PT -SYMMETRIC OSCILLATORS WITH ONE-CENTER POINT INTERACTIONS

IVETA SEMORÁDOVÁ

We investigate the spectrum of Schr odinger operators with imaginary polynomial potentials in L 2 (R), perturbed with δ , or δ ' interaction, centered at the origin (1) $-\partial$ 2 x + ix2k-1 + $\alpha\delta$, $-\partial$ 2 x + ix2k-1 + $\alpha\delta$, where $\alpha \in R$, $\beta \in R$, $k \in N$. It is well established that the spectrum of the unperturbed operators consists of countable many real, isolated and simple eigenvalues for $k \ge 2$, and it is empty for k = 1. When $\alpha \ne 0$ or $\beta \ne 0$, for $k \ge 1$, we observe countable many non-real eigenvalues appearing in complex conjugate pairs, and at maximum finitely many real eigenvalues. The non-real eigenvalues asymptotically converge to the eigenvalues of the unperturbed problems defined on L 2 (R+) and L 2 (R-) with Dirichlet, resp. with Neumann boundary conditions for δ , resp. δ ' interaction. Moreover, for $\alpha \le Ck < 0$, we show the existence of negative real eigen value, diverging to $-\infty$ as $\alpha \to -\infty$.

References

- [1] J. Behrndt, I. Semor'adov'a, P. Siegl, The imaginary Airy operator with one-center δ interaction, to appear in Pure and Applied Functional Analysis
- [2] M. Marletta, I. Semor'adov'a, PT-symmetric oscillators with one-center point interactions manuscript in preparation