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Why Schrodinger - Poisson system (SPS)?
O PHYSICAL APPLICATIONS

@ Semiconductor modelling; Plasma physics
@ Cosmology; in particular galaxy formation
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Kopp, Vattis & Scordis, 2017 From the page of Dr. R. Kaehler

2d & 3d simulations for galaxy formation
O CHALLENGES

@ Interesting physical quantities (e.g., position density) develop sharply
localised features

@ Accurate numerical approximations with uniform meshes would require
extremely fine spatial & temporal mesh sizes

@ Uniform meshes in 2d & 3d: hardly practical
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The continuous problem

atu—iiAu—l—iﬂvu:O, Av = |ul? in 2 x [0, TJ,
202 2Xe"

u=0, v=0 on 912 x [0, T],
u(-,0) = up in 2,

@ (2: convex polygonal domain in RY, d =1,2,3

@ up: 2 — C given initial value; up € H3(2) N H?(2)
@ a,e>0
@ S €R (B > 0= focusing (or attractive), 8 < 0 = defocusing (or repulsive))

O Existence of a unique smooth solution (u, v) (Castella, 1997; Bourgain, 1999)

@ Often in the PDE literature: v = |u|> x K, K appropriate Green's function
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Time discretisation: A relaxation scheme
© Rewrite SPS as the following system:

. € . B :
8tu—1@Au—|—1E—avu:0 in 2x (0, T]
Av=¢, ¢=|uf? in 2 x (0, T],

O Notation:
@ 0=ty <t1 <---<ty:=T apartition of [0, T], In := (tn, tn+1],

kn := tp4+1 — tp the variable time steps, k :== max k,
0<n<N—1
= urtt —un 1 umttyun tni1 + 1,
@ U= - Utz = - t,,_{_l:M
kn 2 2 2

@ New relaxation-type numerical scheme: For0 < n< N —1,

B

ou" —1—AU”Jr2 —|—1 V"Jrz unta =0,
AV = ¢t ¢"+% _ kot ke U™ — Kn_gn-
’ kn—l kn—l ’

with k_1 1= ko, U° = up and &2 = ||
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Motivation behind the relaxation scheme

@ How do we approximate ¢(t,,1)?
At step n, ®"~2, U" are known = Compute otz by linear extrapolation

k k,_
between ®"~3 and |[Um|2: ot — %
n—1

T T T

k 1
un 2 n b3
U=

P12 1 L. 4

) / ‘
¢n-1/2 - -

tn-1 2 tn tn-+-1 2

@ Use ®": to obtain an approximation for vi Av = ¢ ~> AV i = ¢nts
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New relaxation-type scheme
OFor0<n<N-1,

kn
kn—l

kn + knfl

1
kn_]

|U"? -

U — i S Aurts i Byt gt
202 ca

with k_1 := ko, U° = wo and ® 3 = |uo|2 (for now)

O INSPIRED BY:

1
n—1
®" 2]

1 1
n+5 _ 4snts5
AV = o2

:07

@ Besse (2004); Katsaounis & K. (2018); Besse, Descombes, Dujardin,

Lacroix-Violet (2021)

@ In Katsaounis & K. (2018) the first a posteriori error estimator was
constructed for the NLS equation with power nonlinearity

O ADVANTAGES:

@ Expected to be second order accurate

@ Explicit with respect to the nonlinearity = No need to solve a nonlinear

equation to obtain the next approximation

@ Satisfies a discrete version of mass & energy conservation
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Conservation Laws
O Continuous conservation laws

@ Mass conservation: M(t) = M(0) with M(t) := [Ju(t)|?
@ Energy conservation: [|E(t)] = ||£(0)] with

() = VU0 — BITUOI = SITueF +5 [ e Oute 0 ox

O Discrete conservation laws
@ Discrete mass conservation: M" = M% with M" := ||U"||?

@ Non-standard discrete energy conservation: ||E7|| = ||E9|| with
2
£ == VU"? + 8 (2/ V72 ()| U (x) P dx + ||vv"%||2)
2

and constant time-steps
» What happens for variable time-steps? It holds

EML ="+ R" with R":=

B(ky — k,,_l)k | \VAVZa B vAVZES e
2(ky + kn_1) " kn
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Numerical verification of the discrete conservation laws
O Toy MODEL 1: Constant time-steps
0d=20=(-1,12T=3a=4=5
_fan (X : Y U2V 2
® u(x,y) = (sm (ﬂ) +1cos(7r>) (1=x3)(1-y?)

@ spatial discretisation: linear FE, h = 0.015625, k = 103

0 Mg :=|M"= M), &, :=I[E"—E(0)]
e=1 e=0.1 e =0.01
th MZ g,g/ MZ g,g/ Mg :,g/

4.55e-15 | 2.39e-16 || 7.22e-16 | 2.58e-15 || 3.94e-15 | 9.57e-15
2.06e-14 | 3.29e-16 || 4.11e-15 | 1.39e-15 || 3.55e-15 | 1.60e-14
4.33e-14 | 1.75e-16 || 1.66e-15 | 2.36e-15 || 8.55e-15 | 1.54e-14
5.97e-14 | 3.03e-16 || 7.32e-15 | 2.01e-15 || 1.44e-14 | 2.56e-14

WIN O

Table: Errors in the conservation laws.

%k Conservation of discrete mass & energy up to double precision accuracy
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Numerical verification of the discrete conservation laws

O Toy MODEL 2: Variable time-step
0d=20=(-11?2T=2a=F=5 =001
@ u(x,y) = (sm (71-) —|—1cos( )) (1-x)(1-y?)
@ spatial discretisation: cubic FE, h = 0.015625
@ [0, T]=Ulo[T), Tjsa]; T, =4/4,0<,<8
In each [T, Tjz1), ko = 1.25(j +1) x 107%,0<j <7

o ML= |M - M), &, =8 -£0), &, =&

7—j kl -1 kl MJ&‘ gé .8l 5‘e/ loc Rj
0.25 | 1.250e-03 | 2.500e-03 | 2.09e-15 | 3.11e-15 | 2.88e-11 | 1.28e-11
0.50 | 2.500e-03 | 3.750e-03 | 7.54e-14 | 2.93e-11 | 1.92e-10 | 1.22e-10
0.75 | 3.750e-03 | 5.000e-03 | 9.30e-14 | 2.21e-10 | 6.09e-10 | 4.42e-10
1.00 | 5.000e-03 | 6.250e-03 | 1.07e-13 | 8.31e-10 | 1.40e-09 | 1.09e-09
1.25 | 6.250e-03 | 7.500e-03 | 1.23e-13 | 2.23e-09 | 2.69e-09 | 2.20e-09
1.50 | 7.500e-03 | 8.750e-03 | 1.28e-13 | 4.92e-09 | 4.66e-09 | 3.92e-09
1.75 | 8.750e-03 | 1.000e-02 | 1.39e-13 | 9.50e-09 | 7.37e-09 | 6.32e-09
2.00 | 1.000e-02 - 1.41e-13 | 1.70e-08 - -

Table: Errors in the conservation laws: variable time-step
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New relaxation-type scheme: EOC

O Toy MODEL 3:
° d:2,!2:(—1,1)2, T=1la=F=¢=1

® v(x,y,t) =e tsin(m(x> = 1)(y? - 1)), u(x,y,t) = (L +i)v(x,y,t) and
appropriate right-hand side in the SPS

@ spatial discretisation: FE with polynomial degree r =9, h = 0.0625

® e(uik) = max [lu(,tn) = U, e(vik) = max [lv(-tn) — V7|

k e(u; k) Rate e(v; k) Rate
0.04 | 3.72233e-4 - 9.60801e-4 -
0.02 | 9.49430e-5 1.971 | 2.51017e-4 1.936
0.01 | 2.39046e-5 1.990 | 6.41950e-5 1.967

Table: Temporal experimental orders of convergence.
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Generalisation: SPS with time-dependent coefficients

Oru —ip(t)Au+iq(t)vu =0 in 2x(r, T),
Av=|uf —p in 2x(r, T),
u(x,7) = uo(x) in £,

{p=0and u=v=0}, OR {u=|ul: and u,v periodic}  on dNx(r, T],

@ The above SPS satisfies the following energy balance law

p(t)%gk(t) - @% v(t) = 0 (instead of the energy conservation)

@ Our new relaxation-type scheme satisfies a discrete version:

i q(t,_1) -
e, )er — NP aen g

-4
2

O More details can be found in A. Athanasoulis, Th. Katsaounis, |.K., S. Metcalfe, “A novel,
structure-preserving, second-order-in-time relaxation scheme for Schrédinger-Poisson systems”,

J. Comput. Phys. 490 (2023)
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A Cosmological Example: “Sine Wave Collapse”

o d=2 02=(-05,05) 7=001 T =0.088, = |ul?®=1

€ B8 _
(] p(t)zm,q(t)zm,ﬁ:15.€=6x10 5

@ Spatial discretisation via linear FE, k =5 x 107>

@ Initial density |ug|*:

m] = = =
IRENE KYZA (U of St Andrews) Energy Preserving Method for the SPS RWAM 2025, ICMS



“Sine Wave Collapse”: Simulations

| pnn AR URITUR e
P 1w o VTR

Numerical density |UN|? (logarithmic scale) at t, = 0.0023,0.033,0.088: 1024 x 1024 grid

g

R i 1 e TP
R 0 o o TR

Numerical density |UN|? (logarithmic scale) at t, = 0.0023,0.033,0.088: 2048 x 2048 grid
= - = z wac
RWAM 2025, ICMS
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A posteriori estimates

O What is an a posteriori estimate? If U is a numerical approximation to u, then for
some norm || - || a,

(1) |u—Ulla <n(V)

@ n(U): computable quantity depending only on U and the data of the problem

@ 7(U): decreases with optimal order (i.e., converges with the same order as the
numerical method)

O ADVANTAGES

@ Error control through a posteriori estimates provide mathematical guarantees on
how accurate the approximate solution is

Provide reliable numerical computations
Q (V)= Z"?i(U)AXi + an(U)Atj gives an understanding where the error is
i J
coming from ~ Construction of adaptive algorithms

© A posteriori error control is a way to overcome the limitations of ad hoc adaptivity
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Adaptivity
O What is an adaptive algorithm? Construction of non-uniform grids in a systematic way

O Essential tool for:

@ Detecting regions where the solution exhibits singular behaviour (e.g., blowup,
caustics, boundary layers)

@ Capturing disparate space-time scales efficiently (e.g., fluid structure interaction)

© Adaptive algorithms typically lead to reduced computational cost

L 1= 8
08 § g
8
08~ g g
°
06
L 06
lui? |
041 lul*
I 04
02
02
o ok
1 1 1 1 1 1 1 1 1 1 1 1
0 02 04 0.6 08 1 o 02 04 06 08 1
x x
...uniform partition ...adaptivity
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A posteriori error control: Reconstruction Technique
(Akrivis, Makridakis & Nochetto, 2005)

O Aim: Derivation of optimal order a posteriori error estimates for the new
relaxation-type scheme for both u (in the L°°(L?)—norm) and v (L*°(H*)—norm)

O New relaxation-type scheme is second order accurate

O The equation for the potential does not include any time-derivative \/

thy1 —t t— tn
O U(t) := () U" + L3() U™, t e I, €5(t) == +/1< NHOEES
@ Using U in the a posteriori error analysis leads ton suboptimal boun&s
(Déorfler, 1996)

@ Introduce a reconstruction U of U, work with u — U = (u — U) 4+ (U — V)

Reconstruction Technique: Main idea

@ Find a continuous projection or interpolant Uof U
@ U — U is of optimal order
© U satisfies a perturbation of the original PDE

@ The perturbation term (residual) is a computable quantity or can be estimated by
computable quantities of optimal order of accuracy

@ Use PDE stability arguments to obtain the final a posteriori estimates
IRENE KYZA (U of St Andrews) Energy Preserving Method for the SPS
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A posteriori error control: Reconstruction Technique
e U(t) &V(t), t€l,: linear interpolants between U", U"1 & V" Vvntl
> Using U in the a posteriori error analysis = first order bounds (Défler, 1996)

» Introduce a reconstruction U of U; work with (u— U) + (U — U)
(Akrivis, Makridakis & Nochetto, 2005)

New relaxation-type scheme reconstruction & its properties
Foro<n<N-1land te€l,

. c t ﬁ t

0(t) = U" + i /t AU(s)ds i - /t T4 (VU)(s) ds,
with 7, 1 the linear interpolant of VU at t,,t,,1

PROPERTIES:

© U is a time-continuous function: U(t,,) = U(t,) = U"
Q U — U is second order accurate
Q 0.0 - i%AU—HEVU =fand AV — [UR =% in I,
20 cx

with the residuals 7, % computable and of second order

™7 i - = = A
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An a posteriori error estimate
Ford=1,2and 0 < n< N —1and t € I, it holds

I(u—0)(&)l <nm(t)  and
IV(v = V)(©)Il < H(D, wo; t)n(t) + |B(2)]],

with

ate) s=exp (L [ (0, i) 06 o)
s« (Ita= 00l + [ (L0 I as + 1201 ) e )

and (u— 0)(0) =0

O PROOF: ...Very Technical!...

O MAIN INGREDIENTS:
@ Energy techniques for the continuous problem
@ Continuous mass & energy conservation
© Gagliardo-Nirenberg inequality
@ Sobolev embeddings + H?—regularity estimate for the Poisson equation
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A numerical implementation: EOC of the residuals

@ d=1, [a,b]=[-1,1], T=1l,a=8=1e=0.1
@ B-splines of degree 3, 1000 grid points

@ v(x,t) =e'(1 - x*)*sin(n(1 — x?)),

For ||A(

u(x,t) = (1+1)v(x,t)

@ For ||A(

IRENE KYZA (U of St Andrews)

t)ll:

k Jo_ Ia@ldr | Rate [[ [ IA(7)ldr | Rate
1.00e-4 7.58e-6 - 2.67e-4 -
8.00e-3 4.62¢-6 2.218 1.70e-4 2,017
4.00e-3 4.80e-7 3.267 4.20e-5 2.020
2.00e-3 5.98¢-8 3.005 1.04e-5 2.009
1.00e-3 7.46e-9 3.002 2.60e-6 2.004
8.00e-4 3.82¢-9 3.002 1.66e-6 2.003

t)ll:

k Jo_ IB@ldr | Rate [[ [ I(r)lldr | Rate
1.00e-4 9.60e-6 - 2.94e-4 -
8.00e-3 4.90e-6 3.009 1.87e-4 2.031
4.00e-3 6.08e-7 3.010 4.60e-5 2.020
2.00e-3 7.58¢-8 3.004 1.14e-5 2.008
1.00e-3 9.47¢-9 3.002 2.87e-6 1.995
8.00e-4 4.85¢-9 3.000 2.85e-6 1.980
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Ongoing & Future Work

@ A posteriori error analysis for fully discrete schemes

@ Further numerical implementations

© A posteriori error estimates for d = 3 (other Sobolev embedding inequalities)
© Design of adaptive algorithms, based on the a posteriori error estimators

© Extension of the a posteriori error analysis and adaptivity to SPS with
time-dependent coefficients

@ Higher order time-discretisations???
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Thank you very much!
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