Quasipolynomial bounds for U^4 norm in \mathbb{F}_p^n

Luka Milićević

Mathematical Institute of the Serbian Academy of Sciences and Arts

Additive Combinatorics, ICMS, Edinburgh July 24, 2024

This research was supported by the Science Fund of the Republic of Serbia, Grant No. 11143, Approximate Algebraic Structures of Higher Order: Theory, Quantitative Aspects and Applications – A-PLUS.

Luka Milićević (MI SASA)

Quasipolynomial U^4 in \mathbb{F}_n^n

24 July 2024

Luka Milićević (MI SASA)

24 July 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Obstructions.

Obstructions. Extremal solutions to $||f||_{U^k} = 1$ for $f : \mathbb{F}_p^n \to \mathbb{D} = \{z \in \mathbb{C} : |z| \le 1\}.$

24 July 2024

イロト イポト イヨト イヨト 二日

Obstructions. Extremal solutions to $||f||_{U^k} = 1$ for $f : \mathbb{F}_p^n \to \mathbb{D} = \{z \in \mathbb{C} : |z| \le 1\}$. Phases of non-classical polynomials.

Obstructions. Extremal solutions to $||f||_{U^k} = 1$ for $f: \mathbb{R}^n \to \mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}$. Phases of non-classical poly

 $f : \mathbb{F}_{p}^{n} \to \mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}.$ Phases of non-classical polynomials.

If $p \ge k$, we get only polynomials.

Obstructions. Extremal solutions to $||f||_{U^k} = 1$ for

 $f : \mathbb{F}_{p}^{n} \to \mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}.$ Phases of non-classical polynomials.

If $p \ge k$, we get only polynomials. *High-characteristic case*.

Obstructions. Extremal solutions to $||f||_{U^k} = 1$ for

 $f : \mathbb{F}_{p}^{n} \to \mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}.$ Phases of non-classical polynomials.

If $p \ge k$, we get only polynomials. *High-characteristic case*.

If p < k, we have the *low-characteristic case*.

Obstructions. Extremal solutions to $||f||_{U^k} = 1$ for $f : \mathbb{F}_p^n \to \mathbb{D} = \{z \in \mathbb{C} : |z| \le 1\}$. Phases of non-classical polynomials. If $p \ge k$, we get only polynomials. *High-characteristic case*. If p < k, we have the *low-characteristic case*.

Theorem (Bergelson, Tao, Ziegler, 2010)

Let $f: \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $\|f\|_{U^k} \ge c$. Assume that $p \ge k$. Then there exists a polynomial $q: \mathbb{F}_p^n \to \mathbb{F}_p$ of degree at most k-1 such that $\left|\mathbb{E}_x f(x)\omega^{q(x)}\right| \ge \Omega_c(1)$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト …

Obstructions. Extremal solutions to $||f||_{U^k} = 1$ for $f : \mathbb{F}_p^n \to \mathbb{D} = \{z \in \mathbb{C} : |z| \le 1\}$. Phases of non-classical polynomials. If $p \ge k$, we get only polynomials. *High-characteristic case*. If p < k, we have the *low-characteristic case*.

Theorem (Bergelson, Tao, Ziegler, 2010)

Let $f: \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $\|f\|_{U^k} \ge c$. Assume that $p \ge k$. Then there exists a polynomial $q: \mathbb{F}_p^n \to \mathbb{F}_p$ of degree at most k-1 such that $\left|\mathbb{E}_x f(x)\omega^{q(x)}\right| \ge \Omega_c(1)$.

Theorem (Tao, Ziegler, 2012)

Let $f: \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $||f||_{U^k} \ge c$. Then there exists a (non-classical) polynomial $q: \mathbb{F}_p^n \to \mathbb{T}$ of degree at most k-1 such that $\left| \mathbb{E}_x f(x) e(q(x)) \right| \ge \Omega_c(1)$.

Luka Milićević (MI SASA)

24 July 2024

イロト イヨト イヨト イヨト

In high-characteristic:

<ロト < 四ト < 三ト < 三ト

In high-characteristic:

■ (Gowers, M., 2017) U⁴,

$$|\mathbb{E}_{x}f(x)\operatorname{e}(q(x))| \geq \left(\operatorname{exp}(\operatorname{exp}(\operatorname{quasi-pol}(2c^{-1})))\right)^{-1}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

In high-characteristic:

■ (Gowers, M., 2017) U⁴,

$$|\mathbb{E}_{x}f(x)e(q(x))| \ge \left(\exp(\exp(\operatorname{quasi-pol}(2c^{-1})))\right)^{-1}$$
.
■ (Gowers, M., 2020) U^k, $|\mathbb{E}_{x}f(x)e(q(x))| \ge \left(\exp^{O_{k}(1)}(2c^{-1})\right)^{-1}$.

イロト イヨト イヨト イヨト

In high-characteristic:

• (Gowers, M., 2017) U⁴,
$$|\mathbb{E}_{x}f(x)\operatorname{e}(q(x))| \geq \left(\exp(\exp(\operatorname{quasi-pol}(2c^{-1})))\right)^{-1}.$$

- (Gowers, M., 2020) U^k , $|\mathbb{E}_x f(x) e(q(x))| \ge \left(\exp^{O_k(1)}(2c^{-1})\right)^{-1}$.
- (Lovett; Kim, Li, Tidor, 2022) U⁴, $|\mathbb{E}_x f(x) e(q(x))| \ge exp(-quasi-pol(2c^{-1})).$

In high-characteristic:

$$\begin{array}{l} \text{(Gowers, M., 2017) U}^4, \\ |\mathbb{E}_x f(x) \operatorname{e}(q(x))| \geq \left(\exp(\exp(\operatorname{quasi-pol}(2c^{-1}))) \right)^{-1} \end{array} \end{array}$$

- (Gowers, M., 2020) U^k , $|\mathbb{E}_x f(x) e(q(x))| \ge \left(\exp^{O_k(1)}(2c^{-1})\right)^{-1}$.
- (Lovett; Kim, Li, Tidor, 2022) U⁴, $|\mathbb{E}_x f(x) e(q(x))| \ge exp(-quasi-pol(2c^{-1})).$

Theorem (Gowers, M., 2020)

Let $f : \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $||f||_{U^k} \ge c$. Then there exists a multilinear form α in k-1 variables such that

$$\left|\mathbb{E}_{a_1,\ldots,a_{k-1},x}\partial_{a_1}\ldots\partial_{a_{k-1}}f(x)\omega^{\alpha(a_1,\ldots,a_{k-1})}\right| \geq \left(\exp^{O_k(1)}(c^{-1})\right)^{-1}$$

In high-characteristic:

$$\begin{array}{l} (\text{Gowers, M., 2017}) \ \mathsf{U}^4, \\ |\mathbb{E}_x f(x) \operatorname{e}(q(x))| \geq \Big(\exp(\exp(\operatorname{quasi-pol}(2c^{-1}))) \Big)^{-1} \end{array} \end{array}$$

- (Gowers, M., 2020) U^k , $|\mathbb{E}_x f(x) e(q(x))| \ge \left(\exp^{O_k(1)}(2c^{-1})\right)^{-1}$.
- (Lovett; Kim, Li, Tidor, 2022) U⁴, $|\mathbb{E}_x f(x) e(q(x))| \ge exp(-quasi-pol(2c^{-1})).$

Theorem (Gowers, M., 2020)

Let $f : \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $||f||_{U^k} \ge c$. Then there exists a multilinear form α in k-1 variables such that

$$\mathbb{E}_{a_1,\ldots,a_{k-1},x} \partial_{a_1}\ldots \partial_{a_{k-1}} f(x) \omega^{\alpha(a_1,\ldots,a_{k-1})} \Big| \ge \Big(\exp^{O_k(1)}(c^{-1})\Big)^{-1}$$

Low-characteristic case.

In high-characteristic:

$$\begin{array}{l} (\text{Gowers, M., 2017}) \ \mathsf{U}^4, \\ |\mathbb{E}_x f(x) \operatorname{e}(q(x))| \geq \Big(\exp(\exp(\operatorname{quasi-pol}(2c^{-1}))) \Big)^{-1} \end{array} \end{array}$$

- (Gowers, M., 2020) U^k , $|\mathbb{E}_x f(x) e(q(x))| \ge \left(\exp^{O_k(1)}(2c^{-1})\right)^{-1}$.
- (Lovett; Kim, Li, Tidor, 2022) U⁴, $|\mathbb{E}_x f(x) e(q(x))| \ge exp(-quasi-pol(2c^{-1})).$

Theorem (Gowers, M., 2020)

Let $f : \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $||f||_{U^k} \ge c$. Then there exists a multilinear form α in k-1 variables such that

$$\mathbb{E}_{a_1,\ldots,a_{k-1},x} \partial_{a_1}\ldots \partial_{a_{k-1}} f(x) \omega^{\alpha(a_1,\ldots,a_{k-1})} \Big| \ge \Big(\exp^{O_k(1)}(c^{-1})\Big)^{-1}$$

Low-characteristic case.

■ (Tidor, 2022) U⁴

In high-characteristic:

$$\begin{array}{l} \text{(Gowers, M., 2017) } \mathsf{U}^4, \\ |\mathbb{E}_x f(x) \, \mathsf{e}(q(x))| \geq \Big(\exp(\exp(\operatorname{quasi-pol}(2c^{-1}))) \Big)^{-1} \end{array} \end{array}$$

- (Gowers, M., 2020) U^k , $|\mathbb{E}_x f(x) e(q(x))| \ge \left(\exp^{O_k(1)}(2c^{-1})\right)^{-1}$.
- (Lovett; Kim, Li, Tidor, 2022) U⁴, $|\mathbb{E}_x f(x) \operatorname{e}(q(x))| \ge \exp(-\operatorname{quasi-pol}(2c^{-1})).$

Theorem (Gowers, M., 2020)

Let $f: \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $\|f\|_{U^k} \ge c$. Then there exists a multilinear form α in k-1 variables such that

$$\left|\mathbb{E}_{a_1,\ldots,a_{k-1},x}\,\partial_{a_1}\ldots\partial_{a_{k-1}}f(x)\omega^{\alpha(a_1,\ldots,a_{k-1})}\right| \ge \left(\exp^{O_k(1)}(c^{-1})\right)^{-1}$$

Low-characteristic case.

- (Tidor, 2022) U⁴
- (M., 2023) U^5 and U^6 in \mathbb{F}_2^n .

Luka Milićević (MI SASA)

24 July 2024

Luka Milićević (MI SASA)

24 July 2024

イロト イヨト イヨト イヨト

Theorem (M., 2024⁺)

Let $f: \mathbb{F}_p^n \to \mathbb{D}$ be a function such that $||f||_{U^4} \ge c$. Then there exists a (non-classical) polynomial $q: \mathbb{F}_p^n \to \mathbb{T}$ of degree at most 3 such that $\left| \mathbb{E}_x f(x) e(q(x)) \right| \ge \exp(-\log^{O(1)}(2c^{-1})).$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト