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Outline
1. The particle system. Lanford result (quick)
2. Scaling limits ( low-density and weak-coupling)
3. Formal derivation for Q. particle systems. MB
statistics
4. FD and BE statistics

I my opinion this is an important and still largely
unsolved problem.
Unfortunately in my talk no new results....only
hopes.
I will not discuss Linear problems, Kinetic picture for
waves, Mean-Field limits, models...... But I do not
forget the many facets!



The Quantum Boltzmann equation (QBE) was introduced by
Uehling and Uhlembeck (U-U) in 1933 (after similar considerations
by Nordheim in 1928). Now it was necessary to use the Wigner
transform (Wigner 1932).
Considering that the Schroedinger equation appeared in 1926 one
can say that, at the time, real progresses were produced with a
much quicker speed.
Personal consideration. When reading the U-U paper I tried to
understand whether the authors believe QBE is a consequence of a
scaling limit or not. Then I realized it was a stupid question: the
community of physicists had the same attitude as for the classical
B. eq.n. If it works and it is reasonable, with respect to the first
principles, it is ok.
Some years later H. Grad (but also C. Cercignani, G. Gallavotti,
Bogolyubov....... ) changed in a sense this perspective. Scaling
limit and rigorous derivation.



Boltzmann derived his famous equation in 1872 for N hard spheres
of diameter ε. (x , v) position and velocity.

(∂t + v · ∇x)f (x , v) = Q(f , f )(x , v).

Q is a bilinear operator which will be discussed later on.∫
∆ f (x , v , t)dxdv is either the probability of finding a given particle

in ∆ at time t, or the fraction of molecules in ∆ at time t.
Statistical description and l.l.n..
Collision: v ′ and v ′1 are the outgoing velocities. n · (v − v1) > 0.

v ′ = v − n[n · (v − v1)]

v ′1 = v1 + n[n · (v − v1)]
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The real equation from mechanics is

(∂t + v · ∇x)f N
1 = (N − 1)ε2C ε

1,2f N
2

where

C ε
1,2f N

2 = (N − 1) ε2

∫
dv2

∫
S2

dn f N
2 (x , v , x + nε, v2) (v2 − v) · n

and f N
1 , f N

2 is the one and two particle marginals. Assuming
propagation of chaos (namely factorization) before the collision
(criticism), after a short manipulation we obtain the B. eq.n in the
limit N →∞ and ε→ 0 with Nε2 = 1

Q(f , f )(x , v) =

∫
dv2

∫
S+

dn (v−v2)·n [f (x , v ′)f (x , v ′2)−f (x , v)f (x , v2)].

S+ = {n|(v − v2) · n ≥ 0}.





Important remark.
Assuming initially (an almost) chaotic state. Chaoticity at time
t > 0 ? I am looking whether particle 1 and 2 are uncorrelated.
Yes, if they have not collided. Indeed the probability of such a
collision is Cε2 thus very small.
But this is not really true because 1 and 2 could be correlated by a
chain of collisions (in (0, t)).
Too bad: this means that propagation of chaos is not a Markovian
property. One has to analyze all the history of the system in (0, t).
Indeed the only validity result we have, makes use of a
Cauchy-Kovalevsky kind of argument. Actually O. Lanford (1975)
proved the validity of the B.eq.n for short times.



Lanford.
N identical hard spheres of unitary mass in all the space R3 (or in
a bounded domain Λ).
A state of the system is a sequence ZN = z1 . . . zN = (XN ,VN)
where zi = (xi , vi ) denotes position and velocity of the i − th
particle. We describe the system from a statistical point of view:
we introduce a probability measure W N(ZN)dZN (absolutely
continuous with respect to the Lebesgue measure) on the phase
space of the system. W N is symmetric in the exchange of particles.
The time evolved measure is defined by

W N(ZN ; t) = W N(Φ−t(ZN)).

Here Φt(ZN) denotes the the dynamical flow.
The j-particle marginals

f N
j (Zj ; t) =

∫
dzj+1 . . . dzNW N(Zj , zj+1 . . . zN ; t), j = 1 . . .N.



The Lanford’s proof
Looking for an evolution equation for f N

j (t). H-S hierarchy. We
have (Cercignani 1973)

(∂t + Lεj )f N
j = (N − j)ε2C ε

j+1f N
j+1, j = 1 . . .N

where Lεj is the generator of the dynamics of j hard-spheres of
diameter ε:

Sε(t)f (Zj) = f (Φ−tZj) = e−tL
ε
j f (Zj)

and

C ε
j+1f N

j+1(x1, v1, . . . xj , vj) = −
j∑

k=1

∫
dn

∫
dvj+1n · (vk − vj+1)

f N
j+1(x1, v1, . . . xk , vk , . . . , xk + εn, vj+1)

where n is the unit vector.
f N
j = 0 if j > N and hence, for j = N, we have nothing else than

the Liouville equation.



Therefore, by the Dyson (Duhamel) expansion:

f N
j (t) =

N−j∑
n=0

αεn(j)

∫ t

0
dt1

∫ t1

0
dt2· · ·

∫ tn−1

0
dtn

Sε(t − t1)C ε
j+1 . . . Sε(tn−1 − tn)C ε

j+nSε(tn)f N
0,n+j .

αεn(j) = ε2n(N − j)(N − j − 1) . . . (N − j − n + 1).

For fj(t) = f (t)⊗j

fj(t) =
∑
n≥0

∫ t

0
dt1

∫ t1

0
dt2· · ·

∫ tn−1

0
dtn

S(t − t1)Cj+1 . . . S(tn−1 − tn)Cj+nS(tn)fn+j(0).



Lanford’s approach
i) Uniform bound on both series (for short times)
ii) term by term convergence.

i) Cauchy-Kovalevski kind of argument. ii) almost obvious by
direct inspection, but crucial. I am cheating.
As regards i): Cj = O(j), then the generic term is bounded by
(neglecting large velocities)

j(j + 1) · · · (j + n − 1)C j+n−1 tn

n!

so that both series are absolutely convergent but only for a short
time.



Theorem
(Lanford 1975)
Under suitable assumptions on the initial data, there exists t0 > 0
s.t., for t ≤ t0 and for all j = 1, 2, . . . (Nε2 = 1)

lim
ε→0

f N
j (t) = fj(t) a.e.

Moreover
fj(t) = f (t)⊗j a.e.,

where f (t) solves the Boltzmann equation.

What happened after 1/2 century? Old papers by Spohn,
Lebowitz, Lanford...(fluctuations, linearized eq.n...), Illner, P.
(global result for a very special situation), King’s thesis (smooth
potentials, but incomplete). Recently the french group (Bodineau,
Gallagher, Saint-Raymond, Simonella, Texier) (fluctuations,
linearized eq.n., large deviation), Ayi (long range).



Weak-coupling limit

Let ε be a small scale parameter denoting the ratio between the
macroscopic and microscopic scale. Then scale by ε the space and
time in the equation of motion. N ≈ ε−2. Low density or B-G
limit.
N ≈ ε−3 particles but the particles are weakly interacting: rescale
the two-body potential φ by

√
ε. Since φ varies on a scale ε (in

macro unities), the force is ≈ ( 1√
ε
) but acts on the time interval

≈ ε. The momentum variation due to the single scattering is
therefore ≈

√
ε. The number of particles met by a test particle is

≈ 1
ε . Hence the total momentum variation for unit time is ≈ 1√

ε
.

However this variation, in case of homogeneous gas and symmetric
force, should be zero in the average. The variance should be
≈ 1

ε (
√
ε)2 = O(1). As a consequence of this central limit type of

argument we expect that the kinetic equation which holds in the
limit (if any), should be a diffusion equation in the velocity variable.



Formally one obtains

(∂t + v · ∇x)f = QL(f , f )

QL(f , f ) =

∫
dv1∇v a(∇v −∇v1)ff1,

where a = a(V ) is

ai ,j(V ) =
B

|V |
(δi ,j − V̂i V̂j).

QL is called the Landau equation (sometimes Landau-
Fokker-Planck).
No rigorous results even for short times. Bobylev, P., Saffirio
(2013) and Winter (2021) essentially consistency or partial results.
For quantum systems we should have a B. type eq.n because of
the tunnel effect.



Weak–coupling limit for quantum systems
Schrödinger equation for the same system

i∂tΨ(XN , t) = −1

2
∆NΨ(XN , t) + U(XN)Ψ(XN , t),

where ∆N =
∑N

i=1 ∆i , ∆i is the Laplacian with respect to the xi
variables.
Potential energy

U(x1 . . . xN) =
∑
i<j

φ(xi − xj).

Rescale in a W-C way

iε∂tΨ
ε(XN , t) = −ε

2

2
∆NΨε(XN , t) +

√
εUε(XN) Ψε(XN , t),

where:

Uε(x1 . . . xN) =
∑
i<j

φ

(
xi − xj
ε

)
.

We want to analyze the limit ε→ 0 in the above equations, when
N = ε−3. It is not a semiclassical (or high frequency) limit.



For Q systems no diffusion, due to the tunnel effect, but jumps: a
given particle has a finite prob. to find another one (among ε−3

choices) to perform a collision (finite angle). All the others are
transparent. Then we can also consider the statistics: M-B, F-D,
B-E.
No complete results for genuine particle systems.
Term by term convergence for the hierarchy of Wigner functions
Benedetto, Castella, Esposito, P. (2008).



A derivation program in collaboration with P.
Butta’.

A special situation: superposition of plane waves, yielding the
homogeneous B. eq.n. Steps:
1) M-B statistics. Control of the leading order contribution (for
short times).
2) Full control: estimate of the error.
3) Statistics (F-D) by means of the initial quasi-free states.

N particles in TL 3-D torus of side L = 2πε−1, N = ε−3.

Heisemberg equation in rescaled variables

i∂tρ(XN ,YN) = −ε
2

(∆XN
−∆YN

)ρ+

ε−1/2[Uε(XN)− Uε(YN)]ρ

Uε(XN) =
∑
i<j

φε(xi − xj), φε(x) = φ(
x

ε
).

Pass in Fourier.



i∂t ρ̂(KN ,HN) = − 1

2ε
(K 2

N − H2
N)ρ̂+

1√
ε

TN ρ̂(KN ,HN).

TN =
∑
i<j

Ti ,j ,

Ti ,j ρ̂(KN ; HN) =

∫
dpφ̂(p)[ρ̂(. . . ki + p, . . . kj − p . . . ; HN)−

ρ̂(KN ; . . . hi + p, . . . hj − p . . . )]

=

∫
dpφ̂(p)

∑
σ=0,1

(−1)σρ̂(. . . ki + (1− σ)p, . . . kj − (1− σ)p . . . ;

. . . hi + σp, . . . hj − σp . . . ).∫
F (p)dp =

∑
p∈Z3

ε
F (p)ε3. Initially

ρ̂0(KN ; HN) = f ⊗N0 (KN)δKN ,HN
, f0 ≥ 0,

∫
f0 = 1.

A superposition of plane waves.



Partial traces (equivalent of the marginals)

ρ̂Nj (Kj ; Hj) =

∫
dKN−j ρ̂N(Kj ,KN−j ; Hj ,KN−j).

Hierarchy (skip N)

∂t ρ̂j = − i

2ε
T 0
j ρ̂j −

i√
ε

Tj ρ̂j −
i(N − j)√

ε
Cj+1ρ̂j+1,

where
T 0
j = (K 2

j − H2
j )

Cj+1 =
∑
`

C`,j+1,

C`,j+1 =

∫
dkj+1

∫
dpφ̂(p)

∑
σ=0,1

(−1)σ

ρ̂(. . . k` + (1− σ)p, . . . kj+1 − (1− σ)p; . . . h` + σp, . . . hj+1 − σp).



Heuristics. Compute the derivative on the initial datum. First
Cj+1ρ̂0,j+1 = 0 (diagonality implies p = 0,

∑
σ(−1)σ = 0. Good:

the coefficient if front is = O(ε−7/2). Also the diagonal part of
T 0
j ρ̂0,j and Tj ρ̂0,j are vanishing. Only the off-diagonal part starts

to increase. But it is small. The interplay between the diagonal
and off-diagonal part generates the O(1) contribution in an
algebraically complicated way. We expect that the diagonal part is
O(1) and the off-diagonal part small, strongly oscillating, but with
many terms.
The hierarchical equations do not seem appropriate to work with.
Therefore we introduce a closed equation for the diagonal part.



If ρ̂d = Pd ρ̂, Pd projection on the diagonal part, then

∂t ρ̂
d(t) = −1

ε

∫ t

0
dt1PdTNUN(t − t1)TN ρ̂

d(t1)

UN(t) = e
P0(− i

2ε
T 0
N−

i

ε1/2
TN)t

,

and P0 = 1− Pd the projection over the off-diagonal part. Then
we also recover (ρ̂0(t) = P0ρ̂(t))

∂t ρ̂
0(t) = − i√

ε

∫ t

0
dt1UN(t − t1)TN ρ̂

d(t1).

Note that they are delay eq.ns!



The simplified problem (SP)

∂t ρ̃(t) = −1

ε

∫ t

0
dt1PdTNS0

N(t − t1)TN ρ̃(t1)

S0
N(t) = e−

i
2ε
T 0
N t

from which

∂tξN(t)(KN) = ε3
∑
`<m

∫
dpφ̂2(p)

1

ε

∫ t

−t
dt1 cos(

∆E

ε
)(t − t1)

{ξN(. . . k` + p . . . km − p . . . ; t1)− ξN(KN ; t1)}.

∆E = p2 + p · (k` − km).

Basic estimate

|
∫

dpφ̂2(p)
1

ε

∫ t

−t
dτ cos(

∆E

ε
)τ | ≤ C .



Passing to the marginals:

ξj(t) = ξ0,j+ε
3

∫ t

0
dt1Lj(t−t1)ξj(t1)+(N−j)ε3

∫
dt1Gj+1(t−t1)ξj(t1)

where ξj(t)(Kj) = ρ̃j(t)(Kj ,Kj) and L and G are two suitable
operators.
Then, by using the basic estimate

‖Ljξj‖ ≤ Cj2‖ξj‖, ‖Gj+1ξj+1‖ ≤ Cj‖ξj‖



At this point one can follow the usual strategy (uniform bound on
the series expansion and term by term convergence). The collision
operator of the B. eq.n is

Q(f , f )(k) =

∫
dk1

∫
dpφ̂(p)2δ(∆E ){f (k+p)f (k1−p)−f (k)f (k1)}

where

∆E =
1

2
(p2 + p · (k − k1))

and the presence of the δ ensures the energy conservation.
Replace sums by integrals (not obvious). Lattice difficulties:
oscillations on the same scale.
The full problem should make use of the fact that

Uj(t) = S0
j (t) + O(ja

√
ε).

Reasonable, but to be proven.



Statistics.
Canonical → Grandcanonical. N Poisson intensity ε−3 r.v.
A state

σ =
⊕
n

σn

where σn is a positive n-particle operator. Reduced density matrix

ρ(Xn; Yn) =
∑
M≥0

(n + m)!

m!

∫
dZmσn+m(Xn,Zm; Yn,Zm)

Require beyond the symmetry in the exchange of particles

ρ(Xn; Yn) = θs(φ)ρ(Xn;π(Yn))

where π is a permutation. θ = 1 for Bosons and θ = −1 for
Fermions.
Quasi-free states are such that

ρ(Xn; Yn) =
∑
π

θs(φ)
n∏

i=1

ρ(xi ;π(yi )).



The initial condition. Maximally uncorrelated state which does not
violate the statistics.
Evaluate for the determination of the cubic terms
C2SC3S = C1,2SC1,3 + C1,2SC2,3 and compare with

f ′ff1, f ′1ff1 ,ff ′f ′1 , f1f ′f ′1

12 terms (considering the cross-section).
At level of particles permutations we have 6x2x2=24 terms. Some
zero, some compensate.
Computation done (but for Wigner) in Benedetto, Castella,
Esposito, P. ( 2004).


