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Mean Field Games

Introduced in Lasry-Lions 2006, 2007, Huang-Malhame-Caines 2006.

Mean Field Games describe differential games with a large number
of interacting (small, indistinguishable) players.

Applications to macroeconomics, crowd motion, finance...

‘Mean Field” — Population described by a density function m
representing the state of a typical player.

‘Game’ — Players can choose their dynamics.

Some MFGs have ‘kinetic’ structure.

How can we use kinetic techniques to understand them?



Rules of a Mean Field Game

The typical player chooses a control « : [0, T] — A for the (S)DE
describing their state z(t)

dz = b(z; )dt + odW,

aiming to minimise a cost

:
J(a; m) :E[/O Lz, ar, mi]dt + Glzr, my] |.

~——~——" Terminal cost
Running cost

Nash Equilibrium
Strategy a, such that no player can gain by deviating from it alone.

J(c; m®*) > J(Zo, iy m**)  for all admissible a: [0, T] — A.



Mean Field Games System

Nash equilibria are described by a forward-backward PDE system:

{&m +div, (b(z; a*[m, Du])m) = 1D? : (g6 ™M), mlimo = mo

—8u + H(z,m,Du) = a0 : Du, u(T,2) = G[m7](2).
The Hamiltonian is defined by

H(z,m,p) := sip{b(z,a) -p—L(z,a,m)}.

The optimal control satisfies

o, € argmax{b(z,a) - Du — L(z, &, m)}.



Key Example

Many MFG works consider the “controlled velocity” setting b(z, ) = «
dZt = atdt—ﬁ—dV\/t
corresponding to PDE systems of the form
—du—3Au+ H(z,m,Du) = 0,
dm—3Am — div(mD,H(z, m, Du)) = 0,
m‘I:O = Mo, u|t:T - g(Z7 mT)'

However, this control system may not be appropriate for all
applications.

- Alyagari-Bewley-Huggett model for household wealth
Achdou-Buera-Lasry-Lions-Moll 2014, Ambrose 2021

- Flocking via acceleration control
Nourian-Caines-Malhamé 2011



Generalising the Control System

A first generalisation: linear control systems
dZt = BZ[dt + rlOétdt + O'dW[

For example, if players control their acceleration, X = o,
in phase space z = (x,v), we have the linear system

X=V
V=«

Acceleration-controlled MFGs are of the form
—O0iu — V- Dxu + H(z,m,Dyu) = 0,
om+v-Dim —divy(mDyH(z, m,Dyu)) = 0,
~—————

kinetic free transport
m|t:0 = Mo, U‘t:‘[' - g(Xv Vv, mT)'



Well-posedness of MFG PDEs



Well-posedness: Case x = «

Huge literature, from both PDE and stochastic analysis perspectives
Ambrose, Cardaliaguet, Carmona, Cirant, Delarue, Goffi, Gomes, Graber,
Lacker, Mészaros, Pimentel, Porretta, Sanchez-Morgado, Silva, Tonon,

Voskanyan...

Key Factors
- Noise structure dX, = ajdt + odW, + dB;

- Idiosyncratic - degeneracy?
- Common
- Hamiltonian
- Additive separability? A(m, p) = H(p) — F[m]
— Unrealistic for some applications,
e.g. congestion modelling H(m, p) ~ Ji—‘;
- m dependence: could be
Regularising e.g. Fjm] € C> foranym € &
Local F[m](z) =f(m(z)),f:R—=R



Well-posedness: Controlled Acceleration

All results for separable models:

Deterministic:

— Regularising coupling (F: 22, — ?)
Achdou-Mannucci-Marchi-Tchou 2020, & state constraints 2021;
Cannarsa-Mendico 2020;

Bardi-Cardaliaguet 2021

(Degenerate) noise: dX; = Vedt,  dV; = apdt + dWﬁd)

— Local couplings, (quadratic/Lipschitz Hamiltonian)
Mimikos-Stamatopoulos 2024



Two New(er) Results

Deterministic games with local couplings
GP-Mészaros 2022

- Uses a variational structure and approach.
- Separable Hamiltonians

Non-separable Hamiltonians with degenerate noise
Ambrose-GP-Mészaros 2024+

- Uses alignment condition between noise and control.

- Hamiltonian can be local.



Deterministic Local MFGs

A Variational Approach




Deterministic games with local coupling

Goal: First order kinetic MFG with local Hamiltonian

Idea: Some MFGs have a variational structure

— the MFG system is the (formal) optimality conditions for a pair of
optimisation problems in duality.

c.f. Cardaliaguet-Graber 2015 x = a, x € T¢

Prototype model

-0 — v Deu + 1Dyl = ma7,
om + v - Dym — div,(mDyulDyu|~2) =0, r>19g>s>1.

Mlt—o = Mo, Ult=T = m§_1.



Weak Solutions for Variational Kinetic MFGs

Weak solution = distributional solution (subsolution for HJB)
satisfying an energy equality.

x space can be M = T or R¢.

Theorem (Well-posedness; GP-Mészaros 2022)
For any initial condition 0 < mgy € C, N L'(M x RY), there exists a
weak solution (u,m) of the MFG system.

This solution is unique, in that if (u’, m’) is also a weak solution,
then m = m’ almost everywhere and u = u’ almost everywhere on
the set {m > 0}.

— Mo may have vanishing regions, or be fully supported.



Strategy of Proof

Show that (c.f. Cardaliaguet-Graber)

1. The optimisation problems are indeed dual;

inf  A(m,w)=— inf  B(u,3,7).
(mylv?)eKA ( ) (u-,ﬂlpy)eKs (4,8,7)

2. Optimisers exist.

Challenges in the kinetic case:

- Unbounded domain - at least v € R

- H ~ |Dyu|": Loss of coercivity = loss of compactness?
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Optimisation Problem with Kinetic Constraint

A key step: prove existence of minimiser for

1 /7 : ‘ 1 ,
B(u,B,v) = a/ /ﬂq dxdvdtf/uomodxdw-?/yS dxdv
0
subject to
1
—atU—V'DxU‘*‘?\DvUVS@ ur <v ()
Since () is an inequality:

- Bounds on 3,y = Upper bounds on u.
- Lower bounds come from bounds on (up)-.

But (uop)_ is only controlled in regions where mg > 0.

What should we do if m? vanishes?



Reachable set

Consider the reachable set Up,.

(t,X,V) € Un, iff there exists a control
a € C} such that the trajectory

s =ve eaJ i
) (xi,vi) = (x,v) M, Re \_/@’ 5

Ve = a, Hl

satisfies (x§,vg) € {mo > 0}.

By considering test functions satisfying
0¢ + Vv - Dyop + divy(ag) = 0,
we obtain bounds on u on Upy,. Here

Uy, = {0} x {mo > 0} U (0,T] x M x R



Loss of Coercivity

Extract a limit point of @ minimising sequence for

B(u,B,7) / /Bq dxdvdt—/uom dxdv + — /vs/dxdv

subject to
1
-0 — V- Dyu + ?\Dvu|’ <B, ur<n.

Energy estimates give uniform bounds for Dyu € Lj_.(Um,).

No estimate for Dyu?

Compactness is recovered by use of averaging lemmas.
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Averaging Lemmas

Averaging lemmas describe a partial regularisation effect of the
kinetic free transport operator.

QU ~4V-Dyu =g e L?

Then velocity averages enjoy additional regularity
polu](t, x) = /d u(t,xV)p(V)dv e HY™O ¢ e L=(RY)
R
(Golse-Lions-Perthame-Sentis 1988)
In practice:
- L' setting Golse-St Raymond 2002
— Compactness only, extra technical conditions.

- From averages to the full value function
— Using Dyu € Li o (Um,)-



Non-Separable Hamiltonians




Non-separable MFGs: Well-posedness

Non-local Carmona-Delarue 2018, Cardaliaguet-Cirant-Porretta 2023;
Gangbo-Meészaros-Mou-Zhang 2022, Mészaros-Mou 2024,
Bansil-Mészaros-Mou 2023+

Local Ambrose 2018, 2022, Cirant-Gianni-Mannucci 2020,
Ambrose-Mészaros 2023

— Ambrose 2018, 2022: Local well-posedness for strong solutions of
second-order MFGs with non-separable local Hamiltonians.

‘Local’ formulated through small parameters
—0Uu — 3Au — €H(t,z,m,Du) = 0,

9m — 3Am + ediv, (MDpH(t,z,m, Du)) = 0,
u(T,-) = ég(z,mr), m(0,-) =m°,
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Kinetic-Type Non-Separable MFGs

Control system
dZt = thdt + I'Iatdt =+ O'th

- Alignment of controls and noise — |oT¢&|? > ¢o|MT£J?
- H, g are any C5*2 functions, H(t,z,0,0) = g(z,0) = 0.
‘Local’ well-posedness:

—0i — (Bz) - Du — 300" : DU = eH(t,z,m, N7 Du),
dm + div(Bzm) — 1D?(oo T m) = —ediv (MDpH(t,z,m, N7 Du)),
U(Ta ) - 69(27 mT)v m(oa ) = mov

Theorem (Ambrose-GP-Mészaros 24+)
Let s be an integer such thats > [N/2] + 2.

Forany m® € HS and T > 0 the MFG system has a unique classical
solution (u, m) for all sufficiently small ¢, 6.



Sketch of Proof

Starting point — Ambrose 2018, 2022 (case b(z,a) = a).
A fixed point argument:
—0iU — V- Dyt — 3AU = eH(m, Dyu),

om +v-Dym — 3A,m = —ediv, (MD,H(M, Dyu)),
Ule=r = 6g(mr), Mli=o = M°,

. . . Linear estimates . . . .
Diffusion equation ——————= Hamiltonian nonlinearity
Composition

In the kinetic case:

- Choosing the right norm for the linear estimates
- Caution in the composition estimates



Estimates for the Diffusion Equation

We measure the H° regularity of m using time dependent Sobolev

norms.

1
8tm+v-DXm—§Avm:S, Mlt—o = M°.

Use a basis of vector fields commuting with the transport operator
(Dx, Dy) — (tDx + Dy, Dy)

- Inspired by hypocoercivity techniques e.g. Herau 2007
ImliEs ~e > IV Oml

[B|<s
Advantages

- Compatible with forward-backward structure

- Optimises the time dependence of estimates.
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Composition Estimates

Require Sobolev composition estimates in the twisted norms.

[IH(m, Dyu)lrs < F ([Imllrs, IDvull1e)

‘Alignment’ — highest order terms must involve derivatives in the
diffusive directions

1
—(0¢+V-Dy— iAv)yﬁu = evy?H(m, D,u)
- Allows local Hamiltonians

- Caution with embedding estimates

- Time dependence matters - must be L? type

20



Wrapping up

Kinetic techniques can be used to analyse Mean Field Games
with generalised linear control dynamics.

Noise structure & separability/locality of the Hamiltonian remain
important factors, as in the velocity-controlled case.

New challenges & insights arise from the interaction between these
factors and a generalised control system:

- The role of the reachable set in the variational setting;

- Allowing degenerate noise in the non-separable case through
alignment with controls.
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Thank you!
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