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Macroscopic behaviour from microscopic laws

Statistical physics: many particle systems

• Microscopic laws: reversible
• Macroscopic laws: irreversible (thermodynamic)

Kinetic theory: density over phase space (x , v)

• with collisions by Boltzmann and Maxwell
⇒ H theorem

• collisionless by Jeans (gravitational) and Vlasov (plasmas)
⇒ reversible
⇒ Landau (1946) damping

t = 0 t = 10 t = 100
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Phase mixing for free transport

Density f (t, x , v) evolves over phase space (x , v) ∈ T× R as

∂t f + v∂x f = 0.
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Fourier transform x → k:

∂t fk + ikvfk = 0 ⇒ fk(t, v) = e−ikvt f ink (v)

Spatial density

ρk(t) =

∫
v∈R

fk(t, v) dv =

∫
v∈R

e−ikvt f ink (v) dv

decays if f in has regularity.
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Active suspension model

Model [Saintillan, Shelley ’08]

Active particles (bacteria) in a Stokes fluid described by

• position x ∈ T3,

• orientation v ∈ S2.
Each particle moves forward ⇒ Induced velocity field u.

Density f (t, x , v) evolves as
∂t f + (v + u) · ∇x f +∇v ·

(
Pv⊥ [(γE (u) +W (u))v ] f

)
= ν∆v f ,

−∆xu +∇xq = α∇x ·
∫
S2
f (t, x , v) v ⊗ v dv ,

∇x · u = 0.

E (u) = 1
2

[
∇xu + (∇xu)

T
]

and W (u) = 1
2

[
∇xu − (∇xu)

T
]

Pusher: α < 0 Puller: α > 0
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Oberservations for the active suspension model

Popular model. For pushers, simulations show a phase transition
more or less observed in experiments:

• For γ|α| small enough, the incoherent state f (v) = 1
4π is

stable.

• For γ|α| big enough, emergence of a new collective behaviour.
Changes the rheology of the suspension.

Goal: Recover observations analytically

First step: Understand the linearised behaviour

In the incoherent regime, we exhibit a mixing phenomenon, both at
ν = 0 and ν ≫ 1 > 0 (much harder). The fact that v ∈ S2
changes deeply the behaviour with respect to usual settings.
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Linearised model

Linearise around the incoherent state:

• Fourier modes x → k decouple

• Can rescale k to |k| = 1 in adimensional form

Fixed mode k ∈ S2, perturbation f = f (t, v), v ∈ S2, evolves as
∂t f + iv · kf − 3Γ

4π
v ⊗ v : E (u) = ν∆v f ,

u = Pk⊥ ikΣ,

Σ := ϵ

∫
S2

f (t, v)v ⊗ v dv

where ϵ = ±1 (pullers ϵ = 1, pushers ϵ = −1) and strength
number Γ.

Phase mixing Active suspension model Phase mixing for v ∈ Sd−1 Volterra equation Nonlinear stability



Linear results

Theorem (ν = 0: mixing)

If ϵ = 1 (pullers), for any Γ, as t → ∞

|u(t)| = O(t−2), ∥ψ∥H−1− = O(t−1).

If ϵ = −1 (pushers), there exists Γc such that

• For Γ < Γc , the same stability result holds.

• For Γ > Γc , there exist unstable eigenmodes.

Theorem (ν > 0: mixing followed by enhanced dissipation)

If ϵ = 1 or ϵ = −1 and Γ < Γc , then for ν small enough

|u(t)|+ 1

t
∥ψ∥H−1− ≲ min

(
| ln t|M

t2
, e−ην

1
2 t

)
.
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Remarks

Remark: Decay due to mixing is at fixed polynomial rate, even for
analytic fin.
Strong difference with usual results due to v ∈ S2 instead of
v ∈ R3.
Remark: Contemporary paper by [Albritton-Ohm] on the same
model.

• ν = 0: Under stability condition from dispersion relation, L2

decay as ∫ ∞

t=0
|u(t)|2(1 + t)3−ϵ dt <∞

• ν > 0: No analogue of our theorem. Only result of enhanced
dissipation under stringent assumption Γ ≪ ν1/2.
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Decay by phase mixing and diffusion

Key step

Understand phase mixing and diffusion (Fourier mode x → k):

(∂t−L1)fk = (∂t+ik ·v−ν∆v )fk = 0, fk = fk(t, v), t ∈ R+, v ∈ S2

where we can rescale k ∈ S2.

Challenge: Phase mixing is degenerate at poles ±k

Similar to mixing through Poiseuille flow:

U

x

y U =

(
y(1− y)

0

)

Common theme for phase mixing of trapped particles.
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Decay by pure phase mixing

(∂t−L1)f = (∂t+ik ·v−ν∆v )f = 0, f = f (t, v), t ∈ R+, k, v ∈ S2.

Proposition (inviscid decay)

For ν = 0 and δ > 0 and weight F : S2 → R∣∣∣∣∫
S2
f (t, v)F (v) dv

∣∣∣∣ ≲ 1

(1 + t)
∥F∥H1+δ∥f ∥H1+δ ,∣∣∣∣∫

S2
f (t, v)F (v)∇(k · v) dv

∣∣∣∣ ≲ 1

(1 + t)2
∥F∥H2+δ∥f ∥H2+δ .

Idea: Solve explicitly and use stationary phase.
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Decay by phase mixing and diffusion

(∂t − L1)f = (∂t + ik · v − ν∆v )f = 0, f = f (t, v), t ∈ R+, k, v ∈ S2.

Small degenerate diffusion (0 < ν ≪ 1)?
(collisions in kinetic theory (Boltzmann/Landau operator), viscosity in fluids)

Hypocoercivity: Decay by combination of
transport and degenerate dissipation.

Decay rate for ν ≪ 1: Faster as simple diffusion as

• transport pushes perturbations to high Fourier frequencies,

• dissipation is faster for high Fourier frequencies.

Proposition (enhanced dissipation)

There exists ν0, λ > 0 such that for 0 < ν < ν0

∥f (t, ·)∥L2(S2) ≲ e−λν
1
2 t∥f in∥L2(S2).

Idea: Use functional with commutator brackets.
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Decay of induced velocity field u (macroscopic quantity)

Velocity field u(t) =
∫
S2 f (t, v)F (v)∇(k · v) dv (macroscopic)

0 Time t

B
ou

n
d
fo
r
u
(l
og

)

e−ϵν
1
2 t (enhanced dissipation)

(1 + t)−2 (inviscid mixing)

Proposition (Persistence of phase mixing)

For 0 < ν ≪ 1 and t ≲ ν−1/2|logν|∣∣∣∣∫
S2
f (t, v)F (v) dv

∣∣∣∣ ≲log
1

(1 + t)
∥F∥H1+δ∥f ∥H1+δ ,∣∣∣∣∫

S2
f (t, v)F (v)∇(k · v) dv

∣∣∣∣ ≲log
1

(1 + t)2
∥F∥H2+δ∥f ∥H2+δ .
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Proof ideas

Consider the hypocoercive functional (a, b, c suitable constants):

E (t) =
1

2

[
∥f ∥2+aνt∥∇f ∥2+2bνt2ℜ⟨i∇(k ·v)f ,∇f ⟩+cνt3∥∇(k ·v)f ∥2

]
In considered time-frame:

d

dt
E (t) +

ν

2
∥∇f ∥2 + aν2t

2
∥∇∇f ∥2 + bνt2

2
∥∇(k · v)f ∥2

+
cν2t3

2
∥∇(∇(k · v)f )∥2 ≲ OK

Enhanced dissipation follows from interpolation

Lemma (interpolation)

For σ ∈ (0, 1]

σ1/2∥g∥2 ≤ σ

2
∥∇g∥2 + 2∥∇(k · v) g∥2.
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Proof ideas for mixing

Use vector-field method:

Inviscid case (ν = 0)

Consider Jf for J = ∇+ it∇(k · v):

(∂t + ik · v)f = 0 ⇒ (∂t + ik · v)Jf = 0

Control on Jf ⇒ time decay

With viscosity:

(∂t − L1)Jf + νJf = 2iνt
(
∇(k · v)f + (k · v)∇f

)
.

Expected bounds

∥f (t)∥L2 ≲ 1, ∥∇f (t)∥L2 ≲ t

would yield

∥Jf (t)∥L2 ≤ C
(
1 + ν

∫ t

0
s(1 + s) ds

)
, ∀t ≤ ν−1/2.
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Proof ideas for mixing

Idea: Use viscosity adapted vector fields

Jν f = α(t)∇f + iβ(t)∇(k · v)f

where β′ = α and α′ = −2iνβ so that

α(t) = cosh(
√
−2iν t) and β(t) =

1√
−2iν

sinh(
√
−2iν t).

New error(
∂t + i(k · v)− ν∆

)
Jν f + νJν f = 2iβν∇([k · v − 1]f )

localised away from pole v = k .
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Volterra equation

To conclude for the linearised evolution, use Duhamel’s formula to
get Volterra equation for u:

u(t) +

∫ t

0
Kν(t − s)u(s)ds = g(t)

where

Kν(t)w · w̄ =
3ϵΓ

4π

∫
S2
eL1t(Pk⊥k · w)(Pk⊥k · w̄) dv

g(t) = iϵ

∫
S2

eL1t fin(k , v)Pk⊥k dv

Key point: Obtain O(t−2) decay for u!
Steps:

1 Prove O(t−2) decay for Kν and g

2 Identify condition on Γ to transfer decay to u
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Transfer of decay in Volterra equation

Classical theory for Volterra equation
u(t) +

∫ t
0 K (t − s)u(s) ds = g(t):

Theorem (Paley-Wiener, see [Gripenberg et al])

If g ∈ Lp(R+) and K ∈ L1(R+), and if its Laplace transform
satisfies

det(I + LK (z)) ̸= 0, ∀ℜz ≥ 0 (Lap)

then the Volterra equation has a unique solution in u ∈ Lp(R+).

Not quantitative and for exponential decay. We show

Theorem (Quantitative version)

If g ,K ∈ O(t−α), α > 1 and (Lap), then u ∈ O(t−α).

Remark: Already known? Various quantitative statements in
literature.
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Solution of the Volterra equation

Our proof is to write

(ũ, g̃) := (1 + ϵt)α(u, g),

k(t, s) :=

(
1 + ϵt

1 + ϵs

)α

K (t − s)1s<t ,

ũ(t) +

∫ t

s=0
k(t, s)ũ(s)ds = g̃(t).

Aim: Show that ũ is bounded knowing that g̃ is bounded.
Use that k satisfies

k(t, s) = 0 for s ≥ t, ∥k∥ := sup
t

∫
R+

|k(t, s)|ds <∞.

This forms a Banach algebra for products

k1 ⋆ k2(t, s) =

∫ ∞

τ=0
k1(t, τ)k2(τ, s)dτ
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Resolvent for Volterra equation

In this algebra, find the resolvent r satisfying

r + r ⋆ k = r + k ⋆ r = k .

If k has a resolvent the solution is ũ = g̃ − r ⋆ g̃ .
Obtain the resolvent for small enough ϵ as perturbation from a von
Neumann series of the kernel K (t − s)1s<t which has a resolvent
R(t − s)1s<t .

Last point: Spectral condition (Lap)
Use complex analysis for a Penrose style argument. Here one
studies the winding number of det(I + LK ).

Phase mixing Active suspension model Phase mixing for v ∈ Sd−1 Volterra equation Nonlinear stability



Nonlinear stability result

Theorem

Let s > 7
2 . Assume linear stability. ∃C0, ν0, δ0 > 0 such that

∀ν ≤ ν0 and all initial data ψin

∥ψin∥Hs
xL

2
p
≤ δ0ν

3
2

there exists a global solution ψ satisfying

sup
t≥0

∥ψ(t)∥2Hs
xL

2
p
+ ν

∫ ∞

0
∥∇pψ(t)∥2Hs

xL
2
p
dt ≤ C0 ν

−1∥ψin∥2Hs
xL

2
p
.
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Difficulties

Recall full equation:
∂t f + (v + u) · ∇x f +∇v ·

(
Pv⊥ [(γE (u) +W (u))v ] f

)
= ν∆v f ,

−∆xu +∇xq = α∇x ·
∫
S2
f (t, x , v) v ⊗ v dv ,

∇x · u = 0.

Main difficulty: Cannot treat u · ∇x f as error term in linear
theory (x regularity)

• Need to use ∇ · u = 0!

• Need to take all modes together
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Advection-diffusion equation

Given velocity field v with (bootstrap) assumption

sup
t≥0

∥v(t)∥Hs +

(∫ ∞

0
∥v(t)∥2Hsdt

) 1
2

≤ ϵν
5
4 (H)

Evolution
∂tg + (v + p) · ∇xg = ν∆pg .

Theorem

Let s > 5
2 , 0 < s ′ < s + 1

4 . ∃C0, ϵ, ν0, η1 > 0. For ν ≤ ν0:

∥g(t)∥Hs
xL

2
p
≤ C0e

−η1ν
1
2 t∥g in∥Hs

xL
2
p
,

∑
k ̸=0

|k|2s′ |Vk [gk(t)]|2 ≲

(
ν

1
2

min{1, ν
1
2 t}

)3

∥g in,∇pg
in,∇2

pg
in∥2Hs

xL
2
p
.
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Ideas for the advection-diffusion equation

Study each Fourier mode k : Need long time results for enhanced
dissipation and mixing (with localisation).
For enhanced dissipation, functional for mode k

Eχ,k(Yk) = ∥Ykχ∥2 +
(
ν

|k |

) 1
2

ak∥∇pYkχ∥2

+ 2bkℜ⟨i∇p(p · k̂)Ykχ,∇pYkχ⟩

+

(
ν

|k |

)− 1
2

ck∥∇p(p · k̂)Ykχ∥2

where (ak , bk , ck) := (a, b, c)(h) with h = ν
1
2 |k |

1
2 t and

a(h) = Amin(h, 1), b(h) = B min(h2, 1), c = C min(h3, 1).
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Covering the advection

Use summed quantity:

Eχ,s(Y ) =
∑
k

|k |2sEχk ,k(Yk)

Simplified typical error term from velocity field v (no localisation):∑
k,ℓ

|k |2sℜ⟨ikvk−ℓYℓ,Yk⟩

=
1

2

∑
k,ℓ

ℜ
〈
i
(
|k|2sk − |ℓ|2sℓ

)
· vk−ℓYℓ,Yk

〉
=

1

2

∑
k,ℓ

ℜ
〈
i
(
|k|2s − |ℓ|2s

)
vk−ℓ · ℓYℓ,Yk

〉
Use the gain from the difference.
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