An Analysis of the Styrian Parliamentary Elections in 2015 and 2019 Using Different (Theoretical) Approaches

Christian Klamler

(based on joint work with Andreas Darmann, Julia Grundner and

> Manuela Puster)
> University of Graz

Mathematics of Voting and Representation Edinburgh
10 June 2024

Introduction

Does the electoral system matter?

- YES from a theoretical point of view
- Saari (1994), Nurmi (1999)
- YES from an empirical point of view
- Duverger (1951), Rae (1971), Lijphart (1994)
- this led to interest in electoral engineering
- Riker $(1986,1988)$
- Taagepera and Shugart (1989) provide guidelines for justified changes in electoral systems
- Kaminski $(1999,2002)$ in Poland
- Evci and Kaminski (2021) on Turkey

Introduction

Does the electoral system matter?

- YES from a theoretical point of view
- Saari (1994), Nurmi (1999)
- YES from an empirical point of view
- Duverger (1951), Rae (1971), Lijphart (1994)
- this led to interest in electoral engineering
- Riker $(1986,1988)$
- Taagepera and Shugart (1989) provide guidelines for justified changes in electoral systems
- Kaminski $(1999,2002)$ in Poland
- Evci and Kaminski (2021) on Turkey

Introduction

Does the electoral system matter?

- YES from a theoretical point of view
- Saari (1994), Nurmi (1999)
- YES from an empirical point of view
- Duverger (1951), Rae (1971), Lijphart (1994)
- this led to interest in electoral engineering
- Riker $(1986,1988)$
- Taagepera and Shugart (1989) provide guidelines for justified changes in electoral systems
- Kaminski $(1999,2002)$ in Poland
- Evci and Kaminski (2021) on Turkey

Introduction

Does the electoral system matter?

- YES from a theoretical point of view
- Saari (1994), Nurmi (1999)
- YES from an empirical point of view
- Duverger (1951), Rae (1971), Lijphart (1994)
- this led to interest in electoral engineering
- Riker $(1986,1988)$
- Taagepera and Shugart (1989) provide guidelines for justified changes in electoral systems
- Kaminski $(1999,2002)$ in Poland
- Evci and Kaminski (2021) on Turkey

Introduction

- Behavioral Social Choice
- Regenwetter et al. (2006)
- data from actual elections tested against the negative predictions stemming from the theoretical literature
- many of the theoretical problems were (often) not found in real-world decision problems
- experimental and survey studies
- Baujard et al. (2020, 2018, 2014), Laslier and Sanver (2010), Laslier and van der Straeten (2008) on French elections
- Roescu (2014) on Romanian elections
- Wantchekon (2003) on Benin elections
- Alos-Ferrer and Granic (2014) on German elections
- Darmann et al $(2017,2019)$ and Darmann and Klamler (2023) on Austrian elections
- McCune and McCune (2024) on various American ranked-choice elections
- Blais and Degan (2019) and Stephenson et al (2018) on strategic aspects

Introduction

How could mathematics help us understand what goes on in elections?
Goal today is to introduce a particular mathematical approach to analyze voting situations
"Geometry of Voting" by Don Saari

- Apply it (in a limited way) to data from two elections in Austria
- to say something about potential differences in outcomes and paradoxical situations

Introduction

How could mathematics help us understand what goes on in elections?
Goal today is to introduce a particular mathematical approach to analyze voting situations

- Apply it (in a limited way) to data from two elections in Austria
- to say something about potential differences in outcomes and paradoxical situations

Introduction

How could mathematics help us understand what goes on in elections?
Goal today is to introduce a particular mathematical approach to analyze voting situations
"Geometry of Voting" by Don Saari

- Apply it (in a limited way) to data from two elections in Austria
- to say something about potential differences in outcomes and paradoxical situations

Introduction

How could mathematics help us understand what goes on in elections?
Goal today is to introduce a particular mathematical approach to analyze voting situations
"Geometry of Voting" by Don Saari

- Apply it (in a limited way) to data from two elections in Austria
- to say something about potential differences in outcomes and paradoxical situations

Introduction

How could mathematics help us understand what goes on in elections?
Goal today is to introduce a particular mathematical approach to analyze voting situations
"Geometry of Voting" by Don Saari

- Apply it (in a limited way) to data from two elections in Austria
- to say something about potential differences in outcomes and paradoxical situations

Austrian Elections

- Data collected via exit polls in front of several real polling stations during the Styrian parliamentary elections on 31 May 2015 and on 24 Nov 2019
- approximately 1000 respondents for each election
- Questions in particular on voters' preferences, e.g.,
- full preference ranking of the parties
- assignment of parties to pre-defined preference classes
- approval preferences
- points assigned on a scale from -20 to +20
- but also on evaluation of parties on a left-right-political dimension
- eight parties in 2015 - six parties in 2019
- used the weak-order model of Regenwetter et al. (2007) to receive complete rankings (for the 2015 election)
- one third incomplete rankings in 2015-7\% incomplete rankings in 2019

Austrian Elections

- Data collected via exit polls in front of several real polling stations during the Styrian parliamentary elections on 31 May 2015 and on 24 Nov 2019
- approximately 1000 respondents for each election
- Questions in particular on voters' preferences, e.g.
- full preference ranking of the parties
- assignment of parties to pre-defined preference classes
- approval preferences
- points assigned on a scale from -20 to +20
- but also on evaluation of parties on a left-right-political dimension
- eight parties in 2015 - six parties in 2019
- used the weak-order model of Regenwetter et al. (2007) to receive complete rankings (for the 2015 election)
- one third incomplete rankings in 2015-7\% incomplete rankings in 2019

Austrian Elections

- Data collected via exit polls in front of several real polling stations during the Styrian parliamentary elections on 31 May 2015 and on 24 Nov 2019
- approximately 1000 respondents for each election
- Questions in particular on voters' preferences, e.g.,
- full preference ranking of the parties
- assignment of parties to pre-defined preference classes
- approval preferences
- points assigned on a scale from -20 to +20
- but also on evaluation of parties on a left-right-political dimension
- eight parties in 2015 - six parties in 2019
- used the weak-order model of Regenwetter et al. (2007) to receive complete rankings (for the 2015 election)
- one third incomplete rankings in 2015 - 7% incomplete

Austrian Elections

- Data collected via exit polls in front of several real polling stations during the Styrian parliamentary elections on 31 May 2015 and on 24 Nov 2019
- approximately 1000 respondents for each election
- Questions in particular on voters' preferences, e.g.,
- full preference ranking of the parties
- assignment of parties to pre-defined preference classes
- approval preferences
- points assigned on a scale from -20 to +20
- but also on evaluation of parties on a left-right-political dimension
- eight parties in 2015 - six parties in 2019
- used the weak-order model of Regenwetter et al. (2007) to receive complete rankings (for the 2015 election) - one third incomplete rankings in 2015 - 7\% incomplete

Austrian Elections

- Data collected via exit polls in front of several real polling stations during the Styrian parliamentary elections on 31 May 2015 and on 24 Nov 2019
- approximately 1000 respondents for each election
- Questions in particular on voters' preferences, e.g.,
- full preference ranking of the parties
- assignment of parties to pre-defined preference classes
- approval preferences
- points assigned on a scale from -20 to +20
- but also on evaluation of parties on a left-right-political dimension
- eight parties in 2015 - six parties in 2019
- used the weak-order model of Regenwetter et al. (2007) to receive complete rankings (for the 2015 election)
- one third incomplete rankings in 2015-7\% incomplete rankings in 2019

Theoretical Considerations

- Theoretically situations as the following could occur:

5	4	3	2	1
a	e	d	c	b
b	b	e	d	c
c	c	b	e	d
d	d	c	b	e
e	a	a	a	a

- Assume that they provide (consistently) more detailed preference information

$A(B)$	5	$A(B)$	4	$A(B)$	3	$A(B)$	2	$A(B)$	1
$30(20)$	a	$30(20)$	e	$70(10)$	d	$45(10)$	c	$35(10)$	b
$25(2)$	b	$25(5)$	b	$15(-1)$	e	$40(-1)$	d	$30(5)$	c
$20(1)$	c	$20(3)$	c	$10(-2)$	b	$10(-2)$	e	$25(-5)$	d
$15(-5)$	d	$15(-3)$	d	$5(-5)$	c	$5(-3)$	b	$10(-7)$	e
$10(-6)$	e	$10(-5)$	a	$0(-7)$	a	$0(-4)$	a	$0(-10)$	a

Theoretical Considerations

- Theoretically situations as the following could occur:

5	4	3	2	1
a	e	d	c	b
b	b	e	d	c
c	c	b	e	d
d	d	c	b	e
e	a	a	a	a

- Assume that they provide (consistently) more detailed preference information

$A(B)$	5	$A(B)$	4	$A(B)$	3	$A(B)$	2	$A(B)$	1
$30(20)$	a	$30(20)$	e	$70(10)$	d	$45(10)$	c	$35(10)$	b
$25(2)$	b	$25(5)$	b	$15(-1)$	e	$40(-1)$	d	$30(5)$	c
$20(1)$	c	$20(3)$	c	$10(-2)$	b	$10(-2)$	e	$25(-5)$	d
$15(-5)$	d	$15(-3)$	d	$5(-5)$	c	$5(-3)$	b	$10(-7)$	e
$10(-6)$	e	$10(-5)$	a	$0(-7)$	a	$0(-4)$	a	$0(-10)$	a

Theoretical Considerations

- Theoretically situations as the following could occur:

$$
\begin{array}{lllll}
5 & 4 & 3 & 2 & 1 \\
\hline a & e & d & c & b \\
b & b & e & d & c \\
c & c & b & e & d \\
d & d & c & b & e \\
e & a & a & a & a
\end{array}
$$

- Assume that they provide (consistently) more detailed preference information

$A(B)$	5	$A(B)$	4	$A(B)$	3	$A(B)$	2	$A(B)$	1
$30(20)$	a	$30(20)$	e	$70(10)$	d	$45(10)$	c	$35(10)$	b
$25(2)$	b	$25(5)$	b	$15(-1)$	e	$40(-1)$	d	$30(5)$	c
$20(1)$	c	$20(3)$	c	$10(-2)$	b	$10(-2)$	e	$25(-5)$	d
$15(-5)$	d	$15(-3)$	d	$5(-5)$	c	$5(-3)$	b	$10(-7)$	e
$10(-6)$	e	$10(-5)$	a	$0(-7)$	a	$0(-4)$	a	$0(-10)$	a

Theoretical Considerations

$A(B)$	5	$A(B)$	4	$A(B)$	3	$A(B)$	2	$A(B)$	1
$30(20)$	a	$30(20)$	e	$70(10)$	d	$45(10)$	c	$35(10)$	b
$25(2)$	b	$25(5)$	b	$15(-1)$	e	$40(-1)$	d	$30(5)$	c
$20(1)$	c	$20(3)$	c	$10(-2)$	b	$10(-2)$	e	$25(-5)$	d
$15(-5)$	d	$15(-3)$	d	$5(-5)$	c	$5(-3)$	b	$10(-7)$	e
$10(-6)$	e	$10(-5)$	a	$0(-7)$	a	$0(-4)$	a	$0(-10)$	a

Theoretical Considerations

$A(B)$	5	$A(B)$	4	$A(B)$	3	$A(B)$	2	$A(B)$	1
$30(20)$	a	$30(20)$	e	$70(10)$	d	$45(10)$	c	$35(10)$	b
$25(2)$	b	$25(5)$	b	$15(-1)$	e	$40(-1)$	d	$30(5)$	c
$20(1)$	c	$20(3)$	c	$10(-2)$	b	$10(-2)$	e	$25(-5)$	d
$15(-5)$	d	$15(-3)$	d	$5(-5)$	c	$5(-3)$	b	$10(-7)$	e
$10(-6)$	e	$10(-5)$	a	$0(-7)$	a	$0(-4)$	a	$0(-10)$	a

- This leads to the following voting outcomes:

Plur	Runoff	STV	Borda	Cond	Appr	100 points	± 20 points
a	e	e	b	\emptyset	c	d	a

Empirical Results - outcomes 2015

- The results of our 2015 election were very consistent.

Voting rule	1st	2nd	3rd	4th	5th	6th	7th	8th
Plurality Rule	$S P$	VP	$F P$	$G P$	$K P$	NEOS	TS	Pir
Run Off	$S P$	VP	$F P$	$G P$	KP	NEOS	TS	Pir
STV	$S P$	VP	$F P$	$G P$	NEOS	KP	TS	Pir
Condorcet	SP	VP	GP	FP	KP	NEOS	TS	Pir
Approval	SP	VP	FP	GP	NEOS	KP	TS	Pir
Borda	SP	VP	GP	FP	NEOS	KP	TS	Pir
± 20 Points	SP	VP	GP	KP	NEOS	FP	Pir	TS
100 Points	SP	VP	FP	GP	KP	NEOS	TS	Pir

Empirical Results - outcomes 2019

- The results of our 2019 election showed more variation.

Voting rule	1st	2nd	3 rd	4th	5th	6th
Plurality Rule	GP	$V P$	SP	FP	KP	NEOS
Run Off	GP	$V P$	SP	FP	KP	NEOS
STV	GP	$V P$	SP	FP	KP	NEOS
Condorcet	GP	NEOS	SP	$V P$	KP	FP
Approval	GP	NEOS	KP	$V P$	SP	FP
Borda	GP	VP	SP	NEOS	KP	$F P$
+/0/-	GP	NEOS	VP	SP	KP	FP
± 20 Points	GP	NEOS	KP	SP	VP	FP
Anti-Plur	VP	SP	NEOS	GP	KP	$F P$

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$
- equivalently: $p \in \mathbb{R}^{n!}$, i.e., how many voters hold each of the
n ! different strict rankings

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$
- equivalently: $p \in \mathbb{R}^{n!}$, i.e., how many voters hold each of the
n ! different strict rankings

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$
- equivalently: $p \in \mathbb{R}^{n!}$, i.e., how many voters hold each of the
n ! different strict rankings

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$
- equivalently: $p \in \mathbb{R}^{n!}$, i.e., how many voters hold each of the
n ! different strict rankings

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$
- equivalently: $p \in \mathbb{R}^{n!}$, i.e., how many voters hold each of the $n!$ different strict rankings

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$
- equivalently: $p \in \mathbb{R}^{n!}$, i.e., how many voters hold each of the
n ! different strict rankings

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$

n ! different strict rankings

Saari's Geometric Approach

What determines the difference in outcomes?

- Don Saari's geometric approach

Formal Framework:

- $X=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \ldots$ set of n candidates
- $R \subseteq X \times X$ is a binary relation on X
- \mathcal{P} is the set of the n ! strict rankings of the candidates
- assume a finite number of m voters
- a profile is $p \in \mathcal{P}^{m}$
- equivalently: $p \in \mathbb{R}^{n!}$, i.e., how many voters hold each of the n ! different strict rankings

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $n^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
- ... is a point in the $n!-1$ dimensional simplex
- already 5-dimensional for $n=3$
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred
- some "natural restrictions" of what are reasonable preferences

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $p^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
- ... is a point in the $n!-1$ dimensional simplex
- already 5-dimensional for $n=3$
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred
- some "natural restrictions" of what are reasonable preferences

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $p^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
is a point in the n ! -1 dimensional simplex
- already 5-dimensional for $n=3$
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred
- some "natural restrictions" of what are reasonable preferences

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $p^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
- ... is a point in the $n!-1$ dimensional simplex
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred
- some "natural restrictions" of what are reasonable preferences

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $p^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
- ... is a point in the $n!-1$ dimensional simplex
- already 5-dimensional for $n=3$
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred
- some "natural restrictions" of what are reasonable preferences

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $p^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
- ... is a point in the $n!-1$ dimensional simplex
- already 5-dimensional for $n=3$
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred
- some "natural restrictions" of what are reasonable preferences

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $p^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
- ... is a point in the $n!-1$ dimensional simplex
- already 5-dimensional for $n=3$
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred

Saari's Geometric Approach

Example with $n=3$

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- $p=(2,0,0,4,1,0) \in \mathbb{R}^{n!}$ represents a profile
- $p^{\prime}=\left(\frac{2}{7}, 0,0, \frac{4}{7}, \frac{1}{7}, 0\right)$ is a normalized profile
- ... is a point in the $n!-1$ dimensional simplex
- already 5-dimensional for $n=3$
- In the 2019 elections, $p \in \mathbb{R}^{720}$
- only 227 rankings actually occurred
- some "natural restrictions" of what are reasonable preferences

Saari Triangle

The following reduction in dimensions is, however, possible:

- take the $n-1$ dimensional simplex
where each vertex represents a candidate
- each point in the simplex
determines a ranking of the
candidates based on the point's
distance from the vertices
- ... according to "the closer the

Saari Triangle

The following reduction in dimensions is, however, possible:

- take the $n-1$ dimensional simplex where each vertex represents a candidate
- each point in the simplex
determines a ranking of the
candidates based on the point's distance from the vertices

- ... according to "the closer the

Saari Triangle

The following reduction in dimensions is, however, possible:

- take the $n-1$ dimensional simplex where each vertex represents a candidate
- each point in the simplex determines a ranking of the candidates based on the point's distance from the vertices

- ... according to "the closer the

Saari Triangle

The following reduction in dimensions is, however, possible:

- take the $n-1$ dimensional simplex where each vertex represents a candidate
- each point in the simplex determines a ranking of the candidates based on the point's distance from the vertices
- ... according to "the closer the
 better"

Saari Triangle

The following reduction in dimensions is, however, possible:

- take the $n-1$ dimensional simplex where each vertex represents a candidate
- each point in the simplex determines a ranking of the candidates based on the point's distance from the vertices
- ... according to "the closer the
 better"
- $a \succ b \succ c$

Saari Triangle

The following reduction in dimensions is, however, possible:

- take the $n-1$ dimensional simplex where each vertex represents a candidate
- each point in the simplex determines a ranking of the candidates based on the point's distance from the vertices
- ... according to "the closer the
 better"
- $a \succ b \succ c$
- $b \succ c \succ a$

Saari Triangle

The following reduction in dimensions is, however, possible:

- take the $n-1$ dimensional simplex where each vertex represents a candidate
- each point in the simplex determines a ranking of the candidates based on the point's distance from the vertices
- ... according to "the closer the
 better"
- $a \succ b \succ c$
- $b \succ c \succ a$

Saari Triangle

The profile $p=(2,0,0,4,1,0)$ can now be presented in the triangle
In addition various voting outcomes can be determined:
a the numbers to the left and right of each line determine the pairwise majority outcome

- the numbers in the two areas closest to the vertices determine

- the plurality numbers plus one half of the numbers in the areas next to that determine the Borda outcome

Saari Triangle

The profile $p=(2,0,0,4,1,0)$ can now be presented in the triangle
In addition various voting outcomes can be determined:

- the numbers to the left and right of each line determine the pairwise majority outcome
- the numbers in the two areas closest to the vertices determine

- the plurality numbers plus one half of the numbers in the areas next to that determine the Borda outcome

Saari Triangle

The profile $p=(2,0,0,4,1,0)$ can now be presented in the triangle
In addition various voting outcomes can be determined:

- the numbers to the left and right of each line determine the pairwise majority outcome
- the numbers in the two areas
closest to the vertices determine

- the plurality numbers plus one half of the numbers in the areas next to that determine the Borda outcome

Saari Triangle

The profile $p=(2,0,0,4,1,0)$ can now be presented in the triangle
In addition various voting outcomes can be determined:

- the numbers to the left and right of each line determine the pairwise majority outcome
- the numbers in the two areas closest to the vertices determine the plurality outcome

- the plurality numbers plus one half of the numbers in the areas next to that determine the Borda outcome

Saari Triangle

The profile $p=(2,0,0,4,1,0)$ can now be presented in the triangle
In addition various voting outcomes can be determined:

- the numbers to the left and right of each line determine the pairwise majority outcome
- the numbers in the two areas closest to the vertices determine the plurality outcome

- the plurality numbers plus one half of the numbers in the areas next to that determine the Borda outcome

Saari Triangle

Any rule that assigns scores to the candidates defines a point in the simplex.

- E.g., profile $p=(2,0,0,4,1,0)$ leads to plurality scores of $(2,1,4)$ or, normalized, to $q^{P I}=\left(\frac{2}{7}, \frac{1}{7}, \frac{4}{7}\right)$.
- plurality outcome $c \succ a \succ b$
- in general, we can plot the outcome for any scoring rule with (normalized) weights $w^{s}=(1, s, 0)$

Saari Triangle

Any rule that assigns scores to the candidates defines a point in the simplex.

- E.g., profile $p=(2,0,0,4,1,0)$ leads to plurality scores of $(2,1,4)$ or, normalized, to $q^{P I}=\left(\frac{2}{7}, \frac{1}{7}, \frac{4}{7}\right)$.
- red point in simplex
- plurality outcome $c \succ a \succ b$
- in general, we can plot the outcome for any scoring rule with (normalized) weights $w^{s}=(1, s, 0)$

- $s=\frac{1}{2}$ (Borda), $s=0$ (Plurality), $s=1$ (anti-plurality)

Saari Triangle

Any rule that assigns scores to the candidates defines a point in the simplex.

- E.g., profile $p=(2,0,0,4,1,0)$ leads to plurality scores of $(2,1,4)$ or, normalized, to $q^{P l}=\left(\frac{2}{7}, \frac{1}{7}, \frac{4}{7}\right)$.
- red point in simplex
- plurality outcome $c \succ a \succ b$

$$
\begin{aligned}
& \text { - in general, we can plot the } \\
& \text { outcome for any scoring rule with } \\
& \text { (normalized) weights } w^{s}=(1, s, 0) \\
& \quad s=\frac{1}{2} \text { (Borda), } s=0 \text { (Plurality), }
\end{aligned}
$$

Saari Triangle

Any rule that assigns scores to the candidates defines a point in the simplex.

- E.g., profile $p=(2,0,0,4,1,0)$ leads to plurality scores of $(2,1,4)$ or, normalized, to $q^{P l}=\left(\frac{2}{7}, \frac{1}{7}, \frac{4}{7}\right)$.
- red point in simplex
- plurality outcome $c \succ a \succ b$
- in general, we can plot the outcome for any scoring rule with (normalized) weights $w^{s}=(1, s, 0)$

Saari Triangle

Any rule that assigns scores to the candidates defines a point in the simplex.

- E.g., profile $p=(2,0,0,4,1,0)$ leads to plurality scores of $(2,1,4)$ or, normalized, to $q^{P l}=\left(\frac{2}{7}, \frac{1}{7}, \frac{4}{7}\right)$.
- red point in simplex
- plurality outcome $c \succ a \succ b$
- in general, we can plot the outcome for any scoring rule with (normalized) weights $w^{s}=(1, s, 0)$

- $s=\frac{1}{2}$ (Borda), $s=0$ (Plurality),

$$
s=1 \text { (anti-plurality) }
$$

Saari Triangle

Any rule that assigns scores to the candidates defines a point in the simplex.

- E.g., profile $p=(2,0,0,4,1,0)$ leads to plurality scores of $(2,1,4)$ or, normalized, to $q^{P l}=\left(\frac{2}{7}, \frac{1}{7}, \frac{4}{7}\right)$.
- red point in simplex
- plurality outcome $c \succ a \succ b$
- in general, we can plot the outcome for any scoring rule with (normalized) weights $w^{s}=(1, s, 0)$

- $s=\frac{1}{2}$ (Borda), $s=0$ (Plurality),

$$
s=1 \text { (anti-plurality) }
$$

Saari Triangle

because for all $s \in[0,1], w^{s}$ is a linear combination of $w^{P I}=(1,0,0)$ and $w^{A P}=(1,1,0)$, all scoring rule outcomes must lie on a line from the Plurality outcome to the Anti-plurality outcome.
> - Procedure Line
> - from red (Plur) to blue (A-Plur)
> - E.g., profile $p=(2,0,0,4,1,0)$ leads to a procedure line indicating 5 different scoring rule outcomes (two of which contain indifferences)

> For $n>3$, the procedure line becomes the
 the scoring vectors

Saari Triangle

because for all $s \in[0,1], w^{s}$ is a linear combination of $w^{P I}=(1,0,0)$ and $w^{A P}=(1,1,0)$, all scoring rule outcomes must lie on a line from the Plurality outcome to the Anti-plurality outcome.

- Procedure Line
- from red (Plur) to blue (A-Plur)
- E.g., profile $p=(2,0,0,4,1,0)$ leads to a procedure line indicating 5 different scoring rule outcomes (two of which contain
 indifferences)

For $n>3$, the procedure line becomes the
.e., the scoring vectors
(1, 0, 0,
$0),(1,1,0$,
0), ($1,1,1,0$,

Saari Triangle

because for all $s \in[0,1], w^{s}$ is a linear combination of $w^{P I}=(1,0,0)$ and $w^{A P}=(1,1,0)$, all scoring rule outcomes must lie on a line from the Plurality outcome to the Anti-plurality outcome.

- Procedure Line
- from red (Plur) to blue (A-Plur)

For $n>3$, the procedure line becomes the e., the scoring vectors
\square
$0),(1,1,0$,

Saari Triangle

because for all $s \in[0,1], w^{s}$ is a linear combination of $w^{P I}=(1,0,0)$ and $w^{A P}=(1,1,0)$, all scoring rule outcomes must lie on a line from the Plurality outcome to the Anti-plurality outcome.

- Procedure Line
- from red (Plur) to blue (A-Plur)
- E.g., profile $p=(2,0,0,4,1,0)$ leads to a procedure line indicating 5 different scoring rule outcomes (two of which contain
 indifferences).

For $n>3$, the procedure line becomes the
.e., the scoring vectors

Saari Triangle

because for all $s \in[0,1], w^{s}$ is a linear combination of $w^{P I}=(1,0,0)$ and $w^{A P}=(1,1,0)$, all scoring rule outcomes must lie on a line from the Plurality outcome to the Anti-plurality outcome.

- Procedure Line
- from red (Plur) to blue (A-Plur)
- E.g., profile $p=(2,0,0,4,1,0)$ leads to a procedure line indicating 5 different scoring rule outcomes (two of which contain
 indifferences).

For $n>3$, the procedure line becomes the
.e., the scoring vectors

Saari Triangle

because for all $s \in[0,1], w^{s}$ is a linear combination of $w^{P I}=(1,0,0)$ and $w^{A P}=(1,1,0)$, all scoring rule outcomes must lie on a line from the Plurality outcome to the Anti-plurality outcome.

- Procedure Line
- from red (Plur) to blue (A-Plur)
- E.g., profile $p=(2,0,0,4,1,0)$ leads to a procedure line indicating 5 different scoring rule outcomes (two of which contain
 indifferences).
For $n>3$, the procedure line becomes the convex hull of the outcomes based on all k-Approval rules, i.e., the scoring vectors $(1,0,0, \ldots, 0),(1,1,0, \ldots, 0),(1,1,1,0, \ldots, 0)$

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ 0$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ 0$
- for most scoring rules: $N \succ S \succ 0$
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ 0$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ 0$
- for most scoring rules: $N \succ S \succ 0$
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ 0$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ 0$
- for most scoring rules: $N \succ S \succ 0$
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ O$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ O$
- for most scoring rules: $N \succ S \succ 0$
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ 0$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ 0$
- for most scoring rules: $N \succ S \succ 0$
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ O$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ O$
- for most scoring rules: $N \succ S \succ 0$
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ 0$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ O$
- for most scoring rules: $N \succ S \succ O$

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, ÖVP and NEOS.

- Pairwise Majority: $N \succ S \succ O$
- Plurality Ranking: $S \succ N \succ O$
- Anti-Plurality Ranking: $N \succ S \succ O$
- for most scoring rules: $N \succ S \succ O$
- for AV , all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV, all outcomes are possible!

Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to the 3 parties SPÖ, KPÖ and NEOS.

- Pairwise Majority: $K \succ S \succ N$
- Plurality Ranking: $K \succ N \succ S$
- Anti-Plurality Ranking: $S \succ K \succ N$
- in general for scoring rules 5 outcomes possible.
- for AV , all outcomes are possible!

Saari Triangle application

There are also triples with little variation in outcomes, e.g., for SPÖ, ÖVP and FPÖ.

Saari Triangle application

There are also triples with little variation in outcomes, e.g., for SPÖ, ÖVP and FPÖ.

- only two different strict rankings as outcomes

Saari Triangle application

There are also triples with little variation in outcomes, e.g., for SPÖ, ÖVP and FPÖ.

- only two different strict rankings as outcomes

Profile decomposition

What actually drives the (potential) differences in the outcomes?

```
Saari (1995) uses what he calls profile decomposition
    - profile differential as the difference between two profiles with
    the same number of voters
        - e.g., (0, -1, -3, 2, 1, 1), which sums up to zero and contains
    - can be made non-negative by adding a profile }\mathcal{K}\mathrm{ in which
        there is one voter for each ranking
        - (1, 1, 1, 1, 1, 1)
    - (0, -1, -3,2,1, 1) + 3\mathcal{K}=(3,2, 0, 5, 4, 4)
    - universal kernel (nK
    - n! - 2 2-1}(n-2)-2 dimensional subspace of profile spac
    Si(n!)
```


Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g.. ($0,-1,-3,2,1,1$), which sums up to zero and contains
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel $\mathbf{D}_{\mathbf{K}}$
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space

Si(n!)

Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel PK
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space

Si(n!)

Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g., ($0,-1,-3,2,1,1$), which sums up to zero and contains negative voters.
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking - ($1,1,1,1,1,1$)
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel $\mathbf{p}_{\mathbf{K}}$
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space Si(n!)

Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g., $(0,-1,-3,2,1,1)$, which sums up to zero and contains negative voters.
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel PK
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space Si(n!)

Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g., ($0,-1,-3,2,1,1$), which sums up to zero and contains negative voters.
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- ($1,1,1,1,1,1$)
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel PK
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space Si(n!)

Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g., $(0,-1,-3,2,1,1)$, which sums up to zero and contains negative voters.
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- ($1,1,1,1,1,1$)
- all positional and pairwise voting rules have complete indifference over \mathcal{K}
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel PK
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space Si(n!)

Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g., ($0,-1,-3,2,1,1$), which sums up to zero and contains negative voters.
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- ($1,1,1,1,1,1$)
- all positional and pairwise voting rules have complete indifference over \mathcal{K}
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel PK
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space Si(n!)

Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g., ($0,-1,-3,2,1,1$), which sums up to zero and contains negative voters.
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- ($1,1,1,1,1,1$)
- all positional and pairwise voting rules have complete indifference over \mathcal{K}
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel \mathbf{p}_{K}
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space Si $(n!)$

Profile decomposition

What actually drives the (potential) differences in the outcomes? Saari (1995) uses what he calls profile decomposition

- profile differential as the difference between two profiles with the same number of voters
- e.g., $(0,-1,-3,2,1,1)$, which sums up to zero and contains negative voters.
- can be made non-negative by adding a profile \mathcal{K} in which there is one voter for each ranking
- ($1,1,1,1,1,1$)
- all positional and pairwise voting rules have complete indifference over \mathcal{K}
- $(0,-1,-3,2,1,1)+3 \mathcal{K}=(3,2,0,5,4,4)$
- universal kernel \mathbf{p}_{K}
- $n!-2^{n-1}(n-2)-2$ dimensional subspace of profile space Si(n!)

Profile decomposition - Basic profile

Definition

The basic portion for a candidate X is the profile differential with one voter for each type where X is top-ranked and -1 voters where X is bottom-ranked.

- e.g. $B_{a}=(1,1,0,-1,-1,0)$ is the Basic vector for item a.
- item a wins for all pairwise and positional rules with all other items being indifferent
- $\mathbf{p}_{\mathrm{B}}=a_{B} B_{a}+b_{B} B_{b}+c_{B} B_{c}$ is the profile differential (for 3 items) coming from the Basic vectors

Profile decomposition - Basic profile

Definition

The basic portion for a candidate X is the profile differential with one voter for each type where X is top-ranked and -1 voters where X is bottom-ranked.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- e.g. $B_{a}=(1,1,0,-1,-1,0)$ is the Basic vector for item a.
- item a wins for all pairwise and positional rules with all other items being indifferent
- $\mathrm{P}_{\mathrm{B}}=a_{B} B_{a}+b_{B} B_{b}+c_{B} B_{c}$ is the profile differential (for 3 items) coming from the Basic vectors - e.g. $4 B_{a}+2 B_{b}+1 B_{c}$ determines the outcome $a \succ b \succ c$ for all pairwise and positional rules

Profile decomposition - Basic profile

Definition

The basic portion for a candidate X is the profile differential with one voter for each type where X is top-ranked and -1 voters where X is bottom-ranked.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- e.g. $B_{a}=(1,1,0,-1,-1,0)$ is the Basic vector for item a.
- item a wins for all pairwise and positional rules with all other items being indifferent
- $\mathbf{p}_{\mathbf{B}}=a_{B} B_{a}+b_{B} B_{b}+c_{B} B_{C}$ is the profile differential (for 3 items) coming from the Basic vectors - e.g., $4 B_{a}+2 B_{b}+1 B_{c}$ determines the outcome $a \succ b \succ c$ for

Profile decomposition - Basic profile

Definition

The basic portion for a candidate X is the profile differential with one voter for each type where X is top-ranked and -1 voters where X is bottom-ranked.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- e.g. $B_{a}=(1,1,0,-1,-1,0)$ is the Basic vector for item a.
- item a wins for all pairwise and positional rules with all other items being indifferent
- $\mathrm{P}_{\mathrm{B}}=a_{B} B_{a}+b_{B} B_{b}+c_{B} B_{c}$ is the profile differential (for 3 items) coming from the Basic vectors - e.g., $4 B_{a}+2 B_{b}+1 B_{c}$ determines the outcome $a \succ b \succ c$ for

Profile decomposition - Basic profile

Definition

The basic portion for a candidate X is the profile differential with one voter for each type where X is top-ranked and -1 voters where X is bottom-ranked.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- e.g. $B_{a}=(1,1,0,-1,-1,0)$ is the Basic vector for item a.
- item a wins for all pairwise and positional rules with all other items being indifferent
- $\mathbf{p}_{\mathbf{B}}=a_{B} B_{a}+b_{B} B_{b}+c_{B} B_{c}$ is the profile differential (for 3 items) coming from the Basic vectors

Profile decomposition - Basic profile

Definition

The basic portion for a candidate X is the profile differential with one voter for each type where X is top-ranked and -1 voters where X is bottom-ranked.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- e.g. $B_{a}=(1,1,0,-1,-1,0)$ is the Basic vector for item a.
- item a wins for all pairwise and positional rules with all other items being indifferent
- $\mathbf{p}_{\mathbf{B}}=a_{B} B_{a}+b_{B} B_{b}+c_{B} B_{c}$ is the profile differential (for 3 items) coming from the Basic vectors
- e.g., $4 B_{a}+2 B_{b}+1 B_{c}$ determines the outcome $a \succ b \succ c$ for all pairwise and positional rules

Profile decomposition - Condorcet profile

Definition

The Condorcet portion (for $\mathrm{n}=3$) is the profile differential with one voter for each type in a cycle and -1 voters for each type in the opposite cycle.

- e.g. $C^{3}=(1,-1,1,-1,1,-1)$ is the Condorcet portion strengthening the cycle $a \succ b \succ c \succ a$
- but gives indifference over all items for all positional rules - P_{C} is the profile adding cyclical effects

Profile decomposition - Condorcet profile

Definition

The Condorcet portion (for $\mathrm{n}=3$) is the profile differential with one voter for each type in a cycle and -1 voters for each type in the opposite cycle.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- e.g. $C^{3}=(1,-1,1,-1,1,-1)$ is the Condorcet portion strengthening the cycle $a \succ b \succ c \succ a$
- but gives indifference over all items for all positional rules - P_{C} is the profile adding cyclical effects

Profile decomposition - Condorcet profile

Definition

The Condorcet portion (for $\mathrm{n}=3$) is the profile differential with one voter for each type in a cycle and -1 voters for each type in the opposite cycle.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	
2	$a \succ b \succ a$		
3	$c \succ c \succ b$	5	$b \succ c \succ a$
			$b \succ a \succ c$

- e.g. $C^{3}=(1,-1,1,-1,1,-1)$ is the Condorcet portion strengthening the cycle $a \succ b \succ c \succ a$
- but gives indifference over all items for all positional rules
- \mathbf{p}_{C} is the profile adding cyclical effects

Profile decomposition - Condorcet profile

Definition

The Condorcet portion (for $\mathrm{n}=3$) is the profile differential with one voter for each type in a cycle and -1 voters for each type in the opposite cycle.

type	ranking	type	
1	$a \succ b \succ c$ ranking		
2	$a \succ c \succ b$	4	
3	$a \succ b \succ a$		
3	$c \succ a \succ b$	5	$b \succ c \succ a$
			$b \succ a \succ c$

- e.g. $C^{3}=(1,-1,1,-1,1,-1)$ is the Condorcet portion strengthening the cycle $a \succ b \succ c \succ a$
- but gives indifference over all items for all positional rules

Profile decomposition - Condorcet profile

Definition

The Condorcet portion (for $\mathrm{n}=3$) is the profile differential with one voter for each type in a cycle and -1 voters for each type in the opposite cycle.

type	ranking	type	
1	$a \succ b \succ c$ ranking		
2	$a \succ c \succ b$	4	
3	$a \succ b \succ a$		
3	$c \succ a \succ b$	6	$b \succ c \succ a$
			$b \succ a \succ c$

- e.g. $C^{3}=(1,-1,1,-1,1,-1)$ is the Condorcet portion strengthening the cycle $a \succ b \succ c \succ a$
- but gives indifference over all items for all positional rules
- $\mathbf{P c}$ is the profile adding cyclical effects

Profile decomposition - Reversal profile

Definition

The reversal portion (for $n=3$) for a candidate X is the profile differential with one voter for each type where X is top-ranked, one voter for each type where X is bottom-ranked, and -2 voters where X is middle-ranked.

- e.g. $R_{a}=(1,1,-2,1,1,-2)$ is the Reversal vector for item a.
- leads to complete indifference for pairwise methods and the Borda count but not the other positional rules
- $\mathbf{p}_{\mathbf{R}}=a_{R} R_{a}+b_{R} R_{b}+c_{R} R_{c}$ is the profile differential (for 3 items) coming from the Reversal vectors

Profile decomposition - Reversal profile

Definition

The reversal portion (for $n=3$) for a candidate X is the profile differential with one voter for each type where X is top-ranked, one voter for each type where X is bottom-ranked, and -2 voters where X is middle-ranked.

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- e.g. $R_{a}=(1,1,-2,1,1,-2)$ is the Reversal vector for item a.
- leads to complete indifference for pairwise methods and the Borda count but not the other positional rules
- $\mathrm{P}_{\mathrm{R}}=a_{R} R_{a}+b_{R} R_{b}+c_{R} R_{c}$ is the profile differential (for 3 items) coming from the Reversal vectors

Profile decomposition - Reversal profile

Definition

The reversal portion (for $n=3$) for a candidate X is the profile differential with one voter for each type where X is top-ranked, one voter for each type where X is bottom-ranked, and -2 voters where X is middle-ranked.

type		ranking	type
1	$a \succ b \succ c$	ranking	
2	$a \succ c \succ b$	5	$c \succ b \succ a$
3	$c \succ a \succ b$	6	$b \succ c \succ a$
		$b \succ a \succ c$	

- e.g. $R_{a}=(1,1,-2,1,1,-2)$ is the Reversal vector for item a.
- leads to complete indifference for pairwise methods and the Borda count but not the other positional rules
- $\mathbf{p}_{R}=a_{R} R_{\partial}+b_{R} R_{b}+c_{R} R_{c}$ is the profile differential (for 3 items) coming from the Reversal vectors

Profile decomposition - Reversal profile

Definition

The reversal portion (for $n=3$) for a candidate X is the profile differential with one voter for each type where X is top-ranked, one voter for each type where X is bottom-ranked, and -2 voters where X is middle-ranked.

type		ranking	type
1	$a \succ b \succ c$	ranking	
2	$a \succ c \succ b$	4	$c \succ b \succ a$
3	$c \succ a \succ b$	6	$b \succ c \succ a$
		$b \succ a \succ c$	

- e.g. $R_{a}=(1,1,-2,1,1,-2)$ is the Reversal vector for item a.
- leads to complete indifference for pairwise methods and the Borda count but not the other positional rules
- $\mathrm{p}_{\mathrm{R}}=a_{R} R_{a}+b_{R} R_{b}+c_{R} R_{c}$ is the profile differential (for 3 items) coming from the Reversal vectors

Profile decomposition - Reversal profile

Definition

The reversal portion (for $n=3$) for a candidate X is the profile differential with one voter for each type where X is top-ranked, one voter for each type where X is bottom-ranked, and -2 voters where X is middle-ranked.

type		ranking	type
1	$a \succ b \succ c$	ranking	
2	$a \succ c \succ b$	5	$c \succ b \succ a$
3	$c \succ a \succ b$	6	$b \succ c \succ a$
		$b \succ a \succ c$	

- e.g. $R_{a}=(1,1,-2,1,1,-2)$ is the Reversal vector for item a.
- leads to complete indifference for pairwise methods and the Borda count but not the other positional rules
- $\mathbf{p}_{\mathbf{R}}=a_{R} R_{a}+b_{R} R_{b}+c_{R} R_{c}$ is the profile differential (for 3 items) coming from the Reversal vectors

Profile decomposition

All profiles can now be expressed as

\[

\]

Example:

- $\mathbf{p}_{\mathbf{R}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathrm{P}_{\mathrm{C}}=5 \mathrm{C}^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathrm{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathrm{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathrm{p}=(20,0,17,6,8,9)$
- Borda: $a \succ b \succ c$; Plurality: $c \succ a \succ b$; Cyc

Profile decomposition

All profiles can now be expressed as

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathrm{P}_{\mathrm{C}}=5 \mathrm{C}^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathbf{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$
- Borda: $a \succ b \succ c$; Plurality:

Profile decomposition

All profiles can now be expressed as

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathbf{p}_{\mathbf{C}}=5 C^{3}=(5,-5,5,-5,5,-5)$
- add $\mathrm{p}_{\mathrm{R}}=3 R_{\mathrm{C}}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathbf{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$
- Borda: $a \succ b \succ c$; Plurality:

Profile decomposition

All profiles can now be expressed as

\[

\]

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathbf{p}_{\mathbf{C}}=5 C^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathrm{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$
- Borda: $a \succ b \succ c$; Plurality:

Profile decomposition

All profiles can now be expressed as

\[

\]

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathbf{p}_{\mathbf{C}}=5 C^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathbf{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$
- Borda:

Profile decomposition

All profiles can now be expressed as

\[

\]

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathbf{p}_{\mathbf{C}}=5 C^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathbf{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$

Profile decomposition

All profiles can now be expressed as

\[

\]

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathbf{p}_{\mathbf{C}}=5 C^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathbf{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$
- Borda: $a \succ b \succ c$;

Profile decomposition

All profiles can now be expressed as

\[

\]

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathbf{p}_{\mathbf{C}}=5 C^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathbf{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$
- Borda: $a \succ b \succ c$; Plurality: $c \succ a \succ b$;

Profile decomposition

All profiles can now be expressed as

\[

\]

Example:

- $\mathbf{p}_{\mathbf{B}}=2 B_{a}+1 B_{b}=(2,1,-1,-2,-1,1)$
- add $\mathbf{p}_{\mathbf{C}}=5 C^{3}=(5,-5,5,-5,5,-5)$
- add $\mathbf{p}_{\mathbf{R}}=3 R_{c}=(3,-6,3,3,-6,3)$
- hence we get $(10,-10,7,-4,-2,-1)$
- Add $\mathbf{p}_{\mathrm{K}}=10 \mathcal{K}$ to get $\mathbf{p}=(20,0,17,6,8,9)$
- Borda: $a \succ b \succ c$; Plurality: $c \succ a \succ b$; Cycle

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathrm{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually,
$\mathrm{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 \mathcal{K}$
- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ V P$ given the Reversal portion
- no cycle because of the small Condorcet portion

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathbf{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually
$\mathrm{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 K$
- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ V P$ given the Reversal portion
- no cycle because of the small Condorcet portion

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathbf{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually,
$\mathbf{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 K$
- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ V P$ given the Reversal portion
- no cycle because of the small Condorcet portion

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathbf{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually,
$\mathbf{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 \mathcal{K}$
- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ$ VP given the Reversal portion
- no cycle because of the small Condorcet portion

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathbf{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually,

$$
\mathbf{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 \mathcal{K}
$$

- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ V P$ given the Reversal portion
- no cycle because of the small Condorcet portion

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathbf{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually,

$$
\mathbf{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 \mathcal{K}
$$

- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ V P$ given the Reversal portion
- no cycle because of the small Condorcet portion

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathbf{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually,

$$
\mathbf{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 \mathcal{K}
$$

- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ V P$ given the Reversal portion
- no cycle because of the small Condorcet portion

Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type	ranking	type	ranking
1	$S P \succ V P \succ N E O S$	4	$N E O S \succ V P \succ S P$
2	$S P \succ N E O S \succ V P$	5	$V P \succ N E O S \succ S P$
3	$N E O S \succ S P \succ V P$	6	$V P \succ S P \succ N E O S$

Example:

- $\mathbf{p}=(91,234,184,125,150,88)$
- if we subtract $88 \mathcal{K}$ we get $(3,146,96,37,62,0)$
- has the same outcomes as the original profile
- Actually,

$$
\mathbf{p}=-13.3 B_{S P}-51.6 B_{V P}+18.6 R_{S P}+28 R_{V P}-3.6 C^{3}+145.3 \mathcal{K}
$$

- Borda: NEOS $\succ S P \succ V P$ given the Basic portion
- Plurality: $S P \succ N E O S \succ V P$ given the Reversal portion
- no cycle because of the small Condorcet portion

Party types - definition

In Baujard et al. (2014) and Darmann et al. (2017) different party types have been defined

Which types could - in principle - exist?

- popular party
- strong support from a specific segment of society and seen positively by a large proportion of society
- unpopular party
- strong support from a small group and seen negatively by a large proportion of society
- medium party
- acceptable to a large proportion of society and induces strong views only for small groups
- polarizing party
- strong support from a certain, significantly large, part of
society as well as strong negative support from another,
significantly large, group

Party types - definition

In Baujard et al. (2014) and Darmann et al. (2017) different party types have been defined Which types could - in principle - exist?

- popular party
- strong support from a specific segment of society and seen positively by a large proportion of society
- unpopular party
- strong support from a small group and seen negatively by a large proportion of society
- medium party
- acceptable to a large proportion of society and induces strong views only for small groups
- polarizing party
- strong support from a certain, significantly large, part of
society as well as strong negative support from another,
significantly large, group

Party types - definition

In Baujard et al. (2014) and Darmann et al. (2017) different party types have been defined Which types could - in principle - exist?

- popular party
- strong support from a specific segment of society and seen positively by a large proportion of society
- unpopular party
- strong support from a small group and seen negatively by a large proportion of society
- medium party
- acceptable to a large proportion of society and induces strong views only for small groups
- polarizing party
- strong support from a certain, significantly large, part of society as well as strong negative support from another,
significantly large, group

Party types - definition

In Baujard et al. (2014) and Darmann et al. (2017) different party types have been defined Which types could - in principle - exist?

- popular party
- strong support from a specific segment of society and seen positively by a large proportion of society
- unpopular party
- strong support from a small group and seen negatively by a large proportion of society
- medium party
- acceptable to a large proportion of society and induces strong views only for small groups
- polarizing party
- strong support from a certain, significantly large, part of society as well as strong negative support from another,
significantly large, group

Party types - definition

In Baujard et al. (2014) and Darmann et al. (2017) different party types have been defined Which types could - in principle - exist?

- popular party
- strong support from a specific segment of society and seen positively by a large proportion of society
- unpopular party
- strong support from a small group and seen negatively by a large proportion of society
- medium party
- acceptable to a large proportion of society and induces strong views only for small groups
- polarizing party
- strong support from a certain, significantly large, part of society as well as strong negative support from another,

Party types - definition

In Baujard et al. (2014) and Darmann et al. (2017) different party types have been defined
Which types could - in principle - exist?

- popular party
- strong support from a specific segment of society and seen positively by a large proportion of society
- unpopular party
- strong support from a small group and seen negatively by a large proportion of society
- medium party
- acceptable to a large proportion of society and induces strong views only for small groups
- polarizing party
- strong support from a certain, significantly large, part of society as well as strong negative support from another, significantly large, group

Party types - definition

Figure: Distributions of votes over ranks for different types of candidates

Profile decomposition - application

Can also use Saari's approach to classify candidates

type	ranking	type	ranking
1	$a \succ b \succ c$	4	
2	$a \succ b \succ a$		
3	$c \succ c \succ b$	5	$b \succ c \succ a$
		$\succ a \succ b$	6
	$b \succ a \succ c$		

- a large basic portion $B_{a}=(1,1,0,-1,-1,0)$ indicates that a is a popular candidate
- a large negative share of B_{a} indicates that a is rather an unpopular candidate
- a large reversal portion $R_{a}=(1,1,-2,1,1,-2)$ indicates that a could be a polarizing candidate
- a large negative share of R_{a} indicates that a is rather a medium candidate

Profile decomposition - application

Can also use Saari's approach to classify candidates

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- a large basic portion $B_{a}=(1,1,0,-1,-1,0)$ indicates that a is a popular candidate
- a large negative share of B_{a} indicates that a is rather an unpopular candidate
- a large reversal portion $R_{a}=(1,1,-2,1,1,-2)$ indicates that a could be a polarizing candidate
a large negative share of R_{a} indicates that a is rather a medium candidate

Profile decomposition - application

Can also use Saari's approach to classify candidates

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- a large basic portion $B_{a}=(1,1,0,-1,-1,0)$ indicates that a is a popular candidate
- a large negative share of B_{a} indicates that a is rather an unpopular candidate
- a large reversal portion $R_{a}=(1,1,-2,1,1,-2)$ indicates that a could be a polarizing candidate
- a large negative share of R_{a} indicates that a is rather a medium candidate

Profile decomposition - application

Can also use Saari's approach to classify candidates

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- a large basic portion $B_{a}=(1,1,0,-1,-1,0)$ indicates that a is a popular candidate
- a large negative share of B_{a} indicates that a is rather an unpopular candidate
- a large reversal portion $R_{a}=(1,1,-2,1,1,-2)$ indicates that a could be a polarizing candidate
- a large negative share of R_{a} indicates that a is rather a medium candidate

Profile decomposition - application

Can also use Saari's approach to classify candidates

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- a large basic portion $B_{a}=(1,1,0,-1,-1,0)$ indicates that a is a popular candidate
- a large negative share of B_{a} indicates that a is rather an unpopular candidate
- a large reversal portion $R_{a}=(1,1,-2,1,1,-2)$ indicates that a could be a polarizing candidate
- a large negative share of R_{a} indicates that a is rather a medium candidate

Profile decomposition - application

Can also use Saari's approach to classify candidates

type	ranking	type	ranking
1	$a \succ b \succ c$	4	$c \succ b \succ a$
2	$a \succ c \succ b$	5	$b \succ c \succ a$
3	$c \succ a \succ b$	6	$b \succ a \succ c$

- a large basic portion $B_{a}=(1,1,0,-1,-1,0)$ indicates that a is a popular candidate
- a large negative share of B_{a} indicates that a is rather an unpopular candidate
- a large reversal portion $R_{a}=(1,1,-2,1,1,-2)$ indicates that a could be a polarizing candidate
- a large negative share of R_{a} indicates that a is rather a medium candidate

Results - types 2015

- we also use a different graphical representation by comparing the shares of high ranks with those of low ranks

Results - types 2015

- we also use a different graphical representation by comparing the shares of high ranks with those of low ranks
- different areas contain different types of parties

Figure: Types of parties 2015 - ordinal information

Results - types 2019

Figure: Types of parties 2019 - ordinal information

Saari triangles - distances 2015

- could also ask how stable the outcomes are

- switch from winner F to at $s=0.015$
- switch from second place F to K at $s=0.565$
- switch from winner G to K
at $s=0.871$
e.g., only 2 voters are
needed to change the
plurality winner

Saari triangles - distances 2015

- could also ask how stable the outcomes are
- points on the procedure line in the triangle indicate the distance to changes for rules with $w=(1, s, 0)$

- also shows for which values of s the outcome is changed

- switch from winner F to
at $s=0.015$
- switch from second place F to K at $s=0.565$
- switch from winner G to K
at $s=0.871$
e.g., only 2 voters are
needed to change the
plurality winner

Saari triangles - distances 2015

- could also ask how stable the outcomes are
- points on the procedure line in the triangle indicate the distance to changes for rules with $w=(1, s, 0)$
- also shows for which values of s the outcome is changed

- switch from winner F to at $s=0.015$
- switch from second place F to K at $s=0.565$
- switch from winner G to K at $s=0.871$ e.g., only 2 voters are needed to change the plurality winner

Saari triangles - distances 2015

- could also ask how stable the outcomes are
- points on the procedure line in the triangle indicate the distance to changes for rules with $w=(1, s, 0)$
- also shows for which values of s the outcome is changed

- switch from winner F to at $s=0.015$
- switch from second place F to K at $s=0.565$
- switch from winner G to K at $s=0.871$ e.g., only 2 voters are needed to change the plurality winner

Saari triangles - distances 2015

- could also ask how stable the outcomes are
- points on the procedure line in the triangle indicate the distance to changes for rules with $w=(1, s, 0)$
- also shows for which values of s the outcome is changed

- switch from winner F to G at $s=0.015$
- switch from second place F to K at $s=0.565$
- switch from winner at $s=0.871$ e.g., only 2 voters are needed to change the plurality winner

Saari triangles - distances 2015

- could also ask how stable the outcomes are
- points on the procedure line in the triangle indicate the distance to changes for rules with $w=(1, s, 0)$
- also shows for which values of s the outcome is changed

- switch from winner F to G at $s=0.015$
- switch from second place F to K at $s=0.565$
- switch from winner at $s=0.871$ e.g., only 2 voters are needed to change the plurality winner

Saari triangles - distances 2015

- could also ask how stable the outcomes are
- points on the procedure line in the triangle indicate the distance to changes for rules with $w=(1, s, 0)$
- also shows for which values of s the outcome is changed

- switch from winner F to G at $s=0.015$
- switch from second place F to K at $\mathrm{s}=0.565$
- switch from winner G to K at $s=0.871$

Saari triangles - distances 2015

- could also ask how stable the outcomes are
- points on the procedure line in the triangle indicate the distance to changes for rules with $w=(1, s, 0)$
- also shows for which values of s the outcome is changed

- switch from winner F to G at $s=0.015$
- switch from second place F to K at $s=0.565$
- switch from winner G to K at $s=0.871$
- e.g., only 2 voters are needed to change the plurality winner

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left $-p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right $-p^{\prime}=(0,0,4,0,0,5)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left - $p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right - $p^{\prime}=\left(\begin{array}{llllll}0 & 0 & 4 & 0 & 0 & 5\end{array}\right)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left $-p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right $-p^{\prime}=(0,0,4,0,0,5)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left $-p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right $-p^{\prime}=(0,0,4,0,0,5)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left $-p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right $-p^{\prime}=(0,0,4,0,0,5)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left - $p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right $-p^{\prime}=(0,0,4,0,0,5)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left - $p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right - $p^{\prime}=(0,0,4,0,0,5)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left - $p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right $-p^{\prime}=(0,0,4,0,0,5)$

Strategic Voting

We can also look at Saari-triangles to see what changes occur in case voters vote strategically.

- changes the procedure line
- for $n=3$ it changes the plurality point of the procedure line

- left - $p=(3,0,4,0,0,2)$
- worst outcome under PR for the 3 red voters
- right $-p^{\prime}=(0,0,4,0,0,5)$
- PR outcome preferred by the 3 strategic voters

Strategic Voting - data 2019

In the 2019 elections we found roughly 13% of strategic votes

- did change the overall PR-outcome in our data
- various reasons for strategic votes were possible

Strategic Voting - data 2019

In the 2019 elections we found roughly 13% of strategic votes

- did change the overall PR-outcome in our data
- various reasons for strategic votes were possible

Strategic Voting - data 2019

In the 2019 elections we found roughly 13% of strategic votes

- did change the overall PR-outcome in our data
- various reasons for strategic votes were possible

Strategic Voting - data 2019

In the 2019 elections we found roughly 13% of strategic votes

- did change the overall PR-outcome in our data
- various reasons for strategic votes were possible For $n=3$, we can see a change for (GRÜNE, KPÖ, NEOS)

Strategic Voting - data 2019

In the 2019 elections we found roughly 13% of strategic votes

- did change the overall PR-outcome in our data
- various reasons for strategic votes were possible For $n=3$, we can see a change for (GRÜNE, KPÖ, NEOS)

Strategic Voting - data 2019

In the 2019 elections we found roughly 13% of strategic votes

- did change the overall PR-outcome in our data
- various reasons for strategic votes were possible For $n=3$, we can see a change for (GRÜNE, KPÖ, NEOS)

Strategic Voting - data 2019

In the 2019 elections we found roughly 13% of strategic votes

- did change the overall PR-outcome in our data
- various reasons for strategic votes were possible For $n=3$, we can see a change for (GRÜNE, KPÖ, NEOS)

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- convex hull of all feasible vertices is the

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- convex hull of all feasible vertices is the

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- convex hull of all feasible vertices is the

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- convex hull of all feasible vertices is the

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- convex hull of all feasible vertices is the

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- convex hull of all feasible vertices is the

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- convex hull of all feasible vertices is the

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- in judgement aggregation 4-dimensional settings possible

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- in judgement aggregation 4-dimensional settings possible
- convex hull of all feasible vertices is the representation polytope

Cubes and Cycles

Saari also uses cubes to analyze pairwise majorities

- in general we have an $\binom{n}{2}$-dimensional cube
- for $n=3$ we have 8 vertices (2 of them cyclical)
- for $n=4$ we jump to 6 dimensions
- in judgement aggregation 4-dimensional settings possible
- convex hull of all feasible vertices is the representation polytope
- all majority outcomes lie in that polytope

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2\binom{4}{2}=64$ vertices
- of those $2\binom{n}{2}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2\binom{4}{2}=64$ vertices
- of those $2\binom{n}{2}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2\binom{4}{2}=64$ vertices
- of those $2\binom{n}{2}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2\binom{4}{2}=64$ vertices
- of those $2\binom{n}{2}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2^{(2)}=64$ vertices
- of those $2\binom{n}{2}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2^{\binom{4}{2}}=64$ vertices
- of those $2^{(2)}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2^{\binom{4}{2}}=64$ vertices
- of those $2{ }^{\binom{n}{2}}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2\binom{4}{2}=64$ vertices
- of those $2{ }^{\binom{n}{2}}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the majority counts ... but two subcubes represent cyclic outcomes

- for $n>3$ many more cyclic sub-polytopes
- for $n=4$ we jump to $2\binom{4}{2}=64$ vertices
- of those $2{ }^{\binom{n}{2}}-n!=40$ are non-transitive
- for $n=6$ already 98% of the vertices are non-transitive

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, V/P and FP from the 2019 election

- $(S>V, V>F, F>S)=$ ($0.58,0.91,0.14$)
- closest cyclical vertex: (1,1,1)
- distance 0.36
- takes 36% of the voters to change between F and S
- rather far away from

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

- $(S>V, V>F, F>S)=$ (0.58, 0.91, 0.14)
- closest cyclical vertex: (1,1,1)
- distance 0.36
- takes 36% of the voters to change between F and S
- rather far away from

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

- $(S>V, V>F, F>S)=$ (0.58, 0.91, 0.14)
- closest cyclical vertex: (1,1,1)
- distance 0.36
- takes 36% of the voters to
change between F and S
- rather far away from

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

- $(S>V, V>F, F>S)=$ ($0.58,0.91,0.14$)
- closest cyclical vertex: (1,1,1)
- distance 0.36
- takes 36% of the voters to change between F and S

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

- $(S>V, V>F, F>S)=$ ($0.58,0.91,0.14$)
- closest cyclical vertex: (1,1,1)
- distance 0.36
- takes 36\% of the voters to
change between F and S

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

- $(S>V, V>F, F>S)=$ (0.58, 0.91, 0.14)
- closest cyclical vertex: $(1,1,1)$
- distance 0.36
- takes 36% of the voters to change between F and S

Cubes - applications

Could again think about stability of outcomes

- Euclidean distance to cycling subcubes shows closeness to cycles
Consider SP, VP and FP from the 2019 election

- $(S>V, V>F, F>S)=$ (0.58, 0.91, 0.14)
- closest cyclical vertex: $(1,1,1)$
- distance 0.36
- takes 36% of the voters to change between F and S
- rather far away from having a cycle

Cubes - applications

Consider SP, KP and NEOS from the 2019 election

- closest cyclical vertex: $(1,1,1)$
- distance 0.004
- only takes 0.4% of the voters to change between N and K
- very close to having a

Cubes - applications

Consider SP, KP and NEOS from the 2019 election

- closest cyclical vertex: $(1,1,1)$
- distance 0.004
- only takes 0.4% of the voters to change between N and K
- very close to having a

Cubes - applications

Consider SP, KP and NEOS from the 2019 election

- $(S>K, K>N, N>S)=$ (0.516, 0.496, 0.526)
- closest cyclical vertex: (1,1,1)
- distance 0.004
- only takes 0.4% of the voters to change between N and K

Cubes - applications

Consider SP, KP and NEOS from the 2019 election

- $(S>K, K>N, N>S)=$ (0.516, 0.496, 0.526)
- closest cyclical vertex: $(1,1,1)$
- distance 0.004
- only takes 0.4% of the voters to change between N and K

Cubes - applications

Consider SP, KP and NEOS from the 2019 election

- $(S>K, K>N, N>S)=$ ($0.516,0.496,0.526$)
- closest cyclical vertex: $(1,1,1)$
- distance 0.004

Cubes - applications

Consider SP, KP and NEOS from the 2019 election

- $(S>K, K>N, N>S)=$ (0.516, 0.496, 0.526)
- closest cyclical vertex: (1,1,1)
- distance 0.004
- only takes 0.4% of the voters to change between N and K

Cubes - applications

Consider SP, KP and NEOS from the 2019 election

- $(S>K, K>N, N>S)=$ (0.516, 0.496, 0.526)
- closest cyclical vertex: $(1,1,1)$
- distance 0.004
- only takes 0.4% of the voters to change between N and K
- very close to having a cycle

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\binom{6}{2}-n!=2^{15}-6!=32048$ non-transitive vertices

What are the closest cycles?
e 3 cand: SP KP NEOS with distance 0.004

- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\left(\begin{array}{c}\binom{6}{2}\end{array}-n!=2^{15}-6!=32048\right.$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Cubes - applications

Could also measure the distance from cycles for all 6 candidates in the 2019 elections

- there are $2\binom{6}{2}-n!=2^{15}-6!=32048$ non-transitive vertices

What are the closest cycles?

- 3 cand.: SP, KP, NEOS with distance 0.004
- 4 cand.: SP, VP, KP, NEOS with distance 0.057
- 5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196
- all 6 cand.: distance 0.370

Conclusion

What has been done?

- attempt to introduce Saari's geometric approach and apply it to data from two actual elections
- visualize in a simple way all differences in positional and pairwise voting rules for $n=3$
- use the profile decomnosition to show what drives the differences between rules
- use Saari's framework to classify the candidates into different types
- measure the distance to problematic outcomes

Conclusion

What has been done?

- attempt to introduce Saari's geometric approach and apply it to data from two actual elections
- visualize in a simple way all differences in positional and pairwise voting rules for $n=3$
- use the profile decomposition to show what drives the differences between rules
- use Saari's framework to classify the candidates into different types
- measure the distance to problematic outcomes

Conclusion

What has been done?

- attempt to introduce Saari's geometric approach and apply it to data from two actual elections
- visualize in a simple way all differences in positional and pairwise voting rules for $n=3$
- use the profile decomposition to show what drives the differences between rules
- use Saari's framework to classify the candidates into different types
- measure the distance to problematic outcomes

Conclusion

What could still be done?

- analyze strategic behavior in the elections in more detail
- think about domain restrictions
- measure the probability of occurrence of certain paradoxical situations
- perhaps think about evaluative voting in that framework

Conclusion

What could still be done?

- analyze strategic behavior in the elections in more detail
- think about domain restrictions
- measure the probability of occurrence of certain paradoxical situations
- perhaps think about evaluative voting in that framework

