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Inverse theorems in Fn
p

Obstructions. Extremal solutions to ‖f ‖Uk = 1 for
f : Fn

p → D = {z ∈ C : |z | ≤ 1}. Phases of non-classical polynomials.

If p ≥ k , we get only polynomials. High-characteristic case.

If p < k , we have the low-characteristic case.

Theorem (Bergelson, Tao, Ziegler, 2010)

Let f : Fn
p → D be a function such that ‖f ‖Uk ≥ c . Assume that p ≥ k.

Then there exists a polynomial q : Fn
p → Fp of degree at most k − 1 such

that
∣∣∣Ex f (x)ωq(x)

∣∣∣ ≥ Ωc(1).

Theorem (Tao, Ziegler, 2012)

Let f : Fn
p → D be a function such that ‖f ‖Uk ≥ c . Then there exists a

(non-classical) polynomial q : Fn
p → T of degree at most k − 1 such that∣∣∣Ex f (x) e(q(x))

∣∣∣ ≥ Ωc(1).
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Luka Milićević (MI SASA) Quasipolynomial U4 in Fnp 24 July 2024



Inverse theorems in Fn
p

Obstructions. Extremal solutions to ‖f ‖Uk = 1 for
f : Fn

p → D = {z ∈ C : |z | ≤ 1}. Phases of non-classical polynomials.

If p ≥ k , we get only polynomials. High-characteristic case.

If p < k , we have the low-characteristic case.

Theorem (Bergelson, Tao, Ziegler, 2010)

Let f : Fn
p → D be a function such that ‖f ‖Uk ≥ c . Assume that p ≥ k.

Then there exists a polynomial q : Fn
p → Fp of degree at most k − 1 such

that
∣∣∣Ex f (x)ωq(x)

∣∣∣ ≥ Ωc(1).

Theorem (Tao, Ziegler, 2012)

Let f : Fn
p → D be a function such that ‖f ‖Uk ≥ c . Then there exists a

(non-classical) polynomial q : Fn
p → T of degree at most k − 1 such that∣∣∣Ex f (x) e(q(x))

∣∣∣ ≥ Ωc(1).
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Quantitative results

In high-characteristic:

(Gowers, M., 2017) U4,

|Ex f (x) e(q(x))| ≥
(

exp(exp(quasi-pol(2c−1)))
)−1

.

(Gowers, M., 2020) Uk , |Ex f (x) e(q(x))| ≥
(

expOk (1)(2c−1)
)−1

.

(Lovett; Kim, Li, Tidor, 2022) U4,
|Ex f (x) e(q(x))| ≥ exp(− quasi-pol(2c−1)).

Theorem (Gowers, M., 2020)

Let f : Fn
p → D be a function such that ‖f ‖Uk ≥ c . Then there exists a

multilinear form α in k − 1 variables such that∣∣∣Ea1,...,ak−1,x ∂a1 . . . ∂ak−1
f (x)ωα(a1,...,ak−1)

∣∣∣ ≥ (
expOk (1)(c−1)

)−1
.

Low-characteristic case.

(Tidor, 2022) U4

(M., 2023) U5 and U6 in Fn
2.
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Quantitative results

Theorem (M., 2024+)

Let f : Fn
p → D be a function such that ‖f ‖U4 ≥ c . Then there exists a

(non-classical) polynomial q : Fn
p → T of degree at most 3 such that∣∣∣Ex f (x) e(q(x))

∣∣∣ ≥ exp(− logO(1)(2c−1)).
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