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Macroscopic behaviour from microscopic laws

Statistical physics: many particle systems
e Microscopic laws: reversible
o Macroscopic laws: irreversible (thermodynamic)
Kinetic theory: density over phase space (x, v)
e with collisions by Boltzmann and Maxwell
= H theorem

e collisionless by Jeans (gravitational) and Vlasov (plasmas)
= reversible
= Landau (1946) damping
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Phase mixing for free transport

Density f(t,x, v) evolves over phase space (x,v) € T X R as

8tf+vaxf:0.
1 t=20 1 t=144 1 t=16 1 t=179
v 14 v v
0 0 0 0

0 X 2r 0 X 2r 0 X 2r 0 X 2f
Fourier transform x — k:
Oif +ikvf =0 = fi(t,v) = e RN (y)
Spatial density

pk(t):/ fult, v)dv:/ okt gy dy
veR

veR
decays if ™ has regularity.
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Active suspension model

Active particles (bacteria) in a Stokes fluid described by
e position x € T3,

e orientation v € S2.

Each particle moves forward = Induced velocity field u.

Density f(t, x, v) evolves as
Oef + (v + u) - Vxf + V, - (Pvl [(VE(u) + W(u))v] f) — VA,
— Ayu+Vyqg=aVy- /2 f(t,x,v)vevdy,
Vx-u=0. )

E(u) =3 [Veu+ (Viu)T] and W(u) =3 [Viu— (Viu)']
Pusher: < 0 Puller: a >0

Active suspension model
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Oberservations for the active suspension model

Popular model. For pushers, simulations show a phase transition
more or less observed in experiments:

o For v|a| small enough, the incoherent state f(v) = 2 is
stable.

e For v|a| big enough, emergence of a new collective behaviour.
Changes the rheology of the suspension.

Goal: Recover observations analytically
First step: Understand the linearised behaviour

In the incoherent regime, we exhibit a mixing phenomenon, both at
v=0and v>> 1> 0 (much harder). The fact that v € S?
changes deeply the behaviour with respect to usual settings.

Active suspension model
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Linearised model

Linearise around the incoherent state:
e Fourier modes x — k decouple
e Can rescale k to |k| =1 in adimensional form
Fixed mode k € S?, perturbation f = f(t,v),v € S?, evolves as

r

Orf +iv - kf — Z’—v® v: E(u) =vA,f,
T

u=P,ikY,

Y = e/ f(t,v)vevdyv
S2

where e = +1 (pullers € = 1, pushers ¢ = —1) and strength
number I.

Active suspension model
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Linear results

Theorem (v = 0: mixing)

If e =1 (pullers), for any I', as t — co

u(t)] = 0(t™2), [y = O(t™).

If e = —1 (pushers), there exists I such that

o For < T, the same stability result holds.

o For[ > T, there exist unstable eigenmodes.

Theorem (v > 0: mixing followed by enhanced dissipation)

Ife=1o0re=—1andl < T, then for v small enough

1 . ntM _ 1
)]+ 3l min (L5 oo
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Remark: Decay due to mixing is at fixed polynomial rate, even for
analytic f,.

Strong difference with usual results due to v € S? instead of

v e R3S,

Remark: Contemporary paper by [Albritton-Ohm| on the same
model.

e v = 0: Under stability condition from dispersion relation, L2
decay as
o0
/ (B)P(L+ )P dt < 0o
t=0
e v > 0: No analogue of our theorem. Only result of enhanced
dissipation under stringent assumption I' < v1/2.

Active suspension model
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Decay by phase mixing and diffusion

Understand phase mixing and diffusion (Fourier mode x — k):

(Or—L1)f = (Op+ik-v—vA )i =0, fi = fi(t,v),t eRT,v € §?

where we can rescale k € S2.

Challenge: Phase mixing is degenerate at poles +k

Similar to mixing through Poiseuille flow:

vy U U (y(l—y)>

X

Common theme for phase mixing of trapped particles.

Phase mixing for v € sd—1
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Decay by pure phase mixing

(Or—L1)f = (Oy+ik-v—rvA)F =0,  f=f(t,v),t € R" kveS?

Proposition (inviscid decay)

Forv =0 and 6 > 0 and weight F : S*> = R

1
L A€ FO) v] S s F sl
1
‘/SQ f(t, V) F(V) V(k . V)dV S m||F“H2+6||fHH2+6.

Idea: Solve explicitly and use stationary phase.

Phase mixing for v € =T
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Decay by phase mixing and diffusion

(O — Li)f = (B + ik -v —vA)f =0, f=Ff(tv),teR kveS.

Small degenerate diffusion (0 < v < 1)7

(collisions in kinetic theory (Boltzmann/Landau operator), viscosity in fluids)
Hypocoercivity: Decay by combination of

transport and degenerate dissipation.
Decay rate for v < 1: Faster as simple diffusion as

e transport pushes perturbations to high Fourier frequencies,
o dissipation is faster for high Fourier frequencies.

Proposition (enhanced dissipation)

There exists vy, A > 0 such that for 0 < v < 1y

1
IF(t, Mizeey S e ™ lizgse)-

Idea: Use functional with commutator brackets.

Phase mixing for v € sd—1
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Decay of induced velocity field u (macroscopic quantity)

VeIOC|ty field u(t) = Jo f(t,v F(v) V(k - v)dv (macroscopic)

™

2 - - e_e”ft (enhanced dissipation)
3 (1 + t)~2 (inviscid mixing)

P

‘-.9 a \ :
ge]

5
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m - | r

0 Time t

Proposition (Persistence of phase mixing)

For0<v<1andt < v 12|logy|

1
(8, 9) F(v) v Siog (g5 1F e [l
1
‘/Sz f(t, V) F(V) V(k ° V) dV §|0g m||F”H2+6HfHH2+5.

gd—1

Phase mixing for v €
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Consider the hypocoercive functional (a, b, ¢ suitable constants):
1
E(t) =5 [HfHz—i—autHVfHZ—i—Zbutzﬂ%(iV(k-v)f,Vf>+cut3HV(k-v)f|]2]

In considered time-frame:

d

v bl/t
—E(t) + S [IVF|? +
G EO+ SIVAT+

a

V2t
IIVVfII2 IV (k- v)F|?

3
V(K- A2 S OK

Enhanced dissipation follows from mterpolatlon

Lemma (interpolation)
For o € (0,1]

g
o 2|gl? < SIIVell® + 2V (k- v) gl

gd—1

Phase mixing for v €
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Proof ideas for mixing

Use vector-field method:

Inviscid case (v = 0)
Consider Jf for J =V 4+ itV(k - v):

(O; +ik-v)f =0 = (9 +ik-v)JF=0

Control on Jf = time decay
With viscosity:
(0r — Ly)Jf + vJf = 2iwt(V(k-v)f + (k- v)VF).
Expected bounds
)l S 1 VAl St
would vyield
()2 < C<1+I//Ot5(1+5)d5), vt <2,

Phase mixing for v € sd—1
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Proof ideas for mixing

Idea: Use viscosity adapted vector fields
Jf =a(t)VF+ip(t)V(k - v)f
where ' = o and o = —2jvf3 so that

1

a(t) = cosh(v —2iv t) and [(t) = Nem,

sinh(v/—2iv t).

New error
<8t +i(k-v) - Z/A)J,,f + v, f = 2iBuV([k - v — 1]f)

localised away from pole v = k.

Phase mixing for v € sd—1
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Volterra equation

To conclude for the linearised evolution, use Duhamel’s formula to
get Volterra equation for u:

where

r
K,(t)w-w = sl et (P ik - w)(Pyik - W) dv
4 §2

g(t) = ie/ ebitf (k, v)P, Lk dv
S2

Key point: Obtain O(t~2) decay for u!
Steps:

@ Prove O(t~?) decay for K, and g
Q Identify condition on I to transfer decay to u

Volterra equation
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Transfer of decay in Volterra equation

Classical theory for Volterra equation
u(t) + [y K(t —s)u(s)ds = g(t):

Theorem (Paley-Wiener, see )

If g € LP(RT) and K € LY(R"), and if its Laplace transform
satisfies

det(/ + LK(z)) # 0, VRz >0 (Lap)
then the Volterra equation has a unique solution in u € LP(R™T).
Not quantitative and for exponential decay. We show

Theorem (Quantitative version)
Ifg,K € O(t™®), a > 1 and (Lap), then u € O(t™%).

Remark: Already known? Various quantitative statements in
literature.

Volterra equation
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Solution of the Volterra equation

Our proof is to write
(4,8) := (1 + et)*(u, g),

1+et\®
k(t, S) = (1 i 65) K(t — 5)15<t,

a(t) + /st k(t,s)d(s)ds = g(t).

=0
Aim: Show that i is bounded knowing that g is bounded.
Use that k satisfies

K(t,s)=0 fors>t, |k ::sgp/R+|k(t,s)|ds<oo.

This forms a Banach algebra for products

ko x kot 5) =/

T=

Volterra equation
[e]e] e}

o0

kl(t7 T)kQ(Tv 5) dr
0



Resolvent for Volterra equation

In this algebra, find the resolvent r satisfying
r+rxk=r+kxr=k.

If k has a resolvent the solutionis i =g — rxg.

Obtain the resolvent for small enough ¢ as perturbation from a von
Neumann series of the kernel K(t — s)1s<: which has a resolvent
R(t — s)ls<t.

Last point: Spectral condition (Lap)
Use complex analysis for a Penrose style argument. Here one
studies the winding number of det(/ + LK).

Volterra equation
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Nonlinear stability result

Theorem

Let s > % Assume linear stability. 3Co, vg, 09 > 0 such that
Vv < vy and all initial data '"

: 3
19" || s1z < dov2

there exists a global solution 1) satisfying

o0
sup [9(£)[ 22 + ¥ / IV o5(E) 212 At < Co v 1972z
>0 xTp 0 T =T

Nonlinear stability
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Difficulties

Recall full equation:
Ouf + (v + ) Viuf + 9 - (Pys [(VE(u) + W)V F) = v F,

—Axu+qu=avx'/ f(t,x,v)vevdy,
S2

Vx-u=0.

Main difficulty: Cannot treat u- Vf as error term in linear
theory (x regularity)

e Need to use V- u = 0!
e Need to take all modes together

Nonlinear stability
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Advection-diffusion equation

Given velocity field v with (bootstrap) assumption

00 5 5
sup [lv(t)[[ns + (/ IIV(t)IIi/sdt> < evi (H)
t>0 0

Evolution
0:g + (v +p) - Vg = vApg.

Theorem

Let s > g 0<s < s—{—%. 3Co, €,v9,m > 0. Forv < vy:
l .
le(®)llmsiz < Coe™ ™ * g™ |12

1 3
/ V2 ] q .
> kP Valgr (0] S | ———= ] lg™ Vpe™, Vig" iz
k20 min{l,v2t} P

Nonlinear stability
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ldeas for the advection-diffusion equation

Study each Fourier mode k: Need long time results for enhanced
dissipation and mixing (with localisation).
For enhanced dissipation, functional for mode k

2 Vo2 2
Evk(Yi) = || YixI|® + 7 akl|Vp Yix||
+ 2RV (P - k) Yiex, Vi Yiex)

v

1
T (m) V(o - K) Vil

where (ax, by, ck) := (a, b, ¢)(h) with h = y%|k]%t and

a(h) = Amin(h,1), b(h) = Bmin(h*,1), c= Cmin(h* 1).

Nonlinear stability
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Covering the advection

Use summed quantity:

EX,S(Y) = Z |k’2sEXk7k(Yk)
k

Simplified typical error term from velocity field v (no localisation):
> KPR (kv Yo, Yie)
K,
1 .
=5 D R ([KPk = 10P50) - vie Y, V)
K,
1 :
=3 D R (KP = 1P vi—e - £, Y
k.t

Use the gain from the difference.

Nonlinear stability
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