AN ENERGY PRESERVING METHOD FOR THE SCHRÖDINGER-POISSON SYSTEM

IRENE KYZA

SCHOOL OF MATHEMATICS & STATISTICS

Joint work with **A. Athanassoulis** (Dundee), **Th. Katsaounis** (Crete & IACM-FORTH) and **S. Metcalfe** (Heriot-Watt)

Retreat for Women in Applied Mathematics 2025

13 - 17 January 2025, ICMS, Bayes Centre, Edinburgh

Why Schrödinger - Poisson system (SPS)?

- **O** Physical Applications
 - Semiconductor modelling; Plasma physics
 - Cosmology; in particular galaxy formation

Kopp, Vattis & Scordis, 2017

From the page of Dr. R. Kaehler

2d & 3d simulations for galaxy formation

O CHALLENGES

- Interesting physical quantities (e.g., position density) develop *sharply localised* features
- Accurate numerical approximations with uniform meshes would require *extremely fine* spatial & temporal mesh sizes
- Uniform meshes in 2d & 3d: hardly practical

Energy Preserving Method for the SPS

< □ > < □ > < □ > < □ > < □ > < □ >

The continuous problem

$$\begin{cases} \partial_t u - i \frac{\varepsilon}{2\alpha^2} \Delta u + i \frac{\beta}{\varepsilon \alpha} v u = 0, \quad \Delta v = |u|^2 & \text{in } \Omega \times [0, T], \\ u = 0, \quad v = 0 & \text{on } \partial \Omega \times [0, T], \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \end{cases}$$

- Ω : convex polygonal domain in \mathbb{R}^d , d = 1, 2, 3
- $u_0: \Omega \to \mathbb{C}$ given initial value; $u_0 \in H_0^1(\Omega) \cap H^2(\Omega)$
- $\alpha, \varepsilon > 0$
- $\beta \in \mathbb{R}$ ($\beta > 0 \Rightarrow$ focusing (or attractive), $\beta < 0 \Rightarrow$ defocusing (or repulsive))

O Existence of a unique smooth solution (u, v) (Castella, 1997; Bourgain, 1999)

• Often in the *PDE literature*: $v = |u|^2 * K$, K appropriate Green's function

Time discretisation: A relaxation scheme

Rewrite SPS as the following system:

$$\begin{cases} \partial_t u - i \frac{\varepsilon}{2\alpha^2} \Delta u + i \frac{\beta}{\varepsilon \alpha} v u = 0 & \text{in } \Omega \times (0, T] \\ \Delta v = \phi, \quad \phi = |u|^2 & \text{in } \Omega \times (0, T], \end{cases}$$

O Notation:

•
$$0 =: t_0 < t_1 < \dots < t_N := T$$
 a partition of $[0, T]$, $l_n := (t_n, t_{n+1}]$,
 $k_n := t_{n+1} - t_n$ the variable time steps, $k := \max_{0 \le n \le N-1} k_n$
• $\bar{\partial} U^n := \frac{U^{n+1} - U^n}{k_n}$, $U^{n+\frac{1}{2}} := \frac{U^{n+1} + U^n}{2}$, $t_{n+\frac{1}{2}} = \frac{t_{n+1} + t_n}{2}$
• New relaxation-type numerical scheme: For $0 \le n \le N - 1$,

$$\begin{cases} \bar{\partial} U^{n} - \mathrm{i} \frac{\varepsilon}{2\alpha^{2}} \Delta U^{n+\frac{1}{2}} + \mathrm{i} \frac{\beta}{\varepsilon \alpha} V^{n+\frac{1}{2}} U^{n+\frac{1}{2}} = 0, \\ \Delta V^{n+\frac{1}{2}} = \Phi^{n+\frac{1}{2}}, \quad \Phi^{n+\frac{1}{2}} = \frac{k_{n} + k_{n-1}}{k_{n-1}} |U^{n}|^{2} - \frac{k_{n}}{k_{n-1}} \Phi^{n-\frac{1}{2}} \end{cases}$$

with $k_{-1} := k_0$, $U^0 = u_0$ and $\Phi^{-\frac{1}{2}} = |u_0|^2$

Motivation behind the relaxation scheme

• How do we approximate $\phi(t_{n+\frac{1}{2}})$?

At step n, $\Phi^{n-\frac{1}{2}}$, U^n are known \Rightarrow Compute $\Phi^{n+\frac{1}{2}}$ by *linear extrapolation* between $\Phi^{n-\frac{1}{2}}$ and $|U^n|^2$: $\Phi^{n+\frac{1}{2}} := \frac{k_n + k_{n-1}}{k_{n-1}} |U^n|^2 - \frac{k_n}{k_{n-1}} \Phi^{n-\frac{1}{2}}$

New relaxation-type scheme O For $0 \le n \le N - 1$,

$$\begin{cases} \Phi^{n+\frac{1}{2}} = \frac{k_n + k_{n-1}}{k_{n-1}} |U^n|^2 - \frac{k_n}{k_{n-1}} \Phi^{n-\frac{1}{2}}, \quad \Delta V^{n+\frac{1}{2}} = \Phi^{n+\frac{1}{2}}, \\ \bar{\partial} U^n - \mathrm{i} \frac{\varepsilon}{2\alpha^2} \Delta U^{n+\frac{1}{2}} + \mathrm{i} \frac{\beta}{\varepsilon \alpha} V^{n+\frac{1}{2}} U^{n+\frac{1}{2}} = 0, \end{cases}$$

with $k_{-1} := k_0$, $U^0 = u_0$ and $\Phi^{-\frac{1}{2}} = |u_0|^2$ (for now)

O INSPIRED BY:

- Besse (2004); Katsaounis & K. (2018); Besse, Descombes, Dujardin, Lacroix-Violet (2021)
- In Katsaounis & K. (2018) the *first* a posteriori error estimator was constructed for the NLS equation with power nonlinearity

O Advantages:

- Expected to be second order accurate
- *Explicit* with respect to the *nonlinearity* ⇒ No need to solve a nonlinear equation to obtain the next approximation
- Satisfies a discrete version of mass & energy conservation

Conservation Laws

O Continuous conservation laws

- Mass conservation: $\mathcal{M}(t) = \mathcal{M}(0)$ with $\mathcal{M}(t) := \|u(t)\|^2$
- Energy conservation: $||\mathcal{E}(t)|| = ||\mathcal{E}(0)||$ with

$$\mathcal{E}(t) := \frac{\varepsilon^2}{\alpha} \|\nabla u(t)\|^2 - \beta \|\nabla v(t)\|^2 = \frac{\varepsilon^2}{\alpha} \|\nabla u(t)\|^2 + \beta \int_{\Omega} v(x,t) |u(x,t)|^2 dx$$

- **O** Discrete conservation laws
 - Discrete mass conservation: $\mathcal{M}^n = \mathcal{M}^0$ with $\mathcal{M}^n := \|U^n\|^2$
 - \bullet Non-standard discrete energy conservation: $\|\mathcal{E}^n\| = \|\mathcal{E}^0\|$ with

$$\mathcal{E}^n := \frac{\varepsilon^2}{\alpha} \|\nabla U^n\|^2 + \beta \left(2 \int_{\Omega} V^{n-\frac{1}{2}}(x) |U^n(x)|^2 dx + \|\nabla V^{n-\frac{1}{2}}\|^2 \right)$$

and constant time-steps

What happens for variable time-steps? It holds

$$\mathcal{E}^{n+1} = \mathcal{E}^n + \mathcal{R}^n$$
 with $\mathcal{R}^n := \frac{\beta(k_n - k_{n-1})}{2(k_n + k_{n-1})} k_n \| \frac{\nabla V^{n+\frac{1}{2}} - \nabla V^{n-\frac{1}{2}}}{k_n} \|^2$

Numerical verification of the discrete conservation laws

O TOY MODEL 1: Constant time-steps

•
$$d = 2$$
, $\Omega = (-1, 1)^2$, $T = 3$, $\alpha = \beta = 5$

•
$$u_0(x,y) = \left(\sin\left(\frac{x}{\pi}\right) + i\cos\left(\frac{y}{\pi}\right)\right)(1-x^2)(1-y^2)$$

• spatial discretisation: linear FE, h = 0.015625, $k = 10^{-3}$

•
$$\mathcal{M}_e^n := |\mathcal{M}^n - \mathcal{M}(0)|, \quad \mathcal{E}_{e,gl}^n := |\mathcal{E}^n - \mathcal{E}(0)|$$

	arepsilon=1		$\varepsilon = 0.1$		arepsilon=0.01	
tn	\mathcal{M}_e^n	$\mathcal{E}_{e,gl}^n$	\mathcal{M}_e^n	$\mathcal{E}_{e,gl}^n$	\mathcal{M}_e^n	$\mathcal{E}_{e,gl}^n$
0	4.55e-15	2.39e-16	7.22e-16	2.58e-15	3.94e-15	9.57e-15
1	2.06e-14	3.29e-16	4.11e-15	1.39e-15	3.55e-15	1.60e-14
2	4.33e-14	1.75e-16	1.66e-15	2.36e-15	8.55e-15	1.54e-14
3	5.97e-14	3.03e-16	7.32e-15	2.01e-15	1.44e-14	2.56e-14

Table: Errors in the conservation laws.

 $\boldsymbol{\ast}$ Conservation of discrete mass & energy up to double precision accuracy

IRENE KYZA (U of St Andrews)

Energy Preserving Method for the SPS

Numerical verification of the discrete conservation laws O TOY MODEL 2: Variable time-step

•
$$d = 2$$
, $\Omega = (-1, 1)^2$, $T = 2$, $\alpha = \beta = 5$, $\varepsilon = 0.01$

•
$$u_0(x,y) = \left(\sin\left(\frac{x}{\pi}\right) + i\cos\left(\frac{y}{\pi}\right)\right)(1-x^2)(1-y^2)$$

• spatial discretisation: cubic FE, h = 0.015625

•
$$[0, T] = \cup_{j=0}^{7} [T_j, T_{j+1}]; T_j = j/4, 0 \le j \le 8$$

In each $[T_j, T_{j+1}], k_n = 1.25(j+1) \times 10^{-3}, 0 \le j \le 7$

•
$$\mathcal{M}_e^j := |\mathcal{M}^j - \mathcal{M}(\mathbf{0})|, \quad \mathcal{E}_{e,gl}^j := |\mathcal{E}^j - \mathcal{E}(\mathbf{0})|, \quad \mathcal{E}_{e,loc}^j := |\mathcal{E}^j - \mathcal{E}^{j-1}|$$

Tj	k_{j-1}	k _j	\mathcal{M}_e^j	$\mathcal{E}^{j}_{e,gl}$	$\mathcal{E}_{e,loc}^{j}$	\mathcal{R}^{j}
0.25	1.250e-03	2.500e-03	2.99e-15	3.11e-15	2.88e-11	1.28e-11
0.50	2.500e-03	3.750e-03	7.54e-14	2.93e-11	1.92e-10	1.22e-10
0.75	3.750e-03	5.000e-03	9.30e-14	2.21e-10	6.09e-10	4.42e-10
1.00	5.000e-03	6.250e-03	1.07e-13	8.31e-10	1.40e-09	1.09e-09
1.25	6.250e-03	7.500e-03	1.23e-13	2.23e-09	2.69e-09	2.20e-09
1.50	7.500e-03	8.750e-03	1.28e-13	4.92e-09	4.66e-09	3.92e-09
1.75	8.750e-03	1.000e-02	1.39e-13	9.59e-09	7.37e-09	6.32e-09
2.00	1.000e-02	_	1.41e-13	1.70e-08	_	_

Table: Errors in the conservation laws: variable time-step

New relaxation-type scheme: EOC

O TOY MODEL 3:

- d = 2, $\Omega = (-1, 1)^2$, T = 1, $\alpha = \beta = \varepsilon = 1$
- $v(x, y, t) = e^{-t} \sin(\pi(x^2 1)(y^2 1))$, u(x, y, t) = (1 + i)v(x, y, t) and appropriate right-hand side in the SPS
- spatial discretisation: FE with polynomial degree r = 9, h = 0.0625

•
$$e(u;k) := \max_{0 \le n \le N} \|u(\cdot,t_n) - U^n\|, \quad e(v;k) := \max_{0 \le n \le N} \|v(\cdot,t_n) - V^n\|$$

k	e(u; k)	Rate	e(v; k)	Rate
0.04	3.72233e-4	-	9.60801e-4	-
0.02	9.49430e-5	1.971	2.51017e-4	1.936
0.01	2.39046e-5	1.990	6.41950e-5	1.967

Table: Temporal experimental orders of convergence.

Generalisation: SPS with time-dependent coefficients

$$\begin{cases} \partial_t u - ip(t)\Delta u + iq(t)vu = 0 & \text{in } \Omega \times (\tau, T), \\ \Delta v = |u|^2 - \mu & \text{in } \Omega \times (\tau, T), \\ u(x, \tau) = u_0(x) & \text{in } \Omega, \\ \{\mu = 0 \text{ and } u = v = 0\}, \text{ OR } \{\mu = \|u_0\|_{L^2}^2 \text{ and } u, v \text{ periodic}\} & \text{on } \partial\Omega \times (\tau, T], \end{cases}$$

- The above SPS satisfies the following energy balance law $p(t)\frac{d}{dt}\mathcal{E}_{k}(t) \frac{q(t)}{2}\frac{d}{dt}\mathcal{E}_{v}(t) = 0 \text{ (instead of the energy conservation)}$
- Our new relaxation-type scheme satisfies a discrete version: $p(t_{n-\frac{1}{2}})\bar{\partial}\mathcal{E}_{k}^{n} - \frac{q(t_{n-\frac{1}{2}})}{2}\bar{\partial}\mathcal{E}_{v}^{n} = 0$

O More details can be found in A. Athanasoulis, Th. Katsaounis, I.K., S. Metcalfe, "A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems", J. Comput. Phys. 490 (2023)

A Cosmological Example: "Sine Wave Collapse"

•
$$d = 2$$
, $\Omega = (-0.5, 0.5)^2$, $\tau = 0.01$, $T = 0.088$, $\mu = ||u_0||^2 = 1$

•
$$p(t) = rac{arepsilon}{2t^{3/2}}$$
, $q(t) = rac{eta}{arepsilon t^{1/2}}$, $eta = 1.5$, $arepsilon = 6 imes 10^{-5}$

- Spatial discretisation via linear FE, $k = 5 \times 10^{-5}$
- Initial density $|u_0|^2$:

"Sine Wave Collapse": Simulations

Numerical density $|U^N|^2$ (logarithmic scale) at $t_n = 0.0023, 0.033, 0.088$: 1024 × 1024 grid

IRENE KYZA (U of St Andrews)

Energy Preserving Method for the SPS

RWAM 2025, ICMS

A posteriori estimates

O What is an a posteriori estimate? If U is a numerical approximation to u, then for some norm $\|\cdot\|_A$,

$$||u-U||_A \leq \eta(U)$$

- $\eta(U)$: computable quantity depending only on U and the data of the problem
- η(U): decreases with optimal order (i.e., converges with the same order as the numerical method)

) Advantages

Error control through a posteriori estimates provide mathematical guarantees on how accurate the approximate solution is

Provide reliable numerical computations

② $\eta(U) = \sum_{i} \eta_i(U) \Delta x_i + \sum_{j} \eta_j(U) \Delta t_j$ gives an understanding where the error is coming from \rightsquigarrow Construction of adaptive algorithms

3 A posteriori error control is a way to overcome the limitations of ad hoc adaptivity

Adaptivity

O What is an *adaptive algorithm*? Construction of *non-uniform grids* in a *systematic way*

O Essential tool for:

- Detecting regions where the solution exhibits singular behaviour (e.g., blowup, caustics, boundary layers)
- ② Capturing disparate space-time scales efficiently (e.g., fluid structure interaction)
- Adaptive algorithms typically lead to reduced computational cost

IRENE KYZA (U of St Andrews)

A posteriori error control: Reconstruction Technique (Akrivis, Makridakis & Nochetto, 2005)

O AIM: Derivation of optimal order a posteriori error estimates for the new relaxation-type scheme for both u (in the $L^{\infty}(L^2)$ -norm) and v ($L^{\infty}(H^1)$ -norm)

O New relaxation-type scheme is *second order accurate*

O The equation for the potential *does not include* any time-derivative \checkmark

$$\bigcirc \ U(t):=\ell_0^n(t)U^n+\ell_1^n(t)U^{n+1}, \ t\in I_n, \ \ell_0^n(t):=rac{t_{n+1}-t}{k_n}, \ \ell_1^n(t):=rac{t-t_n}{k_n}$$

- Using *U* in the a posteriori error analysis leads to suboptimal bounds (Dörfler, 1996)
- Introduce a reconstruction \hat{U} of U, work with $u U = (u \hat{U}) + (\hat{U} U)$

Reconstruction Technique: Main idea

- Find a *continuous* projection or interpolant \hat{U} of U
- 2 $\hat{U} U$ is of optimal order
- **③** \hat{U} satisfies a perturbation of the original PDE
- The perturbation term (residual) is a computable quantity or can be estimated by computable quantities of optimal order of accuracy
- **Solution** Use PDE stability arguments to obtain the final a posteriori estimates

IRENE KYZA (U of St Andrews)

Energy Preserving Method for the SPS

A posteriori error control: Reconstruction Technique

- U(t) & V(t) , $t \in I_n$: linear interpolants between U^n, U^{n+1} & V^n, V^{n+1}
 - Using U in the a posteriori error analysis \Rightarrow first order bounds (Döfler, 1996)
 - ▶ Introduce a reconstruction \hat{U} of U; work with $(u \hat{U}) + (\hat{U} U)$ (Akrivis, Makridakis & Nochetto, 2005)

New relaxation-type scheme reconstruction & its properties For $0 \le n \le N-1$ and $t \in I_n$, $\hat{U}(t) := U^n + i \frac{\varepsilon}{2\alpha^2} \int_{t_n}^t \Delta U(s) \, ds - i \frac{\beta}{\varepsilon \alpha} \int_{t_n}^t \mathcal{I}_{n+\frac{1}{2}}(VU)(s) \, ds$,

with $\mathcal{I}_{n+\frac{1}{2}}$ the linear interpolant of VU at $t_n, t_{n+\frac{1}{2}}$

PROPERTIES:

Û is a time-continuous function; Û(t_n) = U(t_n) = Uⁿ
 Û - U is second order accurate
 ∂_t Û - i ε/(2α²) ΔÛ + i β/εα VÛ = r̂₁ and ΔV - |Û|² = r̂₂ in I_n, with the residuals r̂₁, r̂₂ computable and of second order

An a posteriori error estimate

For d = 1, 2 and $0 \le n \le N - 1$ and $t \in I_n$, it holds

$$\begin{split} \|(u-\hat{U})(t)\| &\leq \eta(t) \qquad ext{and} \ \|
abla(v-V)(t)\| &\leq \mathcal{H}(\hat{U},u_0;t)\eta(t) + \|\hat{r}_2(t)\|, \end{split}$$

with

$$egin{aligned} &\eta(t) := \exp\left(rac{|eta|}{arepsilon lpha} \int_{t_n}^t \mathcal{H}(\hat{U}, u_0; au) \| \hat{U}(t) \|_{L^{\infty}} d au
ight) \ & imes \left(\|(u-\hat{U})(t_n)\| + \int_{t_n}^t \left(rac{|eta|}{arepsilon lpha} \| \hat{U}(au) \|_{L^{\infty}} \| \hat{r}_1(au) \|_{H^{-1}} + \| \hat{r}_2(au) \|
ight) d au
ight) \end{aligned}$$

and $(u - \hat{U})(0) = 0$

- O PROOF: ... Very Technical!...
- **O** MAIN INGREDIENTS:
 - Energy techniques for the continuous problem
 - 2 Continuous mass & energy conservation
 - Gagliardo-Nirenberg inequality
 - Sobolev embeddings $+ H^2$ -regularity estimate for the Poisson equation

A numerical implementation: EOC of the residuals

•
$$d = 1$$
, $[a, b] = [-1, 1]$, $T = 1, \alpha = \beta = 1 \varepsilon = 0.1$

- B-splines of degree 3, 1000 grid points
- $v(x,t) = e^t (1-x^2)^3 \sin(\pi(1-x^2)), \quad u(x,t) = (1+i)v(x,t)$

• For $\|\hat{r}_1(t)\|$:

k	$\int_{t_{N-1}}^{T} \ \hat{r}_1(\tau)\ d\tau$	Rate	$\int_0^T \ \hat{r}_1(\tau)\ d\tau$	Rate
1.00e-4	7.58e-6	-	2.67e-4	-
8.00e-3	4.62e-6	2.218	1.70e-4	2.017
4.00e-3	4.80e-7	3.267	4.20e-5	2.020
2.00e-3	5.98e-8	3.005	1.04e-5	2.009
1.00e-3	7.46e-9	3.002	2.60e-6	2.004
8.00e-4	3.82e-9	3.002	1.66e-6	2.003

• For $\|\hat{r}_2(t)\|$:

k	$\int_{t_{N-1}}^{T} \ \hat{r}_{2}(\tau)\ d\tau$	Rate	$\int_0^T \ \hat{r}_2(\tau)\ d\tau$	Rate	
1.00e-4	9.60e-6	-	2.94e-4	-	
8.00e-3	4.90e-6	3.009	1.87e-4	2.031	
4.00e-3	6.08e-7	3.010	4.60e-5	2.020	
2.00e-3	7.58e-8	3.004	1.14e-5	2.008	
1.00e-3	9.47e-9	3.002	2.87e-6	1.995	
8.00e-4	4.85e-9	3.000	2.85e=6 ∢ 🗇	► 1.980	(≣)

IRENE KYZA (U of St Andrews)

RW

Ongoing & Future Work

1 A posteriori error analysis for *fully discrete schemes*

2 Further numerical implementations

- **③** A posteriori error estimates for d = 3 (other Sobolev embedding inequalities)
- Oesign of adaptive algorithms, based on the a posteriori error estimators
- Extension of the a posteriori error analysis and adaptivity to SPS with time-dependent coefficients
- Higher order time-discretisations???

Thank you very much!

IRENE KYZA (U of St Andrews) Energy Preserving Method for the SPS

▶ < ∃ >