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Theorem (Szemerédi’s theorem, 1975)

If A ⊂ N has d̄(A) := lim sup
N→∞

|A ∩ [N]|
N

> 0, then ∀k ∈ N, ∃a, n ∈ N such that {a+ in : i ∈ [k]} ⊂ A.

▶ In 1963, Furstenberg developed the structure theory for distal systems (in topological dynamics).

Theorem (Furstenberg, 1977)
If A ⊂ N has d̄(A) > 0, then ∀k ∈ N, lim inf

N−M→∞
E

M<n<N
d̄
(
A ∩ (A− n) ∩ · · · ∩ (A− kn)

)
> 0.

▶ Question: Does the limit exist?

▶ In particular, if d̄(A) > 0, then ∃ℓ such that ∀N ∈ N, ∃n ∈ [N − ℓ,N] and a ∈ N with
{a+ in : i ∈ [k]} ⊂ A.

▶ Question: How does ℓ grow as d̄(A) → 0?

Theorem (Furstenberg-Katznelson, 1978)

If A ⊂ Zd has d̄(A) := lim sup
N→∞

|A ∩ [N]d |
Nd

> 0, then A contains a homothetic image of any finite set.

▶ The first non-ergodic proofs of this fact appeared in the mid 2000’s.
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▶ All these are generalized by the density Hales-Jewett theorem, proved by Furstenberg and
Katznelson in 1991.

▶ Non-ergodic proofs appeared in 2009 as result of the first Polymath project.

Corollary (IPr Szemerédi theorem)
For every δ > 0 and k ∈ N, ∃r ∈ N such that ∀A ⊂ N with d̄(A) > δ and any distinct n1, . . . , nr ∈ N
there exist n =

∑
i∈I ni (for some non-empty I ⊂ [r ]) and a ∈ N such that {a+ in : i ∈ [k]} ⊂ A.

▶ In 1996, Bergelson and Leibman obtained polynomial (and multidimensional) extensions of van
der Waerden’s theorem and Szemerédi’s theorem, using ergodic theory.

Corollary
If d̄(A) > 0 and p1, . . . , pk ∈ Z[x ] have pi (0) = 0, then ∃a, n ∈ N s.t.

{
a+ pi (n) : i ∈ [k]

}
⊂ A.

▶ In 1999, Bergelson and Leibman obtained a polynomial extension of Hales-Jewett theorem.

▶ In 2000, Walters found a combinatorial proof.

Conjecture (Special case of density polynomial Hales-Jewett)
For every δ > 0 ∃r ∈ N such that ∀A ⊂ N with d̄(A) > δ and any distinct n1, . . . , nr ∈ N there exist
n =

∑
i∈I ni (for some non-empty I ⊂ [r ]) and a ∈ N such that {a, a+ n2} ⊂ A.
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der Waerden’s theorem and Szemerédi’s theorem, using ergodic theory.

Corollary
If d̄(A) > 0 and p1, . . . , pk ∈ Z[x ] have pi (0) = 0, then ∃a, n ∈ N s.t.

{
a+ pi (n) : i ∈ [k]

}
⊂ A.

▶ In 1999, Bergelson and Leibman obtained a polynomial extension of Hales-Jewett theorem.

▶ In 2000, Walters found a combinatorial proof.

Conjecture (Special case of density polynomial Hales-Jewett)
For every δ > 0 ∃r ∈ N such that ∀A ⊂ N with d̄(A) > δ and any distinct n1, . . . , nr ∈ N there exist
n =

∑
i∈I ni (for some non-empty I ⊂ [r ]) and a ∈ N such that {a, a+ n2} ⊂ A.



▶ All these are generalized by the density Hales-Jewett theorem, proved by Furstenberg and
Katznelson in 1991.

▶ Non-ergodic proofs appeared in 2009 as result of the first Polymath project.

Corollary (IPr Szemerédi theorem)
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For many of these theorems, it remains an interesting question to find “reasonable bounds”. This line
of research is very active and includes contributions from Shkredov, Green, Peluse, Prendiville, Shao,
Sah, Sawhney, Kravitz, Kuca, Leng...
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Definition
▶ A topological dynamical system is a pair (X ,T ) where X is a compact metric space and

T : X → X is a homeomorphism.

▶ A measure preserving system is a triple (X , µ,T ) where (X ,T ) is a t.d.s. and µ is a probability
measure on X invariant under T , in the sense that µ(TA) = µ(A) for every Borel set A ⊂ X .

Furstenberg Correspondence Principle

▶ Given A ⊂ N, let a = 1A ∈ {0, 1}Z and let T : {0, 1}Z → {0, 1}Z be the left shift.

▶ {0, 1}Z is compact and T is a homeomorphism. Let X := {T na : n ∈ Z}; (X ,T ) is a t.d.s.

▶ For N ∈ N let µN = E
n≤N

δT na and “let” µ = limµN . Then (X , µ,T ) is a m.p.s.

▶ Let E :=
{
(xn)n∈Z ∈ X : x0 = 1

}
. Then A = {n ∈ Z : T na ∈ E} and µ(E ) = d̄(A).

▶ In fact, for any n1, . . . , nk ∈ N, d̄
(
A∩ (A− n1)∩ · · · ∩ (A− nk)

)
≥ µ

(
E ∩T−n1E ∩ · · · ∩T−nkE

)
.

Theorem (Furstenberg, 1977)
Let (X , µ,T ) be a m.p.s. and E ⊂ X with µ(E ) > 0. Then for every k ∈ N,

lim inf
N−M→∞

E
M<n<N

µ(E ∩ T−nE ∩ · · · ∩ T−knE ) > 0.
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Question
Let (X , µ,T ) be a m.p.s. and f1, . . . , fk ∈ L∞(X ). Does the sequence

1

N

N∑
n=1

T nf1 · T 2nf2 · · ·T knfk (1)

converge in L2 norm as N → ∞? Can we describe the limit?

▶ A positive answer was given by Host and Kra in 2005 who refined Furstenberg’s structure theory
by upgrading distal systems to nilsystems. A second proof was given by Ziegler in 2007.

▶ These works introduced seminorms in m.p.s., suspiciously similar to Gowers norms.

∥f ∥2
k

HKk = lim
N→∞

E
n⃗∈[N]k

∫
X

∏
ω⃗∈{0,1}k

C|ω⃗|T n⃗·ω⃗f .

▶ If ∥fi∥HKk = 0 for some i , the limit in (1) is 0; if ∥fi∥HKk > 0 then fi correlates with a nilfunction.

▶ This served as an impetus for the inverse conjecture/theorem for Gowers norms.
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▶ If f : N → C is bounded, realizing it as a function in L∞(X , µ,T ) using Furstenberg’s
Correspondence Principle, we can define the Host-Kra seminorm of f as

∥f ∥2
k

HKk = lim
N→∞

E
n⃗∈[N]k

E
x∈N

∏
ω⃗∈{0,1}k

C|ω⃗|f (x + n⃗ · ω⃗),

where E
x∈N

means lim
j→∞

E
x∈[Mj ]

for some increasing sequence (Mj) for which all the limits exist.

▶ For comparison, lim
N→∞

∥f ∥2
k

Uk [N] ≈ lim
N→∞

E
n⃗∈[N]k

E
x∈[N]

∏
ω⃗∈{0,1}k

C|ω⃗|f (x + n⃗ · ω⃗).

Example

Let λ : N → {−1, 1} be the Liouville function (λ(p) = −1 for prime p and λ(nm) = λ(n)λ(m)).

▶ Green and Tao proved (around 2010) that limN→∞ ∥λ∥Uk [N] = 0 for all k.

▶ A proof that ∥λ∥HKk [N] = 0 for all k would imply (logarithmic) Chowla conjecture.
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Question 1 (Erdős and Graham, $250)
Is the equation x2 + y2 = z2 partition regular?
In other words, if N is finitely colored, is there always a monochromatic pythagorean triple?

▶ For 2 colors this was verified by Heule, Kullmann and Marek in 2016 with the aid of a computer.

▶ In 2021, Chow, Lindqvist and Prendiville established partition regularity for a large family of
equations in sufficiently many variables, including x21 + x22 + x23 + x24 = x25 .

Question 2 (Frantzikinakis-Host, 2013)
If N is finitely colored, is there always a pythagorean triple with two members of the same color?

▶ Let M := {f : N → S1 : ∀m, n ∈ N, f (mn) = f (m)f (n)} = ̂(Q>0,×).

In 2013, Frantzikinakis and Host noticed a connection between Question 2 and measures on M.

▶ A function f ∈ M is aperiodic if for every a, b ∈ N, E
n∈[N]

f (an + b) → 0 as N → ∞.

Theorem
▶ Frantzikinakis-Host (2017): For every aperiodic f ∈ M and ∀s ∈ N, ∥f ∥Us [N] → 0 as N → ∞.

Using this result they showed that in any finite coloring of N there is a solution to 9x2 + 16y2 = z2

with x and y of the same color.
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Conjecture (Sarnak)
If (X ,T ) is a t.d.s. with 0 entropy, then for every x ∈ X and f ∈ C (X ), lim

N→∞
E

n∈[N]
f (T nx)λ(n) = 0.

Zero entropy means that for every r > 0 and f ∈ C (X ), the set
{
f (T nx)Nn=1 : x ∈ X

}
⊂ XN is

contained exp(o(N)) balls of radius r .

Examples

▶ When X is finite this is equivalent to the prime number theorem in arithmetic progressions.

▶ When (X ,T ) is a nilsystem, this was obtained (with a useful rate) by Green and Tao in 2008.

▶ Distal systems always have entropy 0, but the conjecture is still open in this case.

Theorem (Frantzikinakis-Host, 2018)
If (X ,T ) is a t.d.s. with 0 entropy and it has a unique invariant measure, then for every x ∈ X and

f ∈ C (X ),
log

E
n∈[N]

f (T nx)λ(n) → 0 as N → ∞.

Corollary

If α ∈ R \Q and h1, . . . , hk ∈ N, then
log

E
n≤N

e2πinαλ(n + h1) · · ·λ(n + hk) → 0 as N → ∞.

Question: What about rational α?
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Theorem (Hindman, 1974)

For any finite coloring of N there exists B ⊂ N infinite s.t. FS(B) :=

{∑
n∈F

n : F ⊂ B, 0 < |F | < ∞

}
is monochromatic.

Question (Erdős)
If A ⊂ N has d(A) > 0, are there B ⊂ N infinite and t ∈ N such that A− t ⊃ FS(B)?

▶ True for arbitrarily large (but finite) B.

▶ False in general: take A = N \
( ⋃

n∈N
(22

n

N+ n)
)
(example due to Straus).

Theorem (M.-Richter-Robertson, 2018)
If A ⊂ N has d̄(A) > 0, then there are infinite sets B,C ⊂ N such that B + C ⊂ A.

Theorem (Kra-M.-Richter-Robertson, 2022)
If A ⊂ N has d̄(A) > 0, then ∃ B ⊂ N infinite and t ∈ {0, 1} such that

B ⊕ B := {b + b′ : b, b′ ∈ B, b ̸= b′} ⊂ A− t.
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B ⊕ B := {b + b′ : b, b′ ∈ B, b ̸= b′} ⊂ A− t.



Theorem (Hindman, 1974)

For any finite coloring of N there exists B ⊂ N infinite s.t. FS(B) :=

{∑
n∈F

n : F ⊂ B, 0 < |F | < ∞

}
is monochromatic.

Question (Erdős)
If A ⊂ N has d(A) > 0, are there B ⊂ N infinite and t ∈ N such that A− t ⊃ FS(B)?

▶ True for arbitrarily large (but finite) B.

▶ False in general: take A = N \
( ⋃
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Theorem (Kra-M.-Richter-Robertson, 2022)
If A ⊂ N has d̄(A) > 0 then for every k ∈ N there exist infinite sets B1, . . . ,Bk ⊂ N such that
B1 + · · ·+ Bk ⊂ A.

The proof involves the same “cube measures” developed by Host and Kra.

Conjecture
If A ⊂ N has d̄(A) > 0, then for every k ∈ N there exists infinite B ⊂ N and t ∈ N such that

{b1 + · · ·+ bk : bi ∈ B are distinct} ⊂ A− t.

It is not difficult to recast this question in terms of (k + 1)-term “dynamical progressions”.

Conjecture (“Density version” of Hindman’s theorem)
If A ⊂ N has d̄(A) > 0 then for each k ∈ N there exist t ∈ N and infinite B ⊂ N such that{∑

n∈F

n : F ⊂ B with 0 < |F | ≤ k

}
⊂ A− t.
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▶ For every m ∈ N, there exists a 2-coloring of N without a monochromatic sumset B +mB.

Question
Is it true that for any finite coloring of N, there is an infinite set B ⊂ N and some m ∈ N such that
B +mB is monochromatic?

Conjecture (Granville)
The primes P contain a sumset B + C where B,C ⊂ N are infinite.

▶ That P ⊃ B + C where |B| = ∞ and |C | = 2 is equivalent to Zhang’s “bounded gaps between
primes” theorem.

▶ From work of Maynard/Polymath we know that ∀k ∈ N, P ⊃ B +C where |B| = ∞ and |C | = k.

▶ Conditionally on the Dickson-Hardy-Littlewood prime tuples conjecture,

∃B ⊂ N infinite s.t. P− 1 ⊃

{∑
n∈F

n : F ⊂ B with 0 < |F | ≤ k

}
.

Theorem (Tao-Ziegler, 2023)
There exist infinite sets B,C ⊂ N such that {b + c : b ∈ B, c ∈ C , b < c} ⊂ P.
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