1-bounded and that }f }Us�1pFn

pq
¥ δ. Then

there is some degree s function φ : Fn
p Ñ Fp such that

|ExPFn
p
f pxqe�2πiφpxq{p| "δ,s,p 1.
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Finite fields

Historically, one reason for thinking about the finite field case was that it
was an easier model for the integer case.

For the U4-norm and higher, it acquires a life of its own to a certain
extent.

The conjecture on the previous slide fails in low characteristic (G.–Tao,
Lovett–Meshulam–Samorodnitsky 2007). For example p � 2 and U4.

Instead of a ‘classical’ polynomial phase φpxq{p where φ : Fn
p Ñ Fp, one

should work with ‘non-classical’ polynomial phases ψ : Fn
p Ñ R{Z, which

may not be the same thing for p   k .

Conjecture (Updated UkpFn
pq inverse conjecture)

Suppose that f : Fn
p Ñ C is 1-bounded and that }f }Us�1pFn

pq
¥ δ. Then

there is some degree s (non-classical) polynomial phase ψ : Fn
p Ñ R{Z

such that |ExPFn
p
f pxqe�2πiψpxq| "δ,s,p 1.
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Finite fields

The inverse conjecture for p ¥ k (with classical polynomials) was proven
by Tao–Ziegler (2008) using crucially an ergodic result joint with them and
Bergelson.

This was extended to all characteristics (necessarily formulated using
non-classical polynomials) by Tao–Ziegler (2011).

Alternative recent proof by Candela, Gonzalez-Sanchez and Szegedy.
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Quantitative issues – the U3rNs-norm

Theorem (G.–Tao 2005)

Suppose that f : rNs Ñ C is 1-bounded and that }f }U3rNs ¥ δ. Then
there is a 2-step nilsequence F pppnqq on ΓzG of complexity Oδp1q, such
that |EnPrNsf pnqF pppnqq| ¥ δ1 � δ1pδq.

This theorem already came with somewhat reasonable (exponential)
bounds.

It was discovered around 2010 (by G.–Tao, and independently by Lovett in
the finite field case, and building on work of Gowers who proved the harder
direction) that there is an equivalence between good bounds for the
U3-inverse theorem and inverse sumset problems.

Subsequent advances in additive combinatorics, particularly Sanders’ work,
allows for the bounds to be improved to quasipolynomial. (Most
importantly, dimG ! logC p1{δq, δ1 � expp� logC p1{δqq).
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Quantitative issues – the U3pFn
pq-norm

The recent proof of Marton’s conjecture by Gowers, G., Manners and Tao
can be input into (essentially) [G.–Tao 2005, Samorodnitsky 2005] to give
polynomial bounds in the finite field case.

Theorem (GGMT 2024)

Suppose that f : Fn
p Ñ C is 1-bounded and that }f }U3pFn

pq
¥ δ. Then there

is some quadratic phase q : Fn
p Ñ Fp such that

|ExPFn
p
f pxqe�2πiqpxq{p| "p δ

Cp .
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Quantitative issues – higher UkrNs-norms

Theorem (GTZ 2010/11)

Suppose that f : rNs Ñ C is 1-bounded and that }f }Us�1rNs ¥ δ. Then
there is an s-step nilsequence F pppnqq of complexity Oδp1q, such that
|EnPrNsf pnqF pppnqq| ¥ δ1 � δ1pδ, sq

Proof gives extremely weak bounds for U4-norm, and no bounds for U5

and higher, due to use of ultraproduct arguments.

Freddie Manners (2018): gave a substantially different argument which
also gives quantitative bounds of double exponential type.

Leng–Sah–Sawhney (2024) have given quasipolynomial bounds, essentially
matching what is known in the U3rNs case.
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Quantitative issues – finite field Uk for k ¥ 4

Theorem (TZ 2011)

Suppose that f : Fn
p Ñ C is 1-bounded. Suppose that }f }Us�1pFn

pq
¥ δ.

Then there is some non-classical degree s phase ψ : Fn
p Ñ R{Z such that

|ExPFn
p
f pxqe�2πiψpxq| ¥ δ1 � δ1pδ, s, pq.

U4 : Gowers–Milićević (2017) when p ¥ 5 then Tidor when p   5. The
bounds are of shape pδ1q�1 � exp exp expplogC p1{δqq. The solution of
Marton’s conjecture should imply a doubly exponential bound.

Uk , k ¥ 5: Gowers–Milićević in high characteristic (2020) p ¥ k . Bound is
a finite tower of exponentials pδ1q�1 � exp exp � � � exppCk,pδ

�1q, height
depends only on k.

U5 and U6: Milićević when p � 2.

It is certainly natural to conjecture that we can take δ1 � δCs,p .
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Further topics - nilsequences

The inverse theorem is of limited use unless one can actually do something
with nilsequences.

The most basic questions are about the distribution of
panqn�1,2,... in ΓzG . In the infinitary setting this was figured out by L.
Green (Leibman).

The basic finitary result was established by GT in 2006.

Theorem (GT 2006)

Suppose that pppnqqnPrNs is not δ-equidistributed in ΓzG. Then

pπpppnqqqnPrNs is not δOG p1q-equidistributed in ΓzG{rG ,G s.

Here π : G Ñ G{rG ,G s is projection.

Recently Leng (2023) made significant progress on the quantitative
aspects.
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Tour of further topics

Major further topics include

Regularity, decomposition and counting lemmas (Wolf)

True complexity ‘beyond the Cauchy-Schwarz inequality’
(Gowers–Wolf, Manners)

Inverse theorems relative to pseudorandom measures, in particular
results that can be applied to the primes (Tao, Teräväinen)

Polynomial patterns (concatenation results, degree lowering (Peluse))

Work in the infinitary realm (Klurman, Moreira, Richter)
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Future directions and challenges

Polynomial inverse theorem for UkpFn
pq (or better bounds, e.g. fixed

tower of exponentials)

Polynomial (as opposed to quasi-polynomial) inverse theorem for
Uk rNs? Even for k � 3 this would basically require a proof of PFR
over the integers.

‘Natural’ (or significantly more accessible) proof of the inverse
conjectures?

Inverse theorems for Higher-dimensional norms. The simplest one
(Austin) is Eh}∆hf }

4
U2 .
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