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Why Schrödinger - Poisson system (SPS)?
❍ Physical Applications

Semiconductor modelling; Plasma physics

Cosmology; in particular galaxy formation

Kopp, Vattis & Scordis, 2017 From the page of Dr. R. Kaehler

2d & 3d simulations for galaxy formation

❍ Challenges

Interesting physical quantities (e.g., position density) develop sharply
localised features

Accurate numerical approximations with uniform meshes would require
extremely fine spatial & temporal mesh sizes

Uniform meshes in 2d & 3d: hardly practical
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The continuous problem
∂tu − i

ε

2α2
∆u + i

β

εα
vu = 0, ∆v = |u|2 in Ω × [0,T ],

u = 0, v = 0 on ∂Ω × [0,T ],

u(·, 0) = u0 in Ω,

Ω: convex polygonal domain in Rd , d = 1, 2, 3

u0 : Ω → C given initial value; u0 ∈ H1
0 (Ω) ∩ H2(Ω)

α, ε > 0

β ∈ R (β > 0 ⇒ focusing (or attractive), β < 0 ⇒ defocusing (or repulsive))

❍ Existence of a unique smooth solution (u, v) (Castella, 1997; Bourgain, 1999)

Often in the PDE literature: v = |u|2 ∗ K , K appropriate Green’s function
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Time discretisation: A relaxation scheme
1 Rewrite SPS as the following system:∂tu − i

ε

2α2
∆u + i

β

εα
vu = 0 in Ω × (0,T ]

∆v = ϕ, ϕ = |u|2 in Ω × (0,T ],

❍ Notation:

0 =: t0 < t1 < · · · < tN := T a partition of [0,T ], In := (tn, tn+1],

kn := tn+1 − tn the variable time steps, k := max
0≤n≤N−1

kn

∂̄Un :=
Un+1 − Un

kn
, Un+ 1

2 :=
Un+1 + Un

2
, tn+ 1

2
=

tn+1 + tn

2

2 New relaxation-type numerical scheme: For 0 ≤ n ≤ N − 1,
∂̄Un − i

ε

2α2
∆Un+ 1

2 + i
β

εα
V n+ 1

2Un+ 1
2 = 0,

∆V n+ 1
2 = Φn+ 1

2 , Φn+ 1
2 =

kn + kn−1

kn−1
|Un|2 − kn

kn−1
Φn− 1

2 ,

with k−1 := k0, U
0 = u0 and Φ− 1

2 = |u0|2
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Motivation behind the relaxation scheme

How do we approximate ϕ(tn+ 1
2
)?

At step n, Φn− 1
2 , Un are known ⇒ Compute Φn+ 1

2 by linear extrapolation

between Φn− 1
2 and |Un|2: Φn+ 1

2 :=
kn + kn−1

kn−1
|Un|2 − kn

kn−1
Φn− 1

2

Use Φn+ 1
2 to obtain an approximation for v : ∆v = ϕ⇝ ∆V n+ 1

2 = Φn+ 1
2
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New relaxation-type scheme
❍ For 0 ≤ n ≤ N − 1,

Φn+ 1
2 =

kn + kn−1

kn−1
|Un|2 − kn

kn−1
Φn− 1

2 , ∆V n+ 1
2 = Φn+ 1

2 ,

∂̄Un − i
ε

2α2
∆Un+ 1

2 + i
β

εα
V n+ 1

2Un+ 1
2 = 0,

with k−1 := k0, U
0 = u0 and Φ− 1

2 = |u0|2 (for now)

❍ Inspired by:

Besse (2004); Katsaounis & K. (2018); Besse, Descombes, Dujardin,
Lacroix-Violet (2021)

In Katsaounis & K. (2018) the first a posteriori error estimator was
constructed for the NLS equation with power nonlinearity

❍ Advantages:

Expected to be second order accurate

Explicit with respect to the nonlinearity ⇒ No need to solve a nonlinear
equation to obtain the next approximation

Satisfies a discrete version of mass & energy conservation
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Conservation Laws
❍ Continuous conservation laws

Mass conservation: M(t) = M(0) with M(t) := ∥u(t)∥2

Energy conservation: ||E(t)∥ = ∥E(0)∥ with

E(t) :=ε2

α
∥∇u(t)∥2 − β∥∇v(t)∥2 = ε2

α
∥∇u(t)∥2 + β

∫
Ω

v(x , t)|u(x , t)|2 dx

❍ Discrete conservation laws

Discrete mass conservation: Mn = M0 with Mn := ∥Un∥2

Non-standard discrete energy conservation: ||En∥ = ∥E0∥ with

En :=
ε2

α
∥∇Un∥2 + β

(
2

∫
Ω

V n− 1
2 (x)|Un(x)|2 dx + ∥∇V n− 1

2 ∥2
)

and constant time-steps

▶ What happens for variable time-steps? It holds

En+1 = En +Rn with Rn :=
β(kn − kn−1)

2(kn + kn−1)
kn∥

∇V n+ 1
2 −∇V n− 1

2

kn
∥2
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Numerical verification of the discrete conservation laws

❍ Toy model 1: Constant time-steps

d = 2, Ω = (−1, 1)2, T = 3, α = β = 5

u0(x , y) =
(
sin

( x
π

)
+ i cos

(y
π

))
(1− x2)(1− y2)

spatial discretisation: linear FE, h = 0.015625, k = 10−3

Mn
e := |Mn −M(0)|, En

e,gl := |En − E(0)|

ε = 1 ε = 0.1 ε = 0.01
tn Mn

e En
e,gl Mn

e En
e,gl Mn

e En
e,gl

0 4.55e-15 2.39e-16 7.22e-16 2.58e-15 3.94e-15 9.57e-15
1 2.06e-14 3.29e-16 4.11e-15 1.39e-15 3.55e-15 1.60e-14
2 4.33e-14 1.75e-16 1.66e-15 2.36e-15 8.55e-15 1.54e-14
3 5.97e-14 3.03e-16 7.32e-15 2.01e-15 1.44e-14 2.56e-14

Table: Errors in the conservation laws.

❉ Conservation of discrete mass & energy up to double precision accuracy
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Numerical verification of the discrete conservation laws
❍ Toy model 2: Variable time-step

d = 2, Ω = (−1, 1)2, T = 2, α = β = 5, ε = 0.01

u0(x , y) =
(
sin

( x

π

)
+ i cos

( y

π

))
(1− x2)(1− y 2)

spatial discretisation: cubic FE, h = 0.015625

[0,T ] = ∪7
j=0[Tj ,Tj+1]; Tj = j/4, 0 ≤ j ≤ 8

In each [Tj ,Tj+1), kn = 1.25(j + 1)× 10−3, 0 ≤ j ≤ 7

Mj
e := |Mj −M(0)|, E j

e,gl := |E j − E(0)|, E j
e,loc := |E j − E j−1|

Tj kj−1 kj Mj
e E j

e,gl E j
e,loc Rj

0.25 1.250e-03 2.500e-03 2.99e-15 3.11e-15 2.88e-11 1.28e-11
0.50 2.500e-03 3.750e-03 7.54e-14 2.93e-11 1.92e-10 1.22e-10
0.75 3.750e-03 5.000e-03 9.30e-14 2.21e-10 6.09e-10 4.42e-10
1.00 5.000e-03 6.250e-03 1.07e-13 8.31e-10 1.40e-09 1.09e-09
1.25 6.250e-03 7.500e-03 1.23e-13 2.23e-09 2.69e-09 2.20e-09
1.50 7.500e-03 8.750e-03 1.28e-13 4.92e-09 4.66e-09 3.92e-09
1.75 8.750e-03 1.000e-02 1.39e-13 9.59e-09 7.37e-09 6.32e-09
2.00 1.000e-02 – 1.41e-13 1.70e-08 – –

Table: Errors in the conservation laws: variable time-step
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New relaxation-type scheme: EOC

❍ Toy model 3:

d = 2, Ω = (−1, 1)2, T = 1, α = β = ε = 1

v(x , y , t) = e−t sin
(
π(x2 − 1)(y2 − 1)

)
, u(x , y , t) = (1 + i)v(x , y , t) and

appropriate right-hand side in the SPS

spatial discretisation: FE with polynomial degree r = 9, h = 0.0625

e(u; k) := max
0≤n≤N

∥u(·, tn)− Un∥, e(v ; k) := max
0≤n≤N

∥v(·, tn)− V n∥

k e(u; k) Rate e(v ; k) Rate
0.04 3.72233e-4 - 9.60801e-4 -
0.02 9.49430e-5 1.971 2.51017e-4 1.936
0.01 2.39046e-5 1.990 6.41950e-5 1.967

Table: Temporal experimental orders of convergence.
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Generalisation: SPS with time-dependent coefficients
∂tu − ip(t)∆u + iq(t)vu = 0 in Ω×(τ,T ),

∆v = |u|2 − µ in Ω×(τ,T ),

u(x , τ) = u0(x) in Ω,

{µ = 0 and u = v = 0}, OR {µ = ∥u0∥2L2 and u, v periodic} on ∂Ω×(τ,T ],

The above SPS satisfies the following energy balance law

p(t)
d

dt
Ek(t)−

q(t)

2

d

dt
Ev (t) = 0 (instead of the energy conservation)

Our new relaxation-type scheme satisfies a discrete version:

p(tn− 1
2
)∂̄En

k −
q(tn− 1

2
)

2
∂̄En

v = 0

❍ More details can be found in A. Athanasoulis, Th. Katsaounis, I.K., S. Metcalfe, “A novel,

structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems”,

J. Comput. Phys. 490 (2023)

IRENE KYZA (U of St Andrews) Energy Preserving Method for the SPS RWAM 2025, ICMS 11 / 21



A Cosmological Example: “Sine Wave Collapse”

d = 2, Ω = (−0.5, 0.5)2, τ = 0.01, T = 0.088, µ = ∥u0∥2 = 1

p(t) =
ε

2t3/2
, q(t) =

β

εt1/2
, β = 1.5, ε = 6× 10−5

Spatial discretisation via linear FE, k = 5× 10−5

Initial density |u0|2:
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“Sine Wave Collapse”: Simulations

Numerical density |UN |2 (logarithmic scale) at tn = 0.0023, 0.033, 0.088: 1024× 1024 grid

Numerical density |UN |2 (logarithmic scale) at tn = 0.0023, 0.033, 0.088: 2048× 2048 grid
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A posteriori estimates
❍ What is an a posteriori estimate? If U is a numerical approximation to u, then for
some norm ∥ · ∥A,

(1) ∥u − U∥A ≤ η(U)

η(U): computable quantity depending only on U and the data of the problem

η(U): decreases with optimal order (i.e., converges with the same order as the
numerical method)

❍ Advantages

1 Error control through a posteriori estimates provide mathematical guarantees on
how accurate the approximate solution isw�

Provide reliable numerical computations

2 η(U) =
∑
i

ηi (U)∆xi +
∑
j

ηj(U)∆tj gives an understanding where the error is

coming from⇝ Construction of adaptive algorithms

3 A posteriori error control is a way to overcome the limitations of ad hoc adaptivity
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Adaptivity
❍ What is an adaptive algorithm? Construction of non-uniform grids in a systematic way

❍ Essential tool for:

1 Detecting regions where the solution exhibits singular behaviour (e.g., blowup,
caustics, boundary layers)

2 Capturing disparate space-time scales efficiently (e.g., fluid structure interaction)

3 Adaptive algorithms typically lead to reduced computational cost

x
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

|u|2

x
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

|u|2

...uniform partition ...adaptivity
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A posteriori error control: Reconstruction Technique
(Akrivis, Makridakis & Nochetto, 2005)

❍ Aim: Derivation of optimal order a posteriori error estimates for the new
relaxation-type scheme for both u (in the L∞(L2)−norm) and v (L∞(H1)−norm)

❍ New relaxation-type scheme is second order accurate

❍ The equation for the potential does not include any time-derivative✓
❍ U(t) := ℓn0(t)U

n + ℓn1(t)U
n+1, t ∈ In, ℓn0(t) :=

tn+1 − t

kn
, ℓn1(t) :=

t − tn
kn

Using U in the a posteriori error analysis leads to suboptimal bounds
(Dörfler, 1996)

Introduce a reconstruction Û of U, work with u − U = (u − Û) + (Û − U)

Reconstruction Technique: Main idea

1 Find a continuous projection or interpolant Û of U

2 Û − U is of optimal order

3 Û satisfies a perturbation of the original PDE

4 The perturbation term (residual) is a computable quantity or can be estimated by
computable quantities of optimal order of accuracy

5 Use PDE stability arguments to obtain the final a posteriori estimates
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A posteriori error control: Reconstruction Technique
U(t) &V (t) , t ∈ In : linear interpolants between Un,Un+1 & V n,V n+1

▶ Using U in the a posteriori error analysis ⇒ first order bounds (Döfler, 1996)

▶ Introduce a reconstruction Û of U; work with (u − Û) + (Û − U)
(Akrivis, Makridakis & Nochetto, 2005)

New relaxation-type scheme reconstruction & its properties

For 0 ≤ n ≤ N − 1 and t ∈ In,

Û(t) := Un + i
ε

2α2

∫ t

tn

∆U(s) ds − i
β

εα

∫ t

tn

In+ 1
2
(VU)(s) ds,

with In+ 1
2
the linear interpolant of VU at tn, tn+ 1

2

Properties:

1 Û is a time-continuous function; Û(tn) = U(tn) = Un

2 Û − U is second order accurate

3 ∂tÛ − i
ε

2α2
∆Û + i

β

εα
V Û = r̂1 and ∆V − |Û|2 = r̂2 in In,

with the residuals r̂1, r̂2 computable and of second order
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An a posteriori error estimate
For d = 1, 2 and 0 ≤ n ≤ N − 1 and t ∈ In, it holds

∥(u − Û)(t)∥ ≤ η(t) and

∥∇(v − V )(t)∥ ≤ H(Û, u0; t)η(t) + ∥r̂2(t)∥,

with

η(t) := exp

(
|β|
εα

∫ t

tn

H(Û, u0; τ)∥Û(t)∥L∞dτ

)
×

(
∥(u − Û)(tn)∥+

∫ t

tn

(
|β|
εα

∥Û(τ)∥L∞∥r̂1(τ)∥H−1 + ∥r̂2(τ)∥
)
dτ

)

and (u − Û)(0) = 0

❍ Proof: ...Very Technical!...

❍ Main Ingredients:

1 Energy techniques for the continuous problem

2 Continuous mass & energy conservation

3 Gagliardo-Nirenberg inequality

4 Sobolev embeddings + H2−regularity estimate for the Poisson equation
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A numerical implementation: EOC of the residuals
d = 1, [a, b] = [−1, 1], T = 1, α = β = 1 ε = 0.1

B-splines of degree 3, 1000 grid points

v(x , t) = et(1− x2)3 sin(π(1− x2)), u(x , t) = (1 + i)v(x , t)

For ∥r̂1(t)∥:

k
∫ T
tN−1

∥r̂1(τ)∥ dτ Rate
∫ T
0 ∥r̂1(τ)∥ dτ Rate

1.00e-4 7.58e-6 – 2.67e-4 –

8.00e-3 4.62e-6 2.218 1.70e-4 2.017

4.00e-3 4.80e-7 3.267 4.20e-5 2.020

2.00e-3 5.98e-8 3.005 1.04e-5 2.009

1.00e-3 7.46e-9 3.002 2.60e-6 2.004

8.00e-4 3.82e-9 3.002 1.66e-6 2.003

For ∥r̂2(t)∥:

k
∫ T
tN−1

∥r̂2(τ)∥ dτ Rate
∫ T
0 ∥r̂2(τ)∥ dτ Rate

1.00e-4 9.60e-6 – 2.94e-4 –

8.00e-3 4.90e-6 3.009 1.87e-4 2.031

4.00e-3 6.08e-7 3.010 4.60e-5 2.020

2.00e-3 7.58e-8 3.004 1.14e-5 2.008

1.00e-3 9.47e-9 3.002 2.87e-6 1.995

8.00e-4 4.85e-9 3.000 2.85e-6 1.980
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Ongoing & Future Work

1 A posteriori error analysis for fully discrete schemes

2 Further numerical implementations

3 A posteriori error estimates for d = 3 (other Sobolev embedding inequalities)

4 Design of adaptive algorithms, based on the a posteriori error estimators

5 Extension of the a posteriori error analysis and adaptivity to SPS with
time-dependent coefficients

6 Higher order time-discretisations???
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Thank you very much!
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