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Why this matters

• High-dimensional (nonconvex) optimization problems are pervasive in many fields, particularly

in cutting-edge areas such as machine learning, signal/image processing and optimal control.

Training neural networks Computer assisted tomography Crowd evacuation control

• Stochastic gradient descent-type methods (SGD, Adam, RMSProp, . . .), are favored for their

efficiency, scalability, ability to evade critical points, and their solid mathematical foundations.

• Metaheuristic (gradient-free) algorithms gained popularity due to the minimal assumptions on

the optimization problem, making them versatile and applicable to a wider range of problems.
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Metaheuristic optimization

Metaheuristic algorithms, often nature-inspired, combine random and deterministic moves with
local and global strategies to escape local minima and perform a robust search of the solution.

• Metropolis-Hastings (1953,1970)

• Simplex Heuristics (1965)

• Evolutionary Programming (1966)

• Genetic Algorithms (GA) (1975)

• Simulated Annealing (SA) (1983)

• Particle Swarm Optimization (PSO) (1995)

• Ant Colony Optimization (ACO) (1997)

• . . .

⇒ Despite the significant empirical success, most results are experimental in nature and lack a
rigorous mathematical foundation.
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Metaheuristics in action
Ackley function Rastrigin function

Examples of swarm-based optimization processes
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CBO methods: a mean-field perspective on metaheuristcs

Consider the optimization problem

x∗ ∈ argminx∈RF(x) ,

where F(x) : Rd → R is a (non convex, high dimensional, possibly non smooth) cost function.

Consensus-based optimization (CBO) considers the evolution of N particles Xi
t ∈ Rd according to1:

dXi
t = −λ(Xi

t − X̄α
t )dt︸ ︷︷ ︸

alignment

+ σD(Xi
t − X̄α

t )dBit︸ ︷︷ ︸
exploration

,

where λ > 0 and σ > 0 characterize the alignment and exploration strength;

D(Xt) = |Xt|Id (isotropic) or D(Xt) = diag {(Xt)1, (Xt)2, . . . , (Xt)d} (anisotropic)

X̄α
t =

1∑
i e
−αF(Xit)

∑
i

Xi
te
−αF(Xit) −−−−−→

α→+∞
argmin(F(X1

t ), . . . ,F(XN
t )) (Laplace principle)

1Pinnau, Totzeck, Tse, Martin ’17; Carrillo, Choi, Totzeck, Tse ’18; Carrillo, Jin, Li, Zhu ’20; Fornasier, Huang,
Sünnen, Pareschi 21; Carrillo, Hoffmann, Stuart, Vaes ’22; Borghi, Herty, Pareschi ’23; . . .
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CBO in action
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Mean-field limit of CBO

The behavior of the CBO system for N � 1 is obtained by assuming that the (Xi
t), i = 1, . . . , N

are independent with the same distribution ρ(x, t) (propagation of chaos assumption)

ρN (x, t) =
1

N

N∑
i=1

δ(x−Xi
t) ≈ ρ(x, t), X̄α

t ≈ x̄α(ρ) =

∫
Rd x e

−αF(x)ρ(x, t)dx∫
Rd e

−αF(x)ρ(x, t)dx
.

Under the propagation of chaos assumption, the update rule becomes independent of the index i

and can be re-written as a mono-particle process.

In such a situation, the dynamics (anisotropic) is approximated by the Fokker–Planck equation2

∂tρ = λ∇x · (x− X̄α(ρ))ρ︸ ︷︷ ︸
transport

+
σ2

2
∆x

(
‖x− X̄α(ρ)‖22ρ

)
︸ ︷︷ ︸

diffusion

,

whereas in the anisotropic case the diffusion term is replaced by3

σ2

2

d∑
j=1

∂jj((x− X̄α(ρ))2
jρ).

2Pinnau, Totzeck, Tse, Martin ’17; Carrillo, Choi, Totzeck, Tse ’18
3Carrillo, Jin, Li, Zhu ’20; Huang, Qiu ’22; Fornasier, Klock, Riedl ’22;Gerber, Hoffmann, Vaes ’23; Koss,

Weissmann, Zech ’24
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Convergence to global minimum

Theorem (Carrillo, Choi, Totzeck, Tse ’18)

If σ2 < 2λ/d and α� 1, the variance V (t)→ 0 and the expectation E[X̄α
t ]→ x̃. When

α→ +∞ and F has a unique global minimizer, under reasonable assumptions on F , we
have x̃ ≈ x∗ the global minimum4.

In the isotropic case the variance satisfies

dV (ρ)

dt
= −

(
2λ− σ2d

)
V (ρ) +

dσ2

2
‖E(ρ)− X̄α(ρ)‖22.

The second term is controlled if V (ρ0) satisfies some boundedness assumptions. Next one
shows that F(x̃) ≈ F(x∗) for α� 1 and F ∈ C2(Rd) with boundedness assumptions on
∆xxF . In the anisotropic case, the dimensional dependence on σ2 is removed.

4Carrillo, Choi, Totzeck, Tse ’18; Carrillo, Jin, Li, Zhu ’20;
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Convergence as a minimizer of the square distance from x∗

Individual agents follow, on average, the gra-
dient flow of the map x 7→ ‖x− x∗‖22
Consider the energy functional

V(ρ) =
1

2

∫
Rd
‖x− x∗‖22ρ dx =

1

2
W 2

2 (ρ, δx∗)

where W 2
2 is Wasserstein-2 distance.

Then V(ρ)→ 0 simultaneously shows consensus formation and convergence of ρ to the
Dirac delta δx∗ with respect to the Wasserstein distance. This can be achieved under less
restrictive conditions5.

5M. Fornasier, T. Klock, K. Riedl ’22
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Questions arising

• Can we extend the concepts and analysis of CBO to other widely used
metaheuristic algorithms?

• Can this approach lead to the design of new, more efficient and
mathematically explainable algorithms?

• Are there any discernible links between CBO and established
metaheuristics?

• Could this approach enhance our understanding of the relationship
between metaheuristics and gradient-based methods?
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Three tales of kinetic equations in global optimization

1 Simulated Annealing (SA) and linear kinetic equations

2 Genetic Algorithms (GA) and Boltzmann equations

3 Particle Swarm Optimization (PSO) and Vlasov-Fokker-Planck equations

Algorithm Feature

Simulated Annealing Generates a single point Xn at each iteration.
(SA) The sequence of points approaches an optimal solution.

Genetic Algorithm Generates a population of points Xn
i at each iteration.

(GA) The fittest evolve towards an optimal solution.

Particle Swarm Generates a swarm of points (Xn
i , V

n
i ) at each iteration.

Optimization (PSO) The swarm moves towards an optimal solution.

⇒ The algorithms are part of the Matlab Global Optimization Toolbox: simulannealbnd, ga,
particleswarm.
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Tale I:

Simulated Annealing and linear kinetic equations

There is a deep and useful connection between statistical mechanics (the behavior of systems with
many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or
combinatorial optimization (finding the minimum of a given function depending on many
parameters) . . . This connection to statistical mechanics exposes new information and provides an
unfamiliar perspective on traditional optimization problems and methods.

(S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing, Science, 1983)
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Simulated Annealing

N. Metropolis

Starting from a random trial point X0 ∈ Rd and a control temperature T 0, the
simulated annealing (SA) algorithm can be summarized asb

1 Move the current point
X̃n+1 = Xn + σnξ

where ξ ∼ U(−1, 1)d and σn > 0 depends on Tn. Typically σn ∼
√
Tn.

2 If X̃n+1 is better than the current point F(X̃n+1) < F(Xn), it becomes the next point.

If X̃n+1 is worse F(X̃n+1) ≥ F(Xn) it is accepted with probability e−
F(X̃n+1)−F(Xn)

Tn .

3 The algorithm systematically lowers the temperature, accordingly to a law of the type

Tn+1 = λn+1T0, λn ∈ (0, 1),

where T0 > 0 is a given initial temperature. A classical choice is λn = 1/ ln(n+ 2).

⇒ For a fixed T the algorithm corresponds to Metropolis-Hasting sampling from the

Boltzmann-Gibbs probability density Ce−
F(x)
T .

bMetropolis et al. ’53; Kirkpatrick, Gelatt, Vecchi ’83
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Simulated annealing and Langevin dynamics

Consider the stochastic differential process6

dXt = −∇xF(Xt)dt+
√

2TdBt,

referred to as Langevin equation. It can be understood as the limit for small learning rates of a
stochastic gradient descent (SGD) method.

The process is refereed to as continuous simulated annealing since its mean field description

∂f

∂t
(x, t) = ∇x · (∇xF(x)f(x, t)) + T∆xxf(x, t),

where f(x, t) is the probability density to have a trial point in position x ∈ Rd at time t > 0,
admits as stationary state the Boltzmann-Gibbs distribution

f∞F (x) = Ce
−F(x)
T .

6Geman, Hwang ’86; Hwang et al ’87; Locatelli ’00; Monmarché ’18; Chizat ’22
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Annealing process

By the Laplace principle

lim
T→0
−T log

Å∫
Rd
g(x)e

−F(x)
T dx

ã
= inf
x∈supp(g)

F(x),

where g(x) is a pdf in Rd. For T � 1, the equilibrium state
concentrates on global minima of F(x)

f∞F (x)→ δ(x− x∗).

Time to reach equilibrium increases exponentially with 1/T !

Slowly decreasing T (t) so that the solution approaches f∞F (x) at a faster rate and concentrates on
minima asymptotically. For T (t) ∼ 1/ log(2 + t) it converges weakly to the set of global minima7.

⇒ It requires the gradient evaluation, in contrast with the gradient-free nature of SA algorithm.

⇒ Derivation of the SDE Langevin diffusion from Metropolis-Hasting8.

7Hajek ’88
8Gelfand ’87; Roberts, Gelman, Gilks ’97; Roberts, Rosenthal ’01; Pillai, Stuart, Thiéry ’14
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Optimization by linear kinetic equations

After introducing the probability density f(x, t), we can write the evolution equation9

∂f(x, t)

∂t
= LF (f(x, t))

LF (f(x, t)) = E [BF (x′ → x)f(x′, t)]︸ ︷︷ ︸
gain

−E [BF (x→ x′)] f(x, t)︸ ︷︷ ︸
loss

where E[·] denotes the expectation with respect to the selection probability p(ξ), ξ ∈ Rd,

x′ = x+ σ(t)ξ,

is the new trial-point position, and

BF (x→ x′) = min

ß
1,
f∞F (x′)

f∞F (x)

™
=

1, F(x′) < F(x)
f∞F (x′)

f∞F (x)
, F(x′) ≥ F(x).

is the transition probability from x→ x′.

9Kolokoltsov ’10; Pareschi, Toscani ’13
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Proposition

The Gibbs distribution f∞F (x) satisfies LF (f∞F (x)) = 0, ∀x ∈ Rd.

For a symmetric selection probability we have the weak form

∂

∂t

∫
Rd
f(x, t)φ(x) dx = E

ï∫
Rd
BF (x→ x′)(φ(x′)− φ(x))f(x, t) dx

ò
.

The above equation can be written as a classical linear Boltzmann equation10

∂

∂t

∫
Rd
f(x, t)φ(x) dx = E

ï∫
Rd
p(ξ)βF (x→ x′)(φ(x′)− φ(x))f(x, t)f∞F (x′) dx

ò
,

where βF (x→ x′) ≥ 0 is now a symmetric collision kernel

βF (x→ x′) =

{
1

f∞F (x′) , F(x′) < F(x)

1
f∞F (x) , F(x′) ≥ F(x).

10Bisi, Canizo, Lods ’15, ’19; Toscani, Spiga ’04; Michel, Mischler, Perthame ’05
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Entropies and steady states

Theorem

For any convex function Φ(x), we have

HΦ(f |f∞F ) =

∫
Rd
f∞F (x)Φ

Å
f(x, t)

f∞F (x)

ã
dx =⇒ dHΦ(f |f∞F )

dt
= −IF [f ] ≤ 0,

where for h(x, y) = (x− y)(Φ′(x)− Φ′(y)) ≥ 0

IF [f ] =
1

2
E
ï∫

Rd
BF (x→ x′)f∞F (x)h

Å
f(x′, t)

f∞F (x′)
,
f(x, t)

f∞F (x)

ã
dx

ò
In the case Φ(x) = x log(x)− x+ 1 we have the Shannon-Boltzmann entropy H(f |f∞F ) for which
a modified logarithmic Sobolev inequality11

IF [f ] ≥ λH(f |f∞F )⇒ H(f |f∞F ) ≤ H(f0|f∞F )e−λt,

thanks to the Csiszár–Kullback inequality implies the convergence in L1(Rd) of f(x, t) to f∞F (x).

11Holley, Strook ’88; Miclo ’92; Trouvé ’96; Carlen, Carvalho ’04; Toscani, Villani ’99; Matthes, Toscani ’12;
Desvillettes, Mouhot, Villani ’11
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Annealing and long time behavior

In the general case where T = T (t) we must take into account the normalization constant

φ(x) = log

Å
f(x, t)

f∞F (x, t)

ã
= log(f(x, t)) +

F(x)

T (t)
− log (C(t))

to get

d

dt

∫
Rd
f(x, t) log

Å
f(x, t)

f∞F (x, t)

ã
dx =

∫
Rd

∂f(x, t)

∂t

Å
1 + log

Å
f(x, t)

f∞F (x, t)

ãã
dx

− T
′(t)

T 2(t)

∫
Rd
F(x) (f(x, t)− f∞F (x, t)) dx

This requires T ′(t) = o(T 2(t)) as T (t)→ 0. For example if T (t) ≈ 1/t we get T ′(t)/T (t)2 ≈ 1
whereas for T (t) ≈ 1/ log(t) we get T ′(t)/T (t)2 ≈ 1/t and the quantity can be bounded

dH(f |f∞F )

dt
≤ −λH(f |f∞F ) +

c

t
‖F‖∞,

which, thanks to a Grönwall’s Lemma-type argument, leads to the desired entropy decay for t� 1.
⇒ By Laplace principle, as T (t)→ 0 the equilibrium f∞F (x, t) concentrates on the global minimum
x∗, then also f(x, t) concentrates on x∗ and the solution converges to the global minimum12.

12Borghi, Pareschi ’24
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From SA to Langevin: mean-field scaling

Let us observe that the weak form of the kinetic equation can be reformulated as follows

∂

∂t

∫
Rd
f(x, t)φ(x) dx = Eξ

ï∫
Rd

(φ(x′)− φ(x))f(x, t) dx

ò
− Eξ

ï∫
Rd

Å
1− f∞F (x′)

f∞F (x)

ã
Ψ(F(x′) ≥ F(x))(φ(x′)− φ(x))f(x, t) dx

ò
.

By analogy with the grazing collision limit of the Boltzmann equation, we consider the scaling13

t→ t/ε, σ(t)→
√
εσ(t),

and write for small values of ε� 1

φ(x′) = φ(x) + (x′ − x) · ∇xφ(x) +
1

2

d∑
i,j=1

(x′i − xi)(x′j − xj)
∂2φ(x)

∂xi∂xj
+O(ε3/2)

f∞F (x′) = f∞F (x)− (x′ − x) · 1

T (t)
(∇xF(x))f∞F (x) +O(ε).

13Desvillettes ’92; Villani ’98; Pareschi, Toscani ’13
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Assuming p(ξ) with mean 0 and identity covariance matrix Σ = Id∫
Rd
p(ξ)ξiξj dξ = δij ,

where δij is the Kronecker delta, we formally have

∂

∂t

∫
Rd
f(x, t)φ(x) dx =

σ(t)2

2

d∑
i=1

∫
Rd

∂2φ(x)

∂x2
i

f(x, t) dx

− σ(t)2

2T (t)

∫
Rd

∫
Rd
p(ξ)ξ · ∇xF(x)ξ · ∇xφ(x)f(x, t) dξ dx.

Taking 2T (t) = σ2(t), we can revert to the original variables to recover the Langevin dynamics

∂f(x, t)

∂t
= ∇x · (∇xF(x)f(x, t)) + T (t)∆xxf(x, t).
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Maxwellian simulated annealing

We can formulate a simulated annealing-type process avoiding the acceptance-rejection dynamic.

1 We start from the trial point
X̃n+1 = Xn + σnξ.2 Then, we define

Xn+1 =

{
X̃n+1 if F(X̃n+1)−F(Xn) < 0

Xn + e−
F(X̃n+1)−F(Xn)

Tn (X̃n+1 −Xn) if F(X̃n+1)−F(Xn) ≥ 0.

Thus, if X̃n+1 is worse than Xn we interpolate with a weight proportional to the Gibbs’ measure.

In a continuous setting we have the update rule

x′ = x+BF (x→ x+ σ(t)ξ)σ(t)ξ, BF (x→ x+ σ(t)ξ) = min

ß
1,
f∞F (x+ σ(t)ξ)

f∞F (x)

™
.

The corresponding kinetic equation has the form of a Maxwell model and can be written as

∂

∂t

∫
Rd
f(x, t)φ(x) dx = Eξ

ï∫
Rd

(φ(x′)− φ(x))f(x, t) dx

ò
.

⇒ It is possible to show that the mean-field scaling yields again the Langevin dynamics.
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The prototype Ackley function: fixed temperature T = 2

Probability density (top) and relative entropy (bottom) for ε = 0.01 (left) and ε = 0.0001 (right).
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The prototype Ackley function: annealing T (t) = 2 log(2)/ log(2 + t)

Probability density (top) and relative entropy (bottom) for ε = 0.01 (left) and ε = 0.0001 (right).
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Generalizations and improvements

• Sampling.
The ideas can be generalized to the Metropolis-Hasting sampling algorithm. The main
difference lies in the transition probability which defines the kernel in the kinetic equation.

• Entropy controlled SA.
A time evolution of a temperature distribution is considered aimed at minimizing the entropy
to speed up convergence of standard simulated annealing14.

• Parallel tempering SA.
Collective behavior of samples with different temperatures, so that f = f(x, T, t), which learn
along the dynamic how to lower the temperature and reach the global minima15.

14Herty, Pareschi, Zanella ’24
15Blondeel, Pareschi ’24
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Generalizations to sampling

The above ideas can be extended to the general Metropolis-Hasting sampling algorithm.

Let M(x) be a function that is proportional to the desired probability density function f∞(x),
namely, M(x)/M(y) = f∞(x)/f∞(y) for x, y ∈ Rd.

The kinetic formalism used in the simulated annealing case applies also to the Metropolis-Hasting
process where the main difference lies in the transition probability that reads

BM (x→ x′) =

1, p(x|x′)M(x′) > p(x′|x)M(x)
p(x|x′)M(x′)

p(x′|x)M(x)
, p(x|x′)M(x′) < p(x′|x)M(x),

where x′ is generated from a given proposal density p(x′|x). The most common choices are the
uniform or the normal distributions centered in x with a given variance σ.
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Entropy controlled SA

We consider the following system of kinetic equations in weak form

∂

∂t

∫
Rd
f(x, t)ϕ(x)dx

=
1

2
Eξ
ï∫

Rd
(ϕ(x′)− ϕ(x))(BF (x→ x′)f(x, t)−BF (x′ → x)f(x′, t))dx

ò
∂

∂t

∫
R+

g(T, t)ϕ(T )dT = Eη

ñ∫
R+

ϕ(T ′)− ϕ(T )g(T, t)dT

ô
where

x′ = x+
»

2D[g]ξ.

The term D[g] = D[g](t) ≥ 0 depends on g(T, t) and

T ′ = T − λ[f ]T +
»
κ(T )η,

with λ = λ[f ] ∈ [0, 1] a control parameter, and η a random variable such that Eη[η] = 0,
Eη[η2] = 2σ2 < +∞, weighted by the function κ(·) ≥ 0.
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Mean-field entropy control

Taking D[g] as the mean value

D[g](t) =

∫
R+

Tg(T, t)dT,

one can show that

d

dt
H(f |f∞F )(t) = −IH(f |f∞F )− λ[f ](t)

D2[g](t)

∫
Rd
F(x)(f∞F (x, t)− f(x, t))dx,

where

IH(f |f∞F )(t) =

∫
Rd
D[g](t)f(x, t)∇x log

f(x, t)

f∞F (x, t)
dx

Thus one can choose λ[f ](t) to speed up the convergence rate of the algorithm.
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Parallel tempering SA

In parallel tempering (PT) a collection of particles Xn
i with different temperatures Tni is

considered. Adjacent temperatures i and j are then swapped with probability16

exp

[( 1
Tni
− 1

Tnj

)
(F(Xn+1

i )−F(Xn+1
j ))

T̄

]
,

where T̄ acts as a global temperature. This is needed to control the acceptance ratio.

A kinetic model embedding SA and PT for f = f(x, T, t) can be derived in the form

∂f

∂t
= LF (f) + µJF (f, f)

where JF (f, f) is a Boltzmann-type operator modeling the binary particle interactions by
temperature exchanges and µ is a scaling factor.

16Swendsen, Wang ’86; Geyer ’91; Marinari, Parisi ’92
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The weak form of this operator reads∫
R+

JF (f, f)φ(T ) dT dx =

∫
R
CF (x, x∗, T, T∗)(φ(T∗)−φ(T ))f(x∗, T∗)f(x, T ) dT dT∗ dx dx∗,

where

CF (x, x∗, T, T∗) = Ψ(|T − T∗| < ∆) exp

[( 1
T −

1
T∗

)
(F(x)−F(x∗))

T̄

]

with Ψ(·) the indicator function, ∆ > 0.
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Error behavior SA vs SA+PT µ = 1/3, d = 10
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Tale II:

Genetic Algorithms and Boltzmann equations

. . . Finally, and quite important for future studies, genetic algorithms began to be seen as a
theoretical tool for investigating the phenomena generated by complex adaptive systems - a
collective designation for nonlinear defined systems designation systems by the interaction of large
numbers of adaptive agents (economies, political systems, ecologies, immune systems, developing
embryos, brains, and the like).

(John H. Holland, Adaptation in natural and artificial systems, MIT Press, 1992)
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Genetic algorithms

J.H. Holland

Genetic algorithms iteratively evolve a population of points to find better solutions.

Starting from xi ∈ Rd, i = 1, . . . , N the algorithm can be summarized as followsc.

1 Selection: select a group of individuals that have better fitness in the current population,

called parents, who contribute with their genes—the entries of their vectors—to their children.

2 Given a pair of parents, children are generated according to two main evolutionary dynamics:

• Crossover: by combining the vectors of a pair of parents in different ways.

• Mutation: by introducing random changes, or mutations, to a single parent.

3 The individuals which are directly passed to the next generation can be either chosen

randomly or following a fitness-based mechanism (elite group).

cHolland ’92; Touring ’50.
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Evolution through binary interactions

Let � denote the component-wise (Hadamard) product.

Given a pair of parents (x, x∗) selected according to

BF (x, x∗) ≥ 0, the process leading to an offspring x′ is

x′ = (1− γ)� x+ γ � x∗︸ ︷︷ ︸
crossover

+ D � ξ︸ ︷︷ ︸
mutation

where γ ∈ [0, 1]d is a crossover vector, ξ ∼ p(ξ) a random

vector in Rd, with zero mean and identity covariance

matrix Σ = Id, and D ∈ Rd is a mutation vector assumed

time dependent.

We assume that the number of individuals is the same for all generations and that after the

generating procedure is repeated for a fraction of selected individuals the remaining individuals are

directly taken from the previous generation, eventually according to the elitist strategy.
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A Boltzmann description of genetic algorithms

If parents are replaced by children, the mathematical description of the above process for large

numbers of interacting particles can resort on a Boltzmann type equation that in weak-form reads17

∂

∂t

∫
Rd
f(x, t)φ(x) dx = E

ï∫
R2d

BF [f ](x, x∗) (φ′ − φ) f(x, t)f(x∗, t) dx dx∗

ò
where φ is a smooth function, φ′ = φ(x′), φ′∗ = φ(x′∗), φ∗ = φ(x∗).

We use the notation E [g] =
∫
Rd g(ξ)p(ξ) dξ, to denote the mathematical expectation with respect

to the random vector ξ entering the definitions of x′.

⇒ The only collision invariant is the total mass of the particles. We expect the momentum to drift

towards the global minimum and, by suitable mutation choices, the variance to vanish as new

generations are created.

17Borghi, Pareschi ’23
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Selection kernels

Popular selection methods are Fitness based selection using the Boltzmann-Gibbs measure

BF [f ](x, x∗) =
e−α(F(x)+F(x∗))(∫
e−αF(x)f(x, t) dx

)2 ,
and Ranked based selection

BF [f ](x, x∗) =

∫
F(x)≤F(y) f(y, t) dy

∫
F(x∗)≤F(y) f(y, t) dyÄ∫ ∫

F(x)≤F(y) f(y, t) dy f(x, t) dx
ä2 .

⇒ As in simulated annealing, we can embed the selection mechanism into the interaction
rule and consider Maxwellian-type models in which the selection kernel does not appear.

Lorenzo Pareschi (Heriot Watt University) Kinetic equations in global optimization and applications 36 / 63



Maxwell-type models for Boltzmann-Gibbs selection

Given the pair (x, x∗) we write the update rule18

x′ = x(1− λγα(x, x∗)) + λγα(x, x∗)x∗ + σD(x, x∗)ξ,

= x(1− λ) + λxα(x, x∗) + σD(x, x∗)ξ,

where λ > 0, σ > 0, and xα is a local minimum estimate

γα(x, x∗) =
e−αF(x∗)

e−αF(x) + e−αF(x∗)
, xα(x, x∗) =

xe−αF(x) + x∗e
−αF(x∗)

e−αF(x) + e−αF(x∗)

D(x, x∗) = diag {γα(x, x∗)(x∗ − x)1, . . . , γα(x, x∗)(x∗ − x)d} .

The time evolution of the expected position m(t) for φ(x) = x satisfies

dm(t)

dt
= 2λ

∫
R2d

γα(x, x∗)f(x, t)f(x∗, t)x∗ dx∗ dx− λm(t),

18Benfenati, Borghi, Pareschi ’22
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Large time behavior: decay of the variance

Assumption (I)

Let us assume F(y) positive and for all y ∈ Rd

F := inf
x∈Rd

F(x) ≤ F(y)≤ sup
x∈Rd

F(x) =: F .

Proposition

Under Assumption I if α is sufficiently large, for the variance V (t) we have

dV (t)

dt
≤ −
Å
λ

Cα
− λ2 − σ2

ã
V (t) ,

for all t > 0, where Cα := eα(F−F).

Therefore, if σ2 <
λ

Cα
− λ2 there exits x̃ ∈ Rd s.t. m(t)→ x̃, V (t)→ 0 as t→∞.
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Convergence to global minimum

Assumption (II)

F ∈ C2(Rd) and there exist c1, c2 > 0 such that
1 sup

x∈Rd
|∇F(x)| ≤ c1 ;

2 sup
x∈Rd

‖∇2F(x)‖2 ≤ c2 .

Theorem

If the model parameters {λ, σ, α} and the initial data f0 satisfy

µ :=
λ

Cα
−λ2 − σ2 > 0, ν :=

2(
√

2λc1 + (λ2 + σ2)c2)αe−αF

µ‖e−αF‖L1(f0)
max{

»
V (0), V (0)} < 1

2

then there exists x̃ ∈ Rd such that m(t) −→ x̃ as t→∞.
Moreover, it holds

F(x̃) ≤ F + r(α) +
log 2

α
where, if x∗ ∈ supp(f0), then r(α) = − 1

α log ‖e−αF‖L1(f0) −F −→ 0 as α→∞.
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Evolution of Wasserstein distance
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Constant mutation (top) vs decreasing mutation (bottom) strengths. Ackley function for d = 1.
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Adding global information

If one considers the modified update rule based on global macroscopic information

x′ = x(1− λ) + λx̄α(t) + σD(x− x̄α(t))ξ,

where now x̄α(t) is a CBO-type estimate of the global minimum

x̄α(t) =

∫
Rd x exp−αF(x) f(x, t) dx∫
Rd exp−αF(x) f(x, t) dx

, D(x− x̄α(t)) = diag {(x̄α − x)1, . . . , (x̄α − x)d} ,

it is possible to show convergence to the global minimum under weaker conditions, which

mitigates the limitations induced by large α for local microscopic information.

⇒ In practice we combine the two dynamics, local best alignment and global best

alignment, giving rise to a method with four parameters λ1, σ1, λ2, σ2 that govern the

intensity of the local and global effects, respectively.
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From GA to CBO: mean-field scaling

If we introduce the following scaling for ε� 1

t→ t/ε, λ→ λε, σ → σ
√
ε.

One formally shows that as ε→ 0, the microscopic dynamic lead to a modified mean-field
CBO

∂f(x, t)

∂t
+ λ∇x

Å
f(x, t)

∫
Rd
γFβ (x, x∗)(x∗ − x)f(x∗, t) dx∗

ã
=
σ2

2

d∑
i=1

∂2

∂x2
i

Å
f(x, t)

∫
Rd
γFβ (x, x∗)

2(x∗,i − xi)2f(x∗, t) dx∗

ã
.

whereas the macroscopic dynamic leads to the the standard mean-field CBO.
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A validation example
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Minimization of Rastrigin function in d = 20 with N = 200 particles. Left image refers to the local best

only (λ2 = σ2 = 0, λ1 = 1), while the right one refers to the global best only (λ1 = σ1 = 0, λ2 = 1).

Simulation is successful if ‖xα,F − v∗‖ < 0.25.
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A validation example
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Minimization of Rastrigin function in d = 20 with N = 200 particles. Left image refers to the optimal value

of σ2 for the global best, while the right one refers to the optimal value of σ1 for the local best. Simulation

is successful if ‖xα,F − v∗‖ < 0.25.
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Comparison with Stochastic Gradient Descent

We want to minimize

L(x) =
1

n

n∑
i=1

f(x, ξi)

f(x, ξi) = exp
(
sin(2x2)

)
+

1

10

(
x− ξi −

π

2

)2

,

ξi ∼ N (0, 0.01).

Method ε σ1 σ2 Success Rate

SGD * * * 18.00%

KBO 1 0.5 0.5 98.50%

KBO 0.1 1.0 1.3 100.00%

KBO 0.01 1.0 6.5 98.70%

We fixed N = 20 and the maximum iterations number Nt = 100. Here n = 10000
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Name Function F(x) Range x∗ F(x∗) Sketch in 2D

Griewank 1 +
∑d

i=1
(xi)

2

4000
−
∏d

i=1 cos
(
xi
i

)
[−600, 600]d (0, . . . , 0) 0

Rosenbrock 1− cos
(
2π
»∑d

i=1 (xi)
2
)
+ 0.1

»∑d
i=1 (xi)

2 [−5, 10]d (1, . . . , 1) 0

Salomon 1− cos
(
2π
»∑d

i=1 (xi)
2
)
+ 0.1

»∑d
i=1 (xi)

2 [−100, 100]d (0, . . . , 0) 0

Schwefel 2.20
∑d

i=1 |xi| [−100, 100]d (0, . . . , 0) 0

XSY random
∑d

i=1 ηi|xi|i, ηi ∼ U(0, 1) [−5, 5]d (0, . . . , 0) 0

XSY 4
Ä∑d

i=1 sin
2(xi)− e −

∑d
i=1(xi)

2
ä
e −

∑d
i=1 sin2

√
|xi| [−10, 10]d (0, . . . , 0) −1
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High dimensional benchmark functions (d = 50)

Function δ = 0.25 δ = 0.1 Function δ = 0.1 δ = 0.25

Salomon

SR 100% 100%

Rastrigin

SR 75% 84%
Iters 6306 10000 Iters 3893 2320
Error 9.64e-02 4.92e-02 Error 6.91e-01 2.23e-05
Fval 0.96 0.49 Fval 0.25 8.95e-7
Na 133 215 Na 182 804

Griewank

SR 100% 100%

Schwefel 2.22

SR 100% 100%
Iters 2722 1696 Iters 2165 1631
Error 9.22e-03 7.29e-03 Error 1.27e-03 1.49e-06
Fval 2.49e-2 1.04e-2 Fval 0.27 6.9e-4
Na 258 985 Na 335 1017

StyLank

SR 77% 100%

Schwefel 2.23

SR 100% 100%
Iters 5923 2062 Iters 10000 10000
Error 4.56e-03 4.70e-05 Error 4.53e-02 4.69e-02
Fval -1958.29 -1958.29 Fval 1e-5 3.74e-8
Na 132 874 Na 75 215

Neg. Exp.

SR 100% 100%

Sphere

SR 100% 100%
Iters 2517 1325 Iters 2368 1529
Error 1.11e-03 1.40e-03 Error 1.02e-03 1.88e-04
Fval -1 -1 Fval 1.00e-5 9.35e-7
Na 271 1129 Na 291 1051

Sum of Square

SR 100% 100%

Ackley

SR 100% 100%
Iters 2788 1719 Iters 2701 1674
Error 1.15e-03 2.96e-05 Error 1.69e-03 3.87e-06
Fval 2.93e-3 1.02e-6 Fval 3.32e-2 7.00e-5
Na 252 966 Na 259 994

Results averaged 100 times starting with N = 2000. Success Rate (SR), the Average number of iteration (Iters), the

mean square error (Error) and the the average functions values (Fval) achieved on successful runs, and the

average number of particles Na used along the simulation. Simulation is successful if ‖xα,F − v∗‖ < δ.
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Application to a machine learning problem

Recognize digital numbers contained in images of the MNIST dataset

of 28× 28 images by using a shallow network f(x;W, b) = softmax (ReLU (Wx+ b)) ,
where x ∈ R784,W ∈ R10×784, and a bias b ∈ R10. Moreover

softmax(x) =
exi∑
i e
x
i

, ReLU(x) = max(0, x)

being ReLU the Rectified Linear Unit function. The training consists in minimizing the
following function for n = 104

L(X, y; f) =
1

n

n∑
i=1

`
Ä
f(X(i);W, b), yi

ä
, `(x, y) = −

10∑
i=1

yi log(xi)

where X is the training dataset of vectorized images (R28×28 → R784) and the function `
is the cross entropy.
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Recognize digital numbers: MNIST dataset
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The plot on the left depicts the performance using N = 500 without any particle reduction strategy, while the plot

on the right refers to particle reduction with different choices for particle numbers N and particles’ batch mp. The

average number of particles is denoted by Na. Here λ1 = λ2 = 1, σ1 = σ2 = 1, ε = 0.1, α = β = 5× 106.

Lorenzo Pareschi (Heriot Watt University) Kinetic equations in global optimization and applications 49 / 63



Tale III:

Particle Swarm Optimization and Vlasov-Fokker-Planck
equations

Particle swarm optimization has roots in two main component methodologies. Perhaps more

obvious are its ties to artificial-life in general, and to birds flocking, fish schooling and swarming

theory in particular. It is also related, however, to evolutionary computation, and has ties to both

genetic algorithms and evolutionary programming.

(J. Kennedy; R. C. Eberhart, Particle swarm optimization, IEEE Proceedings of ICNN’95, 1995)

Lorenzo Pareschi (Heriot Watt University) Kinetic equations in global optimization and applications 50 / 63



Particle Swarm Optimization

J. Kennedy R.C. Eberhart

Particle swarm optimization (PSO) exploits the behavior of N particles with

position xi ∈ Rd and velocity vi ∈ Rd, i = 1, . . . , N accordingly toa

xn+1
i = xni + vn+1

i ,

vn+1
i = mvni +

c1
2

(yni − xni ) +
c2
2

(ȳn − xni )︸ ︷︷ ︸
alignment

+
c1
2
Rn1 (yni − xni ) +

c2
2
Rn2 (ȳn − xni )︸ ︷︷ ︸

exploration

Local best and global best influence

• ȳn is the global best position given by
argmin(F(xn1 ), . . . ,F(xnN ),F(ȳn−1));

• yni is the local best position;

• m ∈ (0, 1] is the inertia weight;

• Rn1 , Rn2 are d-dimensional diagonal
matrices of random numbers with
distribution U(−1, 1);

• c1, c2 ∈ R are acceleration coefficients.
aKennedy, Eberhart ’95; Kennedy ’97
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A time discrete formulation of PSO

The obtain a differential formulation of PSO, a major difficulty consists in the presence of

particle memory. To this aim we rewrite the local best yn+1
i as

yn+1
i = yni +

1

2

(
xn+1
i − yni

) (
1 + sign

(
F(yni )−F(xn+1

i )
))

so that the PSO method can be generalized to the time discrete formalism

Xn+1
i = Xn

i + ∆t V n+1
i ,

Y n+1
i = Y ni + ν∆t

(
Xn+1
i − Y ni

) (
1 + sign

(
F(Y ni )−F(Xn+1

i )
))
,

mV n+1
i = mV ni − (1−m)V n+1

i + λ1 ∆t (Y ni −Xn
i ) + λ2 ∆t

(
Ȳ n −Xn

i

)
+ σ1

√
∆t R̃n1 (Y ni −Xn

i ) + σ2

√
∆t R̃n2D(Ȳ n −Xn

i )

• R̃nk , k = 1, 2 diagonal matrices of uniform random numbers with mean 0 and variance 1;

• λk = ck
2 , σk = ck

2
√

3
, k = 1, 2; Classic PSO if ∆t = 1, ν = 1/2.
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Stochastic Differential PSO (SD-PSO)

The system corresponds to a discretization of the following second order system of SDEs19:

dXi
t = V it dt,

dY it = ν
(
Xi
t − Y it

)
Sβ(Xi

t , Y
i
t )dt︸ ︷︷ ︸

memory effect

,

mdV it = −(1−m)V it dt+ λ1

(
Y it −Xi

t

)
dt+ λ2

(
Ȳ αt −Xi

t

)
dt

+σ1D(Y it −Xi
t)dB

1,i
t + σ2D(Ȳ αt −Xi

t)dB
2,i
t ,

• Bk,it , k = 1, 2 denote independent Brownian motions;

• D(Yt) = diag {(Yt)1, (Yt)2, . . . , (Yt)d};
• Sβ(x, y) = 1 + tanh (β(F(y)−F(x))) is a sigmoid that for β � 1 approximates the

1 + sign(·) function;

• Ȳ αt = 1∑
i ω

α
F (Y it )

∑
i Y

i
t ω

α
F (Y it ) where ωαF (Y it ) = exp(−αF(Yt)) is a regularized global best.

For the Laplace’s principle, with this choice, for α� 1, Ȳ α ≈ argmin(F(Y 1
t ), . . . ,F(Y Nt )).

19Grassi, Pareschi ’21
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Mean-field limit of SD-PSO

The behavior for N � 1 is obtained by assuming that the triples (Xi
t , Y

i
t , V

i
t ) are

independent with the same distribution f(x, y, v, t) (propagation of chaos assumption)

fN (x, y, v, t) =
1

N

N∑
i=1

δ(x−Xi
t)δ(y − Y i

t )δ(v − V i
t ) ≈ f(x, y, v, t).

Ȳ α
t ≈ ȳα(ρ) =

∫
Rd y ω

α
F (y)ρ(y, t)dy∫

Rd ω
α
F (y)ρ(y, t)dy

, ρ(y, t) =

∫ ∫
Rd×Rd

f(x, y, v, t)dxdv.

Consequently, f(x, y, v, t) is a weak solution of the Vlasov-Fokker-Plank equation:

∂tf + v · ∇xf +∇y ·
(
ν(x− y)Sβ(x, y)f

)
=

∇v ·
Å

1−m
m

vf +
λ1

m
(x− y)f +

λ2

m
(x− ȳα(ρ))f

+

Å
σ2

2

2m2
D(x− ȳα(ρ))2 +

σ2
1

2m2
D(x− y)2

ã
∇vf
ã
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Convergence to global minimum

Assumption

(1) There exists some constant L > 0 such |F(x)−F(y)| ≤ L(1 + |x|+ |y|)|x− y| for all x, y ∈ Rd;

(2) F is bounded from below with F := inf F and there exists some constant Cl > 0, M > 0 such that

F(x)−F ≥ Cl|x|2 for all |x| ≥M .

(3) F ∈ C2(Rd) with ‖∇2F‖∞ ≤ cF for some constant cF > 0.

Theorem

Under Assumptions (1)-(2) the SD-PSO system admits a unique solution and the limit

f(x, v, t) of the empirical measures fN exists. Moreover, f is the unique weak solution to

the Vlasov-Fokker-Planck equation describing the mean-field PSO limit. Under

Assumption (3) convergence to the global minimum holds true20.

20Huang, Qiu and Riedl ’23; Grassi, Pareschi, Huang and Qiu ’21;
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Validation of the mean-field limit

Ackley function in d = 1 with global (top) and local (bottom) best:

t = 0.5 t = 3 t = 6

Comparison between the marginal of the particle solution and ρ(x, t) =
∫
R f(x, v, t)dv.
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From PSO to CBO: small inertia limit

We rescale the MF-PSO taking m = ε� 1 and define the local Maxwellian21.

Mε(x, y, v, t) =

d∏
i=1

Mε(xi, yi, vi, t), Mε(xi, yi, vi, t) =
ε1/2

π1/2|Σ(xi, yi, t)|
exp

Ç
−

εv2
j

Σ(xi, yi, t)2

å
where Σ(xi, yi, t)

2 = σ2
1(xi − yi)2 + σ2

2(xi − ȳαi (ρ)), we can write

∂tf + v · ∇xf + ∇y ·
Ä
ν(x− y)Sβ(x, y)f

ä
+

1

ε
∇v · (εvf + λ1ε(y − x)f) + λ2(ȳα(ρ)− x)f

=
1

2ε2

d∑
j=1

Σ(xi, yi, t)
2 ∂

∂vj

Å
f
∂

∂vj
log

Å
f

Mε(xi, yi, vi, t)

ãã
,

The r.h.s. is O
(
ε−2
)
, and for ε� 1 we have f(x, y, v, t) ≈ ρ(x, y, t)Mε(x, y, v, t).

21Choi, Ha, Noh ’13; Cipriani, Huang, Qiu ’22; Grassi, Huang, Pareschi, Qiu ’21
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From PSO to CBO: small inertia limit

Thanks to this, we obtain a mean-field PSO with momentum22:

∂ρ

∂t
+∇x · (ρu) +∇y ·

Ä
ν(x− y)Sβ(x, y)ρ

ä
= 0

∂(ρu)i
∂t

+
1

2ε

∂

∂xi

(
ρ · Σ(xi, yi, t)

2
)

= −1− ε
ε

(ρu)i +
1

ε
(λ1(yi − xi) + λ2(ȳαi (ρ)− xi)) ρ.

For ε→ 0 we get a mean-field CBO system with memory effects23:

∂ρ

∂t
+∇x · (λ1(y − x) + λ2(ȳα(ρ)− x)) ρ+∇y ·

Ä
ν(x− y)Sβ(x, y)ρ

ä
=

1

2

d∑
j=1

∂2

∂x2
j

(
ρ
(
σ2

1(xj − yj)2 + σ2
2(xj − ȳαj (ρ))2

))
.

22Chen, Jin, Lyu ’22
23Borghi, Grassi, Pareschi ’23

Lorenzo Pareschi (Heriot Watt University) Kinetic equations in global optimization and applications 58 / 63



Hyper-parameters selection for benchmark functions d = 20
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‖ȳα,k − x∗‖∞ F(ȳα,k)

Optimization on benchmark functions global best only and m = ε = 0. Error and fitness values for different

σ. Here N = 200, ∆t = 1, λ = 0.01, and α is adaptive following a SA strategy with α0 = 10.
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CBO (σ =
√
2/2) CBO-ME (σ = 0.8) Matlab - particleswarm Matlab - particleswarm (c1 = 0)

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200 N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

Ackley Rate 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 17.1% 41.2% 54.3% 4.2% 16.2% 40.1%

Error 4.22e-06 2.14e-06 3.55e-06 2.42e-06 1.89e-06 1.56e-06 6.17e-09 8.86e-11 2.01e-12 2.23e-08 1.80e-10 8.65e-13

F 1.18e-04 5.81e-05 7.30e-05 1.54e-04 4.96e-05 4.99e-05 6.24e-09 7.65e-11 1.94e-12 2.06e-08 1.70e-10 8.01e-13

Iterations 912.3 718.1 623.2 977.2 703.3 622.2 501.8 424.2 341.3 502.3 421.2 321.2

Rastrigin Rate 12.1% 34.3% 62.7% 23.2% 69.7% 89.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Error 1.28e-04 1.83e-04 2.34e-04 9.73e-05 1.27e-04 1.76e-04 - - - - - -

F 4.51e-06 9.03e-06 1.46e-05 2.54e-06 4.31e-06 8.28e-06 - - - - - -

Iterations 1083.0 933.7 819.8 1007.6 922.5 769.9 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0

Rosenbrock Rate 65.3% 86.7% 100.0% 70.1% 94.2% 100.0% 9.3% 22.6% 36.6% 46.7% 60.7% 76.7%

Error 1.84e-02 2.43e-02 1.42e-02 3.60e-02 4.01e-02 1.82e-02 6.19e-04 2.56e-04 1.67e-04 4.44e-02 4.45e-02 4.46e-02

F 6.13e-03 7.57e-03 2.40e-03 1.26e-02 1.42e-02 2.65e-03 3.80e-02 3.76e-02 2.56e-02 2.56e-03 8.95e-04 3.71e-04

Iterations 5773.2 5423.2 5233.1 5933.2 4956.2 4155.2 4822.2 3823.2 3026.3 5924.2 3834.1 2933.3

Schwefel 2.20 Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 5.79e-06 8.23e-07 2.44e-07 8.42e-06 1.03e-06 2.76e-07 8.34e-10 1.97e-12 4.58e-14 1.68e-07 3.41e-10 8.03e-14

F 1.04e-03 2.15e-04 8.36e-05 1.50e-03 3.12e-04 9.37e-05 1.94e-09 6.36e-12 1.52e-13 2.44e-07 6.48e-10 2.46e-13

Iterations 822.2 682.2 622.1 655.2 544.2 455.2 491.2 434.2 399.1 578.2 467.2 423.2

Salomon Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Error 3.12e-02 2.14e-02 1.87e-02 5.28e-02 4.49e-02 3.91e-02 - - - - - -

F 3.14e-01 2.15e-01 1.88e-01 2.44e-01 1.86e-01 1.91e-01 - - - - - -

Iterations 10000.0 10000.0 10000.0 8872.2 9021.2 5356.5 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0

XSY random Rate 52.3% 81.7% 92.6% 100.0% 100.0% 100.0% 3.2% 17.1% 31.2% 100.0% 100.0% 100.0%

Error 2.64e-02 1.62e-02 9.80e-03 3.06e-02 1.86e-02 1.15e-02 2.25e-01 9.56e-02 8.42e-02 6.23e-02 5.12e-02 2.34e-02

F 6.95e-08 3.54e-08 2.13e-08 2.21e-06 4.85e-08 3.17e-08 3.35e-04 2.28e-04 1.34e-04 8.22e-04 4.11e-04 3.45e-04

Iterations 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0

XSY 4 Rate 27.2% 89.3% 100.0% 25.2% 91.2% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Error 8.10e-01 7.12e-01 7.89e-01 8.01e-01 7.55e-01 6.17e-01 - - - - - -

F 4.79e-07 3.78e-07 3.46e-07 1.58e-06 8.56e-07 5.43e-07 - - - - - -

Iterations 10000.0 10000.0 10000.0 9733.2 9531.1 8733.2 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0
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Algorithmic improvements

• Evaluate Ȳ α,Fn on batches Jb of Nb < N particles24

Ȳ α,Fn ≈
∑
i∈Jb ω

F
α (Y in)Y in∑

i∈Jb ω
F
α (Y in)

.

• Discard particles in time accordingly to the variance Σn of the solution

Nn+1 = min

ßïï
Nn

Å
1 + µ

Å
Σn+1 − Σn

Σn

ããòò
, Nmin

™
• Decrease σ in time as in simulated annealing

• Increase α in time to achieve higher precision

24S. Jin, L. Li, J-G. Liu, JCP 2020 and SINUM 2021;
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Speed up by particle reduction

µ = 0 µ = 0.1 µ = 0.2 µ = 0.5

Rastrigin Rate 100.0% 100.0% 100.0% 100.0%

Error 9.22e-05 7.76e-05 3.54e-05 1.34e-05

F 2.90e-06 2.99e-06 1.45e-06 1.12e-06

witer 1150.3 720.6 250.5 106.3

CTS - 39.2% 78.9% 92.3%

µ = 0 µ = 0.01 µ = 0.02 µ = 0.05

Rosenbrock Rate 100.0% 100.0% 99.4% 99.0%

Error 2.12e-02 2.21e-02 1.78e-02 1.45e-02

F 4.22e-03 5.67e-03 4.12e-03 4.45e-03

witer 3189.3 840.3 350.3 102.3

CTS - 75.3% 90.2% 92.4%

Table: Algorithm with particle reduction for different values of µ. The system is initialized with N0 = 200 particles.

Performance metric considered: success rate, error (‖ȳα,k − x∗‖∞), fitness value F(ȳα,k), weighted iteration, and

Computational Time Saved (CTS).
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Concluding remarks

• A kinetic/mean-field description of stochastic particle optimization methods may pave the
way to a mathematical foundation of metaheuristic algorithms for global optimization.

• This entails new difficulties as we have to deal with concepts such as memory or other
heuristic rules that can be very difficult to translate into differential form.

• The resulting PDEs are studied using classical trend to equilibrium tools (entropy inequalities,
Wasserstain distance, asymptotic limits, . . . ), enabling the design of more efficient algorithms.

• Several open problems concerning the limit as N →∞, the behavior for a finite number of
particles, the dependence on the hyper-parameters, the rates of convergence . . .

Collaborators:

A. Benfenati (Milano), G. Borghi (Edinburgh), S. Grassi (Ferrara), M. Herty (Aachen), F. Blondeel (Leuven &

Ferrara), M. Fornasier (Munich), P. Sünnen (Munich), H. Huang (Graz), J. Qiu (Calgary), M. Zanella (Pavia)

Codes:

https://github.com/borghig/CBOswarm
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