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Introduction

Does the electoral system matter?

YES from a theoretical point of view

Saari (1994), Nurmi (1999)

YES from an empirical point of view

Duverger (1951), Rae (1971), Lijphart (1994)

this led to interest in electoral engineering

Riker (1986, 1988)
Taagepera and Shugart (1989) provide guidelines for justified
changes in electoral systems
Kaminski (1999, 2002) in Poland
Evci and Kaminski (2021) on Turkey
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Introduction

Behavioral Social Choice
Regenwetter et al. (2006)
data from actual elections tested against the negative
predictions stemming from the theoretical literature
many of the theoretical problems were (often) not found in
real-world decision problems

experimental and survey studies
Baujard et al. (2020, 2018, 2014), Laslier and Sanver (2010),
Laslier and van der Straeten (2008) on French elections
Roescu (2014) on Romanian elections
Wantchekon (2003) on Benin elections
Alos-Ferrer and Granic (2014) on German elections
Darmann et al (2017, 2019) and Darmann and Klamler (2023)
on Austrian elections
McCune and McCune (2024) on various American
ranked-choice elections
Blais and Degan (2019) and Stephenson et al (2018) on
strategic aspects
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How could mathematics help us understand what goes on in
elections?
Goal today is to introduce a particular mathematical approach to
analyze voting situations

“Geometry of Voting” by Don Saari

Apply it (in a limited way) to data from two elections in
Austria

to say something about potential differences in outcomes and
paradoxical situations
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Austrian Elections

Data collected via exit polls in front of several real polling
stations during the Styrian parliamentary elections on 31 May
2015 and on 24 Nov 2019

approximately 1000 respondents for each election

Questions in particular on voters’ preferences, e.g.,

full preference ranking of the parties
assignment of parties to pre-defined preference classes
approval preferences
points assigned on a scale from -20 to +20
but also on evaluation of parties on a left-right-political
dimension

eight parties in 2015 - six parties in 2019

used the weak-order model of Regenwetter et al. (2007) to
receive complete rankings (for the 2015 election)
one third incomplete rankings in 2015 - 7% incomplete
rankings in 2019
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Theoretical Considerations

Theoretically situations as the following could occur:

5 4 3 2 1
a e d c b
b b e d c
c c b e d
d d c b e
e a a a a

Assume that they provide (consistently) more detailed preference
information

A(B) 5 A(B) 4 A(B) 3 A(B) 2 A(B) 1
30(20) a 30(20) e 70(10) d 45(10) c 35(10) b
25(2) b 25(5) b 15(−1) e 40(−1) d 30(5) c
20(1) c 20(3) c 10(−2) b 10(−2) e 25(−5) d
15(−5) d 15(−3) d 5(−5) c 5(−3) b 10(−7) e
10(−6) e 10(−5) a 0(−7) a 0(−4) a 0(−10) a
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Empirical Results - outcomes 2015

The results of our 2015 election were very consistent.

Voting rule 1st 2nd 3rd 4th 5th 6th 7th 8th
Plurality Rule SP VP FP GP KP NEOS TS Pir
Run Off SP VP FP GP KP NEOS TS Pir
STV SP VP FP GP NEOS KP TS Pir
Condorcet SP VP GP FP KP NEOS TS Pir
Approval SP VP FP GP NEOS KP TS Pir
Borda SP VP GP FP NEOS KP TS Pir
±20 Points SP VP GP KP NEOS FP Pir TS
100 Points SP VP FP GP KP NEOS TS Pir



Empirical Results - outcomes 2019

The results of our 2019 election showed more variation.

Voting rule 1st 2nd 3rd 4th 5th 6th
Plurality Rule GP VP SP FP KP NEOS
Run Off GP VP SP FP KP NEOS
STV GP VP SP FP KP NEOS
Condorcet GP NEOS SP VP KP FP
Approval GP NEOS KP VP SP FP
Borda GP VP SP NEOS KP FP
+/o/- GP NEOS VP SP KP FP
±20 Points GP NEOS KP SP VP FP
Anti-Plur VP SP NEOS GP KP FP



Saari’s Geometric Approach

What determines the difference in outcomes?

Don Saari’s geometric approach

Formal Framework:

X = {c1, c2, c3, ..., cn} ... set of n candidates

R ⊆ X × X is a binary relation on X
P is the set of the n! strict rankings of the candidates

assume a finite number of m voters

a profile is p ∈ Pm

equivalently: p ∈ Rn!, i.e., how many voters hold each of the
n! different strict rankings
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Saari’s Geometric Approach

Example with n = 3

type ranking type ranking

1 a ≻ b ≻ c 4 c ≻ b ≻ a
2 a ≻ c ≻ b 5 b ≻ c ≻ a
3 c ≻ a ≻ b 6 b ≻ a ≻ c

p = (2, 0, 0, 4, 1, 0) ∈ Rn! represents a profile

p′ = (27 , 0, 0,
4
7 ,

1
7 , 0) is a normalized profile

... is a point in the n!− 1 dimensional simplex

already 5-dimensional for n = 3

In the 2019 elections, p ∈ R720

only 227 rankings actually occurred
some “natural restrictions” of what are reasonable preferences
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Saari Triangle

The following reduction in dimensions
is, however, possible:

take the n − 1 dimensional simplex
where each vertex represents a
candidate

each point in the simplex
determines a ranking of the
candidates based on the point’s
distance from the vertices

... according to “the closer the
better”
a ≻ b ≻ c
b ≻ c ≻ a
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Saari Triangle

The profile p = (2, 0, 0, 4, 1, 0) can now
be presented in the triangle
In addition various voting outcomes can
be determined:

the numbers to the left and right
of each line determine the pairwise
majority outcome

the numbers in the two areas
closest to the vertices determine
the plurality outcome

the plurality numbers plus one half
of the numbers in the areas next to
that determine the Borda outcome



Saari Triangle

The profile p = (2, 0, 0, 4, 1, 0) can now
be presented in the triangle
In addition various voting outcomes can
be determined:

the numbers to the left and right
of each line determine the pairwise
majority outcome

the numbers in the two areas
closest to the vertices determine
the plurality outcome

the plurality numbers plus one half
of the numbers in the areas next to
that determine the Borda outcome



Saari Triangle

The profile p = (2, 0, 0, 4, 1, 0) can now
be presented in the triangle
In addition various voting outcomes can
be determined:

the numbers to the left and right
of each line determine the pairwise
majority outcome

the numbers in the two areas
closest to the vertices determine
the plurality outcome

the plurality numbers plus one half
of the numbers in the areas next to
that determine the Borda outcome



Saari Triangle

The profile p = (2, 0, 0, 4, 1, 0) can now
be presented in the triangle
In addition various voting outcomes can
be determined:

the numbers to the left and right
of each line determine the pairwise
majority outcome

the numbers in the two areas
closest to the vertices determine
the plurality outcome

the plurality numbers plus one half
of the numbers in the areas next to
that determine the Borda outcome



Saari Triangle

The profile p = (2, 0, 0, 4, 1, 0) can now
be presented in the triangle
In addition various voting outcomes can
be determined:

the numbers to the left and right
of each line determine the pairwise
majority outcome

the numbers in the two areas
closest to the vertices determine
the plurality outcome

the plurality numbers plus one half
of the numbers in the areas next to
that determine the Borda outcome



Saari Triangle

Any rule that assigns scores to the candidates defines a point in
the simplex.

E.g., profile p = (2, 0, 0, 4, 1, 0)
leads to plurality scores of (2, 1, 4)
or, normalized, to qPl = (27 ,

1
7 ,

4
7).

red point in simplex

plurality outcome c ≻ a ≻ b

in general, we can plot the
outcome for any scoring rule with
(normalized) weights w s = (1, s, 0)

s = 1
2 (Borda), s = 0 (Plurality),

s = 1 (anti-plurality)
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because for all s ∈ [0, 1], w s is a linear combination of
wPl = (1, 0, 0) and wAP = (1, 1, 0), all scoring rule outcomes must
lie on a line from the Plurality outcome to the Anti-plurality
outcome.

Procedure Line

from red (Plur) to blue (A-Plur)

E.g., profile p = (2, 0, 0, 4, 1, 0)
leads to a procedure line indicating
5 different scoring rule outcomes
(two of which contain
indifferences).

For n > 3, the procedure line becomes the convex hull of the
outcomes based on all k-Approval rules, i.e., the scoring vectors
(1, 0, 0, ..., 0), (1, 1, 0, ..., 0), (1, 1, 1, 0, ..., 0)
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Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to
the 3 parties SPÖ, ÖVP and NEOS.

Pairwise Majority: N ≻ S ≻ O

Plurality Ranking: S ≻ N ≻ O

Anti-Plurality Ranking: N ≻ S ≻ O

for most scoring rules: N ≻ S ≻ O

for AV, all outcomes are possible!
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Pairwise Majority: N ≻ S ≻ O

Plurality Ranking: S ≻ N ≻ O

Anti-Plurality Ranking: N ≻ S ≻ O

for most scoring rules: N ≻ S ≻ O

for AV, all outcomes are possible!



Saari Triangle application

Let us apply this to the profile in the 2019 election restricted to
the 3 parties SPÖ, ÖVP and NEOS.
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Profile decomposition

What actually drives the (potential) differences in the outcomes?
Saari (1995) uses what he calls profile decomposition

profile differential as the difference between two profiles with
the same number of voters

e.g., (0,−1,−3, 2, 1, 1), which sums up to zero and contains
negative voters.

can be made non-negative by adding a profile K in which
there is one voter for each ranking

(1, 1, 1, 1, 1, 1)
all positional and pairwise voting rules have complete
indifference over K

(0,−1,−3, 2, 1, 1) + 3K = (3, 2, 0, 5, 4, 4)

universal kernel pK

n!− 2n−1(n − 2)− 2 dimensional subspace of profile space
Si(n!)
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Profile decomposition - Basic profile

Definition

The basic portion for a candidate X is the profile differential with
one voter for each type where X is top-ranked and -1 voters where
X is bottom-ranked.

type ranking type ranking
1 a ≻ b ≻ c 4 c ≻ b ≻ a
2 a ≻ c ≻ b 5 b ≻ c ≻ a
3 c ≻ a ≻ b 6 b ≻ a ≻ c

e.g. Ba = (1, 1, 0,−1,−1, 0) is the Basic vector for item a.

item a wins for all pairwise and positional rules with all other
items being indifferent

pB = aBBa + bBBb + cBBc is the profile differential (for 3
items) coming from the Basic vectors

e.g., 4Ba + 2Bb + 1Bc determines the outcome a ≻ b ≻ c for
all pairwise and positional rules
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Profile decomposition - Condorcet profile

Definition

The Condorcet portion (for n=3) is the profile differential with one
voter for each type in a cycle and -1 voters for each type in the
opposite cycle.

type ranking type ranking
1 a ≻ b ≻ c 4 c ≻ b ≻ a
2 a ≻ c ≻ b 5 b ≻ c ≻ a
3 c ≻ a ≻ b 6 b ≻ a ≻ c

e.g. C 3 = (1,−1, 1,−1, 1,−1) is the Condorcet portion
strengthening the cycle a ≻ b ≻ c ≻ a

but gives indifference over all items for all positional rules

pC is the profile adding cyclical effects
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Profile decomposition - Reversal profile

Definition

The reversal portion (for n = 3) for a candidate X is the profile
differential with one voter for each type where X is top-ranked, one
voter for each type where X is bottom-ranked, and -2 voters where
X is middle-ranked.

type ranking type ranking
1 a ≻ b ≻ c 4 c ≻ b ≻ a
2 a ≻ c ≻ b 5 b ≻ c ≻ a
3 c ≻ a ≻ b 6 b ≻ a ≻ c

e.g. Ra = (1, 1,−2, 1, 1,−2) is the Reversal vector for item a.

leads to complete indifference for pairwise methods and the
Borda count but not the other positional rules

pR = aRRa + bRRb + cRRc is the profile differential (for 3
items) coming from the Reversal vectors
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e.g. Ra = (1, 1,−2, 1, 1,−2) is the Reversal vector for item a.

leads to complete indifference for pairwise methods and the
Borda count but not the other positional rules

pR = aRRa + bRRb + cRRc is the profile differential (for 3
items) coming from the Reversal vectors
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Profile decomposition

All profiles can now be expressed as

p = pK + pB + pC + pR

type ranking type ranking
1 a ≻ b ≻ c 4 c ≻ b ≻ a
2 a ≻ c ≻ b 5 b ≻ c ≻ a
3 c ≻ a ≻ b 6 b ≻ a ≻ c

Example:

pB = 2Ba + 1Bb = (2, 1,−1,−2,−1, 1)

add pC = 5C 3 = (5,−5, 5,−5, 5,−5)

add pR = 3Rc = (3,−6, 3, 3,−6, 3)

hence we get (10,−10, 7,−4,−2,−1)

Add pK = 10K to get p = (20, 0, 17, 6, 8, 9)

Borda: a ≻ b ≻ c ; Plurality: c ≻ a ≻ b; Cycle
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Profile decomposition - application

Consider the reduced profile for SPÖ, ÖVP and NEOS.

type ranking type ranking
1 SP ≻ VP ≻ NEOS 4 NEOS ≻ VP ≻ SP
2 SP ≻ NEOS ≻ VP 5 VP ≻ NEOS ≻ SP
3 NEOS ≻ SP ≻ VP 6 VP ≻ SP ≻ NEOS

Example:

p = (91, 234, 184, 125, 150, 88)

if we subtract 88K we get (3, 146, 96, 37, 62, 0)

has the same outcomes as the original profile

Actually,
p = −13.3BSP−51.6BVP+18.6RSP+28RVP−3.6C 3+145.3K
Borda: NEOS ≻ SP ≻ VP given the Basic portion

Plurality: SP ≻ NEOS ≻ VP given the Reversal portion

no cycle because of the small Condorcet portion
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Party types - definition

In Baujard et al. (2014) and Darmann et al. (2017) different party
types have been defined
Which types could - in principle - exist?

popular party
strong support from a specific segment of society and seen
positively by a large proportion of society

unpopular party
strong support from a small group and seen negatively by a
large proportion of society

medium party
acceptable to a large proportion of society and induces strong
views only for small groups

polarizing party
strong support from a certain, significantly large, part of
society as well as strong negative support from another,
significantly large, group
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Party types - definition

Figure: Distributions of votes over ranks for different types of candidates



Profile decomposition - application

Can also use Saari’s approach to classify candidates

type ranking type ranking
1 a ≻ b ≻ c 4 c ≻ b ≻ a
2 a ≻ c ≻ b 5 b ≻ c ≻ a
3 c ≻ a ≻ b 6 b ≻ a ≻ c

a large basic portion Ba = (1, 1, 0,−1,−1, 0) indicates that a
is a popular candidate

a large negative share of Ba indicates that a is rather an
unpopular candidate

a large reversal portion Ra = (1, 1,−2, 1, 1,−2) indicates that
a could be a polarizing candidate

a large negative share of Ra indicates that a is rather a
medium candidate
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Results - types 2015

we also use a different graphical representation by comparing
the shares of high ranks with those of low ranks

different areas contain different types of parties

Figure: Types of parties 2015 - ordinal information
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Results - types 2019

Figure: Types of parties 2019 - ordinal information



Saari triangles - distances 2015

could also ask how stable the outcomes are

points on the procedure line in the triangle indicate the
distance to changes for rules with w = (1, s, 0)
also shows for which values of s the outcome is changed

switch from winner F to G
at s = 0.015

switch from second place F
to K at s = 0.565

switch from winner G to K
at s = 0.871

e.g., only 2 voters are
needed to change the
plurality winner
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Strategic Voting

We can also look at Saari-triangles to see what changes occur in
case voters vote strategically.

changes the procedure line

for n = 3 it changes the plurality point of the procedure line

left - p = (3, 0, 4, 0, 0, 2)

worst outcome under PR for the 3 red voters

right - p′ = (0, 0, 4, 0, 0, 5)

PR outcome preferred by the 3 strategic voters
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in judgement aggregation 4-dimensional settings possible

convex hull of all feasible vertices is the representation
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all majority outcomes lie in that polytope
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for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes and Cycles

The majority outcome is the vertex of the subcube closest to the
majority counts ... but two subcubes represent cyclic outcomes

for n > 3 many more cyclic sub-polytopes

for n = 4 we jump to 2(
4
2) = 64 vertices

of those 2(
n
2) − n! = 40 are non-transitive

for n = 6 already 98% of the vertices are non-transitive



Cubes - applications

Could again think about stability of outcomes

Euclidean distance to cycling subcubes shows closeness to
cycles

Consider SP, VP and FP from the 2019 election

(S > V ,V > F ,F > S) =
(0.58, 0.91, 0.14)

closest cyclical vertex:
(1,1,1)

distance 0.36

takes 36% of the voters to
change between F and S
rather far away from
having a cycle
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Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Cubes - applications

Could also measure the distance from cycles for all 6 candidates in
the 2019 elections

there are 2(
6
2) − n! = 215 − 6! = 32048 non-transitive vertices

What are the closest cycles?

3 cand.: SP, KP, NEOS with distance 0.004

4 cand.: SP, VP, KP, NEOS with distance 0.057

5 cand.: SP, VP, GREENS, KP, NEOS with distance 0.196

all 6 cand.: distance 0.370



Conclusion

What has been done?

attempt to introduce Saari’s geometric approach and apply it
to data from two actual elections

visualize in a simple way all differences in positional and
pairwise voting rules for n = 3

use the profile decomposition to show what drives the
differences between rules

use Saari’s framework to classify the candidates into different
types

measure the distance to problematic outcomes
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