Graph and Mean-Field Limits for Interacting Particle Systems on Weighted Deterministic and Random Graphs

Nathalie Ayi

Laboratoire Jacques-Louis Lions, Sorbonne Université Institut Universitaire de France INRIA Paris, ANGE Team

The Many Facets of Kinetic Theory 25 September 2024

In collaboration with N. Pouradier Duteil, D. Poyato

Collective dynamics models

Social dynamics model

$$
\frac{d}{dt}x_i(t)=\frac{1}{N}\sum_{j=1}^N a_{ij}(x_j(t)-x_i(t)),
$$

where:

- $\mathsf{x}_{i} \in \mathbb{R}^{d}$ is the state variable (opinion, position)
- $a_{ii} \in \mathbb{R}$ is the interaction coefficient.

Hegselmann-Krause dynamics

$$
\frac{d}{dt}x_i=\frac{1}{N}\sum_{j=1}^N a(||x_i-x_j||)(x_j-x_i), \quad x_i\in\mathbb{R}^d, \quad i\in\{1,\ldots,N\}
$$
 (HK)

with $a_{ij} = a(||x_i - x_j||)$ where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is the *influence function*.

Two types of questions

• Self-organization: emergence of well organized group patterns.

[Hegselmann and Krause, '02]

• Large Population Limit: N the number of agents goes to infinity.

The classical approach : The mean-field limit

- **No longer** follow each agent's *individual trajectory*,
- the population is represented by its **probability density**,
- the limit measure $\mu_t(x)$ represents the density of agents with opinion x at time t.

HK model: macroscopic

$$
\partial_t \mu_t + \nabla \cdot (V[\mu_t] \mu_t) = 0 \qquad V[\mu_t](x) = \int_{\mathbb{R}^d} a(||x - y||)(y - x) d\mu_t(y).
$$

• Limitation: *Indistinguishability* of the particles \Rightarrow reduces the span of models that can be studied.

The new approach : The graph limit

The θ -nearest-neighbor interactions model

$$
\frac{d}{dt}x_i = \frac{1}{N} \sum_{j=i-\ell}^{i+\ell} (x_j - x_i) \quad \text{with } \ell = \lfloor \theta N \rfloor, \theta \in [0,1] \quad (\theta\text{-nearest})
$$

• (θ [-nearest\)](#page-5-1) : system of ODE on graph $G_N = \langle V(G_N), E(G_N) \rangle$ with

$$
V(G_N) = \{1, 2, ..., N\} \qquad E(G_N) = \{(i, j) \in \{1, 2, ..., N\}^2 | 0 < dist(i, j) \leq \ell\}
$$

where $dist(i, j) = min{ |i - j|, N - |i - j| }$.

Scheme of the θ -nearest-neighbor interactions [Biccari, Ko, Zuazua, '19]

 \bullet Let $w^{G_N}:[0,1]^2\rightarrow \{0,1\}$

$$
w^{G_N}(\xi,\zeta)=1 \qquad \text{ if }(i,j)\in E(G_N) \text{ and } (\xi,\zeta)\in \left[\frac{i-1}{N},\frac{i}{N}\right)\times \left[\frac{j-1}{N},\frac{j}{N}\right).
$$

Plot of the support of the function w^{G_N} representing the adjacency matrix of the ℓ -nearest-neighbor graph (a) and that of its limit W (b) [Medvedev, '13].

 $\bullet \{w^{G_N}\}$ converges to the $\{0,1\}$ -valued function $w(\xi,\zeta) = \chi_{[0,\theta]}(|\xi-\zeta|).$

The graph limit (or the continuum limit)

Let $I=[0,1]$, $I_1^N:=[0,\frac{1}{N})$ and $\forall i\in\{1,\ldots,N\}$, $I_i^N:=[\frac{i-1}{N},\frac{i}{N})$. Let $w:I^2\to\mathbb{R}$ a *graphon* on I^2 .

Define a sequence of weighted graphs $\mathsf{G}_\mathsf{N}=<\{1,\ldots,N\},\{1,\ldots,N\}^2,\bar w^\mathsf{N}>\mathsf{with:}$

$$
\bar{w}_{ij}^N=N^2\iint_{I_i^N\times I_j^N}w(\xi,\zeta)d\xi\,d\zeta.
$$

The graph limit (or the continuum limit)

Let $I=[0,1]$, $I_1^N:=[0,\frac{1}{N})$ and $\forall i\in\{1,\ldots,N\}$, $I_i^N:=[\frac{i-1}{N},\frac{i}{N})$. Let $w:I^2\to\mathbb{R}$ a *graphon* on I^2 .

Define a sequence of weighted graphs $\mathsf{G}_\mathsf{N}=<\{1,\ldots,N\},\{1,\ldots,N\}^2,\bar w^\mathsf{N}>\mathsf{with:}$

$$
\bar{w}_{ij}^N=N^2\iint_{I_i^N\times I_j^N}w(\xi,\zeta)d\xi\,d\zeta.
$$

The nonlinear heat equation on G_N

$$
\frac{d}{dt}x_i=\frac{1}{N}\sum_{j=1}^N(\bar{w}^N)_{ij}\phi(x_j-x_i),\quad x_i\in\mathbb{R}^d,\quad i\in\{1,\ldots,N\}
$$

with
$$
w_{ij} = (\bar{w}^N)_{ij}
$$
.

The graph limit (or the continuum limit)

Let $I=[0,1]$, $I_1^N:=[0,\frac{1}{N})$ and $\forall i\in\{1,\ldots,N\}$, $I_i^N:=[\frac{i-1}{N},\frac{i}{N})$. Let $w:I^2\to\mathbb{R}$ a *graphon* on I^2 .

Define a sequence of weighted graphs $\mathsf{G}_\mathsf{N}=<\{1,\ldots,N\},\{1,\ldots,N\}^2,\bar w^\mathsf{N}>\mathsf{with:}$

$$
\bar{w}_{ij}^N=N^2\iint_{I_i^N\times I_j^N}w(\xi,\zeta)d\xi\,d\zeta.
$$

The nonlinear heat equation on G_N

$$
\frac{d}{dt}x_i=\frac{1}{N}\sum_{j=1}^N(\bar{w}^N)_{ij}\phi(x_j-x_i),\quad x_i\in\mathbb{R}^d,\quad i\in\{1,\ldots,N\}
$$

Theorem [Medvedev, '13]: Graph Limit

If $w \in L^{\infty}(I)$, it holds

$$
||x-x_N||_{C([0,T];L^2(I))} \xrightarrow[N \to +\infty]{} 0
$$

where x is the solution to the integro-differential equation

$$
\partial_t x(t,\xi) = \int_I w(\xi,\zeta) \phi(x(t,\zeta) - x(t,\xi)) d\zeta.
$$

The mean-field limit

 \diamond The exchangeable particle system

$$
\frac{d}{dt}x_i=\frac{1}{N}\sum_{j=1}^N\phi(x_j-x_i)
$$

The exchangeable mean-field limit

$$
\partial_t \mu_t(x) + \nabla_x \cdot \left(\left(\int_{\mathbb{R}^d} \phi(y-x) \mu_t(dy) \right) \mu_t(x) \right) = 0
$$

The mean-field limit

 \diamond The non-exchangeable particle system

$$
\frac{d}{dt}x_i = \frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_j - x_i)
$$

The mean-field limit

 \diamond The non-exchangeable particle system

$$
\frac{d}{dt}x_i=\frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_j-x_i)
$$

The non-exchangeable mean-field limit

$$
\partial_t \mu_t^{\xi}(x) + \nabla_x \cdot \left(\left(\int_I \int_{\mathbb{R}^d} w(\xi, \zeta) \phi(y - x) \mu_t^{\zeta}(dy) d\zeta \right) \mu_t^{\xi}(x) \right) = 0
$$

- Kaliuzhnyi-Verbovetskyi, Medvedev, '18
- Chiba, Medvedev, '19
- Gkogkas, Kuehn, 20
- Kuehn, Xu, 21
- Jabin, Poyato, Soler, '22
- Bet, Copini, Nardi, '23

The mean-field limit

 \diamond The non-exchangeable particle system

$$
\frac{d}{dt}x_i=\frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_j-x_i)
$$

The non-exchangeable mean-field limit

$$
\partial_t \mu_t^\xi(x) + \nabla_x \cdot \left(\left(\int_I \int_{\mathbb{R}^d} w(\xi, \zeta) \phi(y - x) \mu_t^\zeta(dy) d\zeta \right) \mu_t^\xi(x) \right) = 0
$$

- Kaliuzhnyi-Verbovetskyi, Medvedev, '18
- Chiba, Medvedev, '19
- Gkogkas, Kuehn, 20
- **Kuehn, Xu, 21**
- Jabin, Poyato, Soler, '22
- Bet, Copini, Nardi, '23

\diamond More details and links between the two approaches

 \Rightarrow **Review paper** (A., Pouradier Duteil, '24)

The different systems/equations

• The microscopic dynamics:

$$
\frac{d}{dt}x_i=\frac{1}{N}\sum_{j=1}^N w_{ij}\phi(x_j-x_i)
$$

• The graph limit equation:

$$
\partial_t x(t,\xi) = \int_I w(\xi,\zeta) \phi(x(t,\zeta) - x(t,\xi)) d\zeta.
$$

• The non-exchangeable mean-field limit equation:

$$
\partial_t \mu_t^{\xi}(x) + \nabla_x \cdot \left(\left(\int_I \int_{\mathbb{R}^d} w(\xi, \zeta) \phi(y - x) \mu_t^{\zeta}(dy) d\zeta \right) \mu_t^{\xi}(x) \right) = 0
$$

From one system/equation to another

Figure: Links between the different equations.

• The red arrows corresponds to large population limits, respectively graph limit and non-exchangeable mean-field limit.

From graph limit to non-exchangeable limit (A., Pouradier Duteil, '24)

• Let $x(t, \xi)$ denote the **solution** to the graph limit equation. Let $\overline{\mu}_t$ denote a "continuous" empirical measure defined by

$$
\overline{\mu}_t(\xi,x)=\int_I \delta_{x(t,\zeta)}(x)\delta_{\zeta}(\xi)d\zeta.
$$

 \bullet For all test functions $f\in C^\infty(I\times\mathbb{R}^d),$

$$
\frac{d}{dt} \int_{t \times \mathbb{R}^d} f(\xi, x) d\overline{\mu}_t(\xi, x) d\xi = \frac{d}{dt} \int_I f(\xi, x(t, \xi)) d\xi
$$
\n
$$
= \int_I \nabla_x f(\xi, x(t, \xi)) \cdot \left(\int_I w(\xi, \zeta) \phi(x(t, \xi), x(t, \zeta)) d\zeta \right) d\xi
$$
\n
$$
= \int_{t \times \mathbb{R}^d} \nabla_x f(\xi, x) \cdot \left(\int_{t \times \mathbb{R}^d} w(\xi, \zeta) \phi(x, y) d\overline{\mu}_t(\zeta, y) d\zeta \right) d\overline{\mu}_t(\xi, x) d\xi,
$$

 \Longrightarrow $\overline{\mu}_t(\xi, x)$ solution of the Vlasov equation

$$
\partial_t \mu^\xi_t(x) + \nabla_x \cdot \left(\left(\int_{I \times \mathbb{R}^d} w(\xi, \zeta) \phi(x, y) d\mu^\zeta_t(y) d\zeta \right) \mu^\xi_t(x) \right) = 0
$$

From the non-exchangeable mean-field limit to the graph limit $(d=1)$

We denote

$$
\bar{x}(t,\xi):=\int_{\mathbb{R}}x\,d\mu_t^{\xi}(x).
$$

Then,

$$
\partial_t \bar{x}(t,\xi) = \partial_t \int_{\mathbb{R}} x d\mu_t^{\xi}(x) = \int_{\mathbb{R}} \partial_x(x) \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) \phi(x,y) d\mu_t^{\zeta}(y) d\zeta \right) d\mu_t^{\xi}(x) \n= \int_{\mathbb{R}} \left(\int_{I \times \mathbb{R}} w(\xi,\zeta) \phi(x,y) d\mu_t^{\zeta}(y) d\zeta \right) d\mu_t^{\xi}(x).
$$

Hypothesis

We suppose that

$$
\phi(x,y)=(\lambda_1x+\lambda_2y),
$$

with $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

Example: the original **Hegselmann-Krause** for which the interation corresponds to $(y - x)$.

We obtain

$$
\partial_t \bar{x}(t,\xi) = \int_{\mathbb{R}} \left(\int_{I \times \mathbb{R}} w(\xi,\zeta)(\lambda_1 x + \lambda_2 y) d\mu_t^{\zeta}(y) d\zeta \right) d\mu_t^{\xi}(x)
$$

\n
$$
= \int_I w(\xi,\zeta) \left(\lambda_1 \int_{\mathbb{R}} x d\mu_t^{\xi}(x) + \lambda_2 \int_{\mathbb{R}} y d\mu_t^{\zeta}(y) \right) d\zeta
$$

\n
$$
= \int_I w(\xi,\zeta) (\lambda_1 \bar{x}(t,\xi) + \lambda_2 \bar{x}(t,\zeta)) d\zeta
$$

\n
$$
= \int_I w(\xi,\zeta) \phi(\bar{x}(t,\xi),\bar{x}(t,\zeta)) d\zeta.
$$

• Obtaining a closed equation in the general (nonlinear) case: still open (for further comments, see Paul, Trélat, '22).

Purpose of the talk

Discussion around three variants of the previous model:

- **adaptive dynamical** networks,
- random weighted graphs,
- **higher-order** interactions.

References:

- Mean-field and graph limits for collective dynamics models with time-varying weights, A., Pouradier Duteil, '21,
- Graph limit for interacting particle systems on weighted random graphs, A., Pouradier Duteil, '23,
- Large-population limits of non-exchangeable particle systems, A., Pouradier Duteil, '24,
- Mean-field limit of non-exchangeable multi-agent system over hypergraphs with unbounded rank, A., Pouradier Duteil, Poyato, '24.

Adaptive dynamical network

• Real-life interactions: not only are relationships influence our opinions, but our opinions also exert a reciprocal effect, inducing alterations in the network structure of our relationships.

 \implies the connectivity of the network evolves over time and this evolution can depend on the states of the system itself.

Definition

We will say that a network is adaptive if the evolution of the edge (i, j) explicitly depends on the states of the nodes i and j .

General form:

$$
\begin{cases}\n\frac{d}{dt}x_i(t) = f_i(x_i(t), t) + \sum_{j=1}^N w_{ij}(t) \phi(x_i(t), x_j(t), t) & \text{for all } i \in \{1, \cdots, N\}, \\
\frac{d}{dt}w_{ij}(t) = h_{ij}(w^N(t), x^N(t), t),\n\end{cases}
$$

where $x^N=(x_i)_{1\leq i\leq N}$ and $w^N=(w_{ij})_{1\leq i,j\leq N}$

Weight-varying opinion dynamics (A. Pouradier Duteil, '21)

Opinion dynamics with time-varying influence

$$
\begin{cases}\n\frac{d}{dt}x_i(t) = \frac{1}{N} \sum_{j=1}^N m_j(t) \phi(x_j(t) - x_i(t)) \\
\frac{d}{dt}m_i(t) = \psi_i(m(t), x(t))\n\end{cases}
$$
\n(D_N)

where:

- $\mathsf{x}_{i} \in \mathbb{R}^{d}$ is the state variable (opinion, position)
- $m_i \in \mathbb{R}^+$ is the agent's weight
- $N = \sum_{i=1}^{N} m_i(0)$ is the (initial) total weight of the system
- ϕ is the interaction function (often, $\phi(x_i x_i) = a(||x_i(t) x_i(t)||)(x_i(t) x_i(t)))$
- ψ_i dictate the weight dynamics. We suppose $\sum_i \psi_i \equiv 0.$

The model viewed on a graph

$$
\begin{cases}\n\frac{d}{dt}x_i(t) = \frac{1}{N} \sum_{j=1}^{N} m_j(t) \phi(x_j(t) - x_i(t)) \\
\frac{d}{dt}m_i(t) = \psi_i(m(t), x(t))\n\end{cases}
$$

- The edge weights depend on time $m_i(t)$.
- Their evolution is coupled with the evolution of the nodes $x_i(t)$.

Convergence of the microscopic system to the Graph limit equation

Theorem [A., Pouradier Duteil, '21]

Under suitable regularity assumptions on ϕ and ψ and a sublinear growth bound for ψ , then for x_N , m_N defined as, for $\xi \in [0, 1]$ and $t \in [0, T]$,

$$
\begin{cases} x_N(\xi,t) = P_{\rm c}^N(x^N(t)) := \sum_{i=1}^N x_i^N(t) \mathbf{1}_{\left[\frac{i-1}{N},\frac{i}{N}\right]}(\xi) \\ m_N(\xi,t) = P_{\rm c}^N(m^N(t)) := \sum_{i=1}^N m_i^N(t) \mathbf{1}_{\left[\frac{i-1}{N},\frac{i}{N}\right]}(\xi). \end{cases}
$$

where (x^N,m^N) solution to the microscopic dynamics (D_N) with appropriate initial conditions, there exists $(x,m)\in C([0,\,T];L^\infty(I,\mathbb{R}^d))\times C([0,\,T];L^\infty(I,\mathbb{R}))$ such that

$$
||x-x_N||_{\mathcal{C}([0,T];L^2(I,\mathbb{R}^d))} \xrightarrow[N\to+\infty]{} 0 \quad \text{ and } \quad ||m-m_N||_{\mathcal{C}([0,T];L^2(I,\mathbb{R}))} \xrightarrow[N\to+\infty]{} 0.
$$

Moreover, the limit functions x and m are solutions to the graph limit equation

$$
\begin{cases}\n\partial_t x(\xi, t) = \int_I m(\zeta, t) \phi(x(\xi, t) - x(\zeta, t)) d\zeta; & x(\cdot, 0) = x_0 \\
\partial_t m(\xi, t) = \psi(\xi, x(\cdot, t), m(\cdot, t)); & m(\cdot, 0) = m_0.\n\end{cases}
$$
\n(GL)

Figure: Links between the different equations (A., Pouradier-Duteil, '24)

Other results

• The setting of Kuramoto-type model (Gkogkas, Kuehn, Xu, '23)

$$
\begin{cases}\n\frac{d}{dt}x_i = \omega_i(x_i, t) + \frac{1}{N} \sum_{j=1}^N w_{ij} \phi(x_i, x_j) & \text{for all } i \in \{1, \dots, N\} \\
\frac{d}{dt}w_{ij} = -\varepsilon (w_{ij} + H(x_i, x_j))\n\end{cases}
$$

Generalization of the evolving-weight dynamics (Throm, '23)

$$
\begin{cases}\n\frac{d}{dt}x_i = \omega_i(x, t) + \frac{1}{N} \sum_{j=1}^N w_{ij} \phi(x_i, x_j) & \text{for all } i \in \{1, \dots, N\} \\
\frac{d}{dt}w_{ij} = \psi_{ij}^{(N)}(x(t), w(t))\n\end{cases}
$$
\n(1)

About random graphs

• Random graph: a graph which is generated by a random process.

About random graphs

- Random graph: a graph which is generated by a random process.
- Example 1: Erdos-Rényi graph: the edge between a pair of distinct nodes is inserted with probability p.

Figure: Pixel pictures of the Erdos-Rényi graph with $N = 40$ and $p = 0.5$ (left), $N = 600$ and $p = 0.5$ (right) [Medvedev, 2014]

About random graphs

- Random graph: a graph which is generated by a random process.
- Example 2 : Small world graph: replacing a random set of the local connections by randomly chosen long-range ones.

Figure: Pixel pictures of the Small world graph, p starts at 0 and increases from left to right [Medvedev, 2014]

Dynamical systems on W-random graph

 \bullet Let $\overline{\xi}=(\xi_1,\xi_2,\xi_3,\dots)$ and $\overline{\xi}^N=(\xi_1,\xi_2,\dots,\xi_N)$ where $\xi_i,i\in\mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(\xi_1) = \mathcal{U}(I)$.

Definition [Medvedev, '14]

A W-random graph on N nodes generated by the random sequence $\bar{\xi}$, denoted $G_N = \mathbb{G}(\overline{\xi}_N, W)$ is such that the edges of G_N are selected at random and

$$
\mathbb{P}((i,j) \in E(G_N)) = W(\xi_i, \xi_j) \text{ for each } (i,j) \in \{1, \ldots, N\}^2 \text{ for } i \neq j.
$$

The decision wether to include a pair $(i,j) \in \{1,\ldots,N\}^2$ is made independently as for the decisions of other pairs.

Dynamical systems on W-random graph

$$
\frac{d}{dt}x_i^N(t)=\frac{1}{N}\sum_{j=1}^N\sigma_{ij}\phi(x_j^N(t)-x_i^N(t))
$$

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = \mathcal{B}(W(\xi_i, \xi_j)).$

Random graph limit

Dynamical systems on W-random graph

$$
\frac{d}{dt}x_i^N(t) = \frac{1}{N}\sum_{j=1}^N \sigma_{ij}\phi(x_j^N(t) - x_i^N(t))
$$
 (5_N^{r-r})

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = \mathcal{B}(W(\xi_i, \xi_j)).$

Random graph limit

Dynamical systems on W-random graph

$$
\frac{d}{dt}x_i^N(t) = \frac{1}{N}\sum_{j=1}^N \sigma_{ij}\phi(x_j^N(t) - x_i^N(t))
$$
 (5_N^{r-r})

with $\mathcal{L}(\sigma_{ij}|\overline{\xi}) = \mathcal{B}(W(\xi_i, \xi_j)).$

Medvedev obtains the **convergence** to

The random graph limit equation

$$
\partial_t x(\xi, t) = \int_I W(\xi, \zeta) \phi(x(\zeta, t) - x(\xi, t)) d\zeta. \tag{C}
$$

Random graph limit

Theorem [Medvedev, '14]: Random Graph Limit

Suppose $W\in\mathcal{W}_0$, a class of symmetric measurable function on I^2 with values on $I.$ ϕ is a Lipschitz continuous function on \R and $g\in L^\infty(I).$ Let $\mathcal{T}>0$ and suppose that the solution of (C) $x(\xi, \zeta)$ satisfies the following inequality

$$
\min_{t \in [0,T]} \int_I \left\{ \int_I W(\xi,\zeta) \phi(x(\zeta,t) - x(\xi,t))^2 d\zeta - \left(\int_I W(\xi,\zeta) \phi(x(\zeta,t) - x(\xi,t) d\zeta) \right)^2 \right\} \ge c_1
$$

for some positive constant c_1 . Then, the solution of (\tilde{S}_N^{r-r}) (\tilde{S}_N^{r-r}) (\tilde{S}_N^{r-r}) and (C) satisfy the following relation

$$
\lim_{N\to+\infty}\mathbb{P}\{N^{1/2}\sup_{t\in[0,\,T]}\|x^N(t)-\mathbf{P}_{\overline{\xi}^N}x(\xi,t)\|_{2,N}\leq C\}=1
$$

for some constant $C>0$ with ${\sf P}_{\overline{\xi}^N} x(\xi,t)= (x(\xi_1^N,t), x(\xi_2^N,t), \ldots, x(\xi_N^N,t))$ and

$$
(x, y)_N := \frac{1}{N} \sum_{i=1}^N x_i y_i
$$
, and the corresponding norm $||x||_{2,N} := \sqrt{(x, x)_N}$.

Weighted random graph

Example [Garlaschelli, '09]

A weighted random graph model in which the probability of drawing an edge of discrete weight $w \in \mathbb{N}$ between vertices *i* and *j* is given by

$$
\mathbb{P}(\sigma_{ij}^N=w)=q_{ij}(w)=p^{\mathbf{w}}(1-p).
$$

Lack of a general framework !

Definition [A., Pouradier Duteil, '23]

A q-weighted random graph on N nodes generated by the random sequence $\bar{\xi}$, denoted G_N , is such that the weight of an edge of G_N is randomly attributed. More precisely, the law for the weight of the edge (i, j) is $q(\xi_i, \xi_i, \cdot)$ where

$$
q: I \times I \rightarrow \mathcal{P}(\mathbb{R}_+)
$$

$$
(\xi,\zeta) \quad \mapsto \quad q(\xi,\zeta;.).
$$

The decision of the attribution of the weight of a pair $(i,j) \in \{1,\ldots,N\}^2$ is made independently from the decision for other pairs.

Examples

• W-random graph (Medvedev, '14): Generate between any two nodes (ξ, ζ) an edge (of weight 1) with probability $W(\xi, \zeta)$.

 $q(\xi, \zeta; \cdot) = (1 - W(\xi, \zeta))\delta_0 + W(\xi, \zeta)\delta_1,$ for all $\xi, \zeta \in \mathbb{R}$.

Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w $\in \mathbb{N}$, with probability $p^w(1-p)$.

$$
q(\xi,\zeta;\cdot)=(1-p)\sum_{i=0}^{+\infty}p^i\delta_i, \qquad \text{for all } \xi,\zeta\in\mathbb{R}.
$$

Weighted random graph limit

 \bullet Let $\overline{\xi}=(\xi_1,\xi_2,\xi_3,\dots)$ and $\overline{\xi}^N=(\xi_1,\xi_2,\dots,\xi_N)$ where $\xi_i,i\in\mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(\xi_1) = \mathcal{U}(I)$.

Dynamical systems on q-weighted random graph

$$
\begin{cases}\n\frac{d}{dt}x_i^N(t) = \frac{1}{N} \sum_{j=1}^N \sigma_{ij} \phi(x_i^N(t) - x_i^N(t)), \\
x_i^N(0) = g(\xi_i^N), \quad i \in \{1, ..., N\}\n\end{cases}
$$
\n(S_N^{r-r})

with $\mathcal{L}(\sigma_{ii}|\overline{\xi}) = q(\xi_i, \xi_i; \cdot)$.

We prove the convergence towards the continuum limit

The weighted random graph limit equation

$$
\begin{cases}\n\partial_t x(\xi, t) = \int_I \left(\int_{\mathbb{R}_+} wq(\xi, \zeta; dw) \right) \phi(x(\zeta, t) - x(\xi, t)) d\zeta \\
x(\xi, 0) = g(\xi), \quad \xi \in I,\n\end{cases} \tag{C_2}
$$

Our result

Hypothesis 1

Let $\phi \in L^{\infty}(\mathbb{R})$ be bounded and Lipschitz continuous, with $\|\phi\|_{\mathrm{Lip}} := L$ and $\|\phi\|_{L^{\infty}(\mathbb{R})} := K.$

Hypothesis 2

There exists $M>0$ such that for all $(\xi,\zeta)\in I^2$, for all $k\in\{1,\cdots,4\},$

$$
\left(\int_{\mathbb{R}_+} w^k q(\xi,\zeta;dw)\right)^{1/k} \leq M,
$$

i.e. the first four moments of the probability measure $q(\xi, \zeta; \cdot)$ are bounded uniformly in ξ and ζ .

Our result

Theorem [A., Pouradier Duteil, 2023]: Weighted Random Graph Limit

Let ϕ satisfy Hypothesis 1, let $g\in L^\infty(I)$ and let q be a weighted random graph law satisfying Hypothesis 2. Then, as N goes to infinity, ${\bf solution\ }{\times}^N$ ${\bf to\ }{\bf the\ }{\bf discrete\ }{\bf system}$ $(S_N^{\tau-\tau})$ $(S_N^{\tau-\tau})$ $(S_N^{\tau-\tau})$ converges to the solution x of the continuous model (C_2) (C_2) (C_2) . More precisely,

$$
\mathbb{P}\left[\sup_{t\in[0,T]}\|x^N(t)-\mathbf{P}_{\overline{\xi}^{N}}x(\cdot,t)\|_{2,N}\geq \frac{C_1(T)}{\sqrt{N}}\right]\leq \frac{\tilde{C}_1}{N}
$$

where the constants $C_1(T)$ and \tilde{C}_1 are respectively defined by $C_1(T) := \sqrt{T}\sqrt{1 + M^2K^2}e^{(\frac{1}{2}+4ML)T}$ and $\tilde{C}_1 := 3M^4K^4 + 6$.

Numerical Illustration: the weighted Erdös-Rényi random graph

• Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w $\in \mathbb{N}$, with probability $p^w(1-p)$.

$$
q(\xi,\zeta;\cdot)=(1-p)\sum_{i=0}^{+\infty}p^i\delta_i, \qquad \text{for all } \xi,\zeta\in\mathbb{R}.
$$

• First moment given by:

$$
\bar{w}(\xi,\zeta)=\int_{\mathbb{R}^+}wq(\xi,\zeta;dw)=(1-p)\sum_{i=1}^{+\infty}ip^i=\frac{p}{1-p}
$$

Limit equation:

$$
\begin{cases} \partial_t x(\xi,t) = \frac{\rho}{1-\rho} \int_I \phi(u(\zeta,t) - u(\xi,t)) d\zeta \\ x(\xi,0) = g(\xi), \quad \xi \in I. \end{cases}
$$

Figure: Left and Centers: Random interaction matrices generated by deterministic sequences for $N = 20$, $N = 60$ and $N = 150$, for the random weighted graphon [\(30\)](#page-36-1), Right: Corresponding graphon.

Figure: Convergence of $\sup_{t\in[0,\,T]}\|x^N(t)-{\sf P}_{\overline{\xi}^N}x(\cdot,t)\|_{2,N}$ for different values of N , with 20 runs for each value of N.

Numerical Illustration: Weighted "Small World" network

- **Model for a "small-world" network (Watts, Strogatz, '98): Connect each node** with its k closest neighbors to form a ring lattice. Then, rewire each edge at random with probability p .
- **Refined model for a weighted "small-world" network: Connect two nodes** with an edge of weight 1 if they are among each other's closest k neighbors, i.e. if $|\xi_i - \xi_j| \leq r$, where $r := \frac{k}{2N}$. Then, with probability $p = \frac{|\xi_i - \xi_j|}{r}$ $\frac{-\varsigma_j}{r}$, rewire each edge at random, giving the new edge a weight drawn uniformly in the interval $[0, 1]$.

$$
q(\xi,\zeta;dw)=\begin{cases} \frac{\rho(\xi,\zeta)}{r}d\lambda_{[0,1]}+(1-\frac{\rho(\xi,\zeta)}{r})\delta_1 & \text{if } \rho(\xi-\zeta)\leq r\\ d\lambda_{[0,1]} & \text{otherwise} \end{cases}
$$
(2)

where $\rho(\xi, \zeta) = \min\{|\xi - \zeta|, |\xi - \zeta - 1|, |\zeta - \xi - 1|\}.$

First moment:

$$
\bar{w}(\xi,\zeta)=\int_{\mathbb{R}^+}wq(\xi-\zeta;dw)=\begin{cases}(1-\frac{\rho(\xi-\zeta)}{2r}) & \text{if } \rho(\xi-\zeta)\leq r\\ \frac{1}{2} & \text{otherwise.}\end{cases}
$$

Figure: Values of the random interaction matrices generated from a random sequence (left) and a deterministic sequence (right) according to the random weighted graph law [\(2\)](#page-43-1) for $N = 60$. Right: Corresponding continuous graphon $(\xi, \zeta) \mapsto \bar{w}(\xi, \zeta)$.

Figure: Convergence of $\sup_{t\in[0,\,T]}\|x^N(t)-{\sf P}_{\overline{\xi}^N}x(\cdot,t)\|_{2,N}$ for different values of N , with 20 runs for each value of N. Case of the random weighted graph law [\(30\)](#page-36-1).

Hypergraphs

• Many existing models focus on binary interactions \neq real-life dynamics often involve interactions within groups containing more than just two individuals (virtual group chats, physical meetings . . .)

Figure: Higher-order group interactions in social context [Neuhauser et al, 2022]

Hypergraphs

• Hypergraph $H = (V, E)$ where V are the vertices, E the hyperedges.

Figure: Pairwise and higher-order interactions [Battiston et al, 2021]

Models of multi-agent dynamics on hypergraphs

Extension of the Kuramoto-Saraguchi model on hypergraphs (Skardal, Arenas, '20)

$$
\frac{d}{dt}x_i = \sum_{j_1=1}^N w_{j_1}^{N,1} \sin(x_{j_1} - x_i) + \sum_{j_1=1}^N \sum_{j_2=1}^N w_{j_1j_2}^{N,2} \sin(2x_{j_1} - x_{j_2} - x_i) + \sum_{j_1=1}^N \sum_{j_2=1}^N \sum_{j_3=1}^N w_{j_1j_2j_3}^{N,3} \sin(x_{j_1} + x_{j_2} - x_{j_3} - x_i)
$$

Higher-order opinion dynamics on a uniform hypergraph of rank 2 (Neuhauser, Lambiotte, Schaub '22)

$$
\frac{d}{dt}x_i=\sum_{j_1=1}^N\sum_{j_2=1}^Nw_{ij_1j_2}^{N,2}e^{\lambda|x_{j_1}-x_{j_2}|}\left(\frac{x_{j_1}+x_{j_2}}{2}-x_i\right).
$$

About Graph Theory

• Graphons are natural limit objects associated to a sequence of (dense) graphs.

Graphon space

Given $W > 0$.

 $\mathcal{G}_W:=\{w\in L_+^\infty([0,1]^2):\, \|w\|_{L^\infty}\leq W,$ and w is symmetric $\}.$

Cut-distance

For any two graphons $w, \bar{w} \in \mathcal{G}_W$,

 $\mathsf{labelled}\hspace{2pt}\mathsf{cut}\hspace{2pt}\mathsf{distance}\hspace{2pt}:\hspace{2pt} \mathsf{d}_{\square}(w,\bar{w}):=\sup_{S,\hspace{1pt} \tau \subset [0,1]}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \int $\int_{S\times \mathcal{T}} (w(\xi, \zeta) - \bar{w}(\xi, \zeta)) d\xi d\zeta$, (unlabelled) cut-distance: $\delta_{\Box}(w,\bar{w}) = \inf_{\Phi} d_{\Box}(w,\bar{w}^{\Phi}),$

with $\Phi:[0,1]\longrightarrow [0,1]$ bijective, measure-preserving and $\bar w^\Phi(\xi,\zeta)=\bar w(\Phi(\xi),\Phi(\zeta)).$

• Comparison with the L^1 -norm: for all $w, \bar{w} \in \mathcal{G}_W$,

$$
d_{\square}(w,\bar{w})\leq \|w-\bar{w}\|_{L^1}.
$$

Hypergraph theory

Hypergraphons of unbounded rank (UR-hypergraphons)

Given
$$
W > 0
$$
, $\mathcal{H}_W := \left\{ w = (w_\ell)_{\ell \in \mathbb{N}} : \begin{array}{l} w_\ell \in L^\infty_+([0,1]^{\ell+1}), \|w_\ell\|_{L^\infty} \leq W, \\ \text{and } w_\ell \text{ is symmetric for all } \ell \in \mathbb{N} \end{array} \right\}$

Cut-distance

For any $w, \bar{w} \in \mathcal{H}_W$, $\forall \ell \in \mathbb{N}$, the ℓ t-th order labeled cut distance is

$$
d_{\square,\ell}(w_\ell,\bar{w}_\ell):=\sup_{S,S_1,\ldots,S_\ell\subset [0,1]}\left|\int_{S\times S_1\times\cdots\times S_\ell} (w_\ell-\bar{w}_\ell)\,d\xi\,d\xi_1\ldots\,d\xi_\ell\right|,
$$

For any strictly positive summable sequence $(\alpha_\ell)_{\ell\in\mathbb{N}}$, we define

the labeled cut distance: $d_{\square}(w,\bar{w}; (\alpha_{\ell})_{\ell \in \mathbb{N}}) := \sum_{\ell = 1}^{\infty}$ $_{\ell=1}$ α_{ℓ} d $_{\square,\ell}(w_{\ell},\bar{w}_{\ell}),$ the unlabeled cut distance: $\quad \delta_\square(w,\bar w; (\alpha_\ell)_{\ell \in \mathbb N}) = \mathsf{inf}_\Phi \, d_\square(w,\bar w^\Phi; (\alpha_\ell)_{\ell \in \mathbb N}),$ where Φ bijective, measure-preserving maps $\Phi : [0, 1] \longrightarrow [0, 1]$, and

$$
\bar{w}^{\Phi}_{\ell}(\xi,\xi_1,\ldots,\xi_{\ell})=\bar{w}_{\ell}(\Phi(\xi),\Phi(\xi_1),\ldots,\Phi(\xi_{\ell})).
$$

.

Convergence of a sequence of hypergraphs

Construction of piecewise-constant function associated to a sequence of hypergraphs

For any sequence of hypergraphs $(H_N)_{N \in \mathbb{N}}$, for all $\ell \in \mathbb{N}$,

► if $\ell \leq N-1$, for all $(\xi, \xi_1, \cdots, \xi_\ell) \in [0,1]^{\ell+1}$,

$$
w_\ell^{H_N}(\xi,\xi_1,\cdots,\xi_\ell):=\sum_{i,j_1,\cdots,j_\ell=1}^Nw_{ij_1\cdots j_\ell}^{\ell,N}N^\ell1\!\!1_{I_j^N\times I_{j_1}^N\times\cdots I_{j_\ell}^N}(\xi,\xi_1,\cdots,\xi_\ell),
$$

• if
$$
\ell \geq N
$$
, for all $(\xi, \xi_1, \dots, \xi_\ell) \in [0, 1]^{\ell+1}$, $w_\ell^{H_N}(\xi, \xi_1, \dots, \xi_\ell) = 0$.

Convergence

The sequence of hypergraphs $(H_N)_{N \in \mathbb{N}}$ is said to converge to a UR-hypergraphon w when

$$
\lim_{N\to\infty}\delta_{\square}(w,w^{H_N};(\alpha_\ell)_{\ell\in\mathbb{N}})=0
$$

for some positive and summable sequence $(\alpha_\ell)_{\ell\in\mathbb{N}}$.

The θ -nearest neighbor example

The hypergraph: for $\theta \in (0, 1]$, for each $\ell \in \{1, \cdots, N - 1\}$,

$$
w_{ij_1\cdots j_\ell}^{\ell,N} = \begin{cases} 1 & \text{if } \max_{k_1,k_2\in\{i,j_1\ldots,j_\ell\}} |k_1-k_2| \leq \theta N, \\ 0 & \text{otherwise.} \end{cases}
$$

Figure: Pixel representation for $\ell = 1, 2$ with $\theta = 0.3$ and $N = 20$.

The *unbounded rank hypergraphon*: for all $\ell \in \mathbb{N}$,

$$
w_{\ell}(\xi_0,\xi_1,\cdots,\xi_{\ell}) = \begin{cases} 1 & \text{if } \max_{i,j\in\{0,\cdots,\ell\}} |\xi_i-\xi_j| \leq \theta \\ 0 & \text{otherwise.} \end{cases}
$$

Non-exchangeable mean-field limit for higher order case

The microscopic dynamics

$$
\begin{cases} \dfrac{dX_i^N(t)}{dt} = \sum_{\ell=1}^{N-1} \sum_{j_1,\ldots,j_\ell=1}^N w_{ij_1\cdots j_\ell}^{\ell,N} \, K_\ell(X_i^N(t),X_{j_1}^N(t),\ldots,X_{j_\ell}^N(t)),\\ X_i^N(0) = X_{i,0}^N, \qquad i \in \{1,\cdots,N\}. \end{cases}
$$

The non-exchangeable mean-field limit

$$
\begin{cases} \partial_t \mu_t^{\xi} + \text{div}_x (F_w[\mu_t](\cdot, \xi) \mu_t^{\xi}) = 0, \quad t \ge 0, \, x \in \mathbb{R}^d, \, \xi \in [0, 1], \\ \mu_{t=0}^{\xi} = \mu_0^{\xi}. \end{cases}
$$

where

$$
F_w[\mu_t](x,\xi) := \sum_{\ell=1}^{\infty} \int_{[0,1]^{\ell}} w_{\ell}(\xi,\xi_1,\ldots,\xi_{\ell}) \times \left(\int_{\mathbb{R}^{d\ell}} K_{\ell}(x,x_1,\ldots,x_{\ell}) d\mu_t^{\xi_1}(x_1) \cdots d\mu_t^{\xi_{\ell}}(x_{\ell}) \right) d\xi_1,\ldots d\xi_{\ell}.
$$

Our main result

Theorem [A., Pouradier Duteil, Poyato, '24]

Assume that the kernels K_{ℓ} satisfy some regularity assumptions and the coupling weights some suitable scaling. Suppose additionnally that both of them satisfy some symmetries.

For any $(X_{1,0}^N,\ldots,X_{N,0}^N)$ with $i.i.d.$ $X_{i,0}^N$ (but N dependent law) such that there exists $\rho \in [1,2]$ for which $\mathcal{X}_{i,0}^{\mathcal{N}}$ satisfies

 $\sup_{N \in \mathbb{N}} \max_{1 \leq i \leq N} \mathbb{E} |X_{i,0}^N|^p < \infty,$

consider the unique solutions (X_1^N,\ldots,X_N^N) to the microscopic dynamics. Then, there is a subsequence $N_k \rightarrow \infty$ such that the mean-field limit of the multi-agent system is characterized in a suitable sense by a **solution to the Vlasov-type equation** for some $(\mu_t^\xi)_{\xi\in[0,1]}\subset \mathcal{P}(\mathbb{R}^d)$ and some $w=(w_\ell)_{\ell\in\mathbb{N}}$ such that $\sup_{\ell\in\mathbb{N}}\|w_\ell\|_{L^\infty}\leq W.$

Strategy of the proof

Intermediate Particle Systems

$$
\begin{cases} \frac{d\bar{X}_{i}^{N}}{dt} = \sum_{\ell=1}^{N-1} \sum_{j_{1},...,j_{\ell}=1}^{N} w_{ij_{1}...j_{\ell}}^{\ell,N} \mathbb{E}_{i}^{N} K_{\ell}(\bar{X}_{i}^{N}, \bar{X}_{j_{1}}^{N}, \ldots, \bar{X}_{j_{\ell}}^{N}), \\ \bar{X}_{i}^{N}(0) = X_{i,0}^{N}, \end{cases}
$$

where $\mathbb{E}_i^N=\mathbb{E}[\,\cdot\,|\bar{\mathcal{F}}_i^N]$ denotes the expectation conditioned to the natural filtration

$$
\bar{\mathcal{F}}_i^N(t)=\sigma(\{\bar{X}_i^N(s): 0\leq s\leq t\}).
$$

Error estimate

$$
\left(\frac{1}{N}\sum_{i=1}^N \mathbb{E}|X_i^N(t)-\bar{X}_i^N(t)|^p\right)^{1/p}\leq e^{(\tilde{C}_{\infty}^N+C_{\rho}^N)t}\varepsilon_{\rho}^N,
$$

with

$$
\tilde{\mathcal{C}}_{\infty}^{\mathsf{N}} \leq \mathsf{W} \sum_{\ell=1}^{\infty} L_{\ell}, \quad \mathcal{C}_{\mathsf{p}}^{\mathsf{N}} \leq \mathsf{W} \sum_{\ell=1}^{\infty} \ell L_{\ell}, \quad \varepsilon_{\mathsf{p}}^{\mathsf{N}} \leq 2 \mathsf{W} \sum_{\ell=1}^{\infty} \frac{\sqrt{\ell!} \, B_{\ell}}{\mathsf{N}^{\ell/2}}.
$$

Associated PDE system

We denote their associated laws

$$
\bar{\lambda}^{N,i}_t:=\text{Law}(\bar{X}^N_i(t)),\quad t\geq 0,\,1\leq i\leq N.
$$

Solution of the PDE system

Then, $(\bar \lambda^{N,i})_{1 \leq i \leq N}$ is a solution in distributional sense to the following coupled PDE system

$$
\begin{cases} \partial_t \bar{\lambda}_t^{N,i} + \text{div}_x(F_i^N[\bar{\lambda}_t^{N,1}, \cdots, \bar{\lambda}_t^{N,N}] \bar{\lambda}_t^{N,i}) = 0, \quad t \ge 0, \, x \in \mathbb{R}^d, \, 1 \le i \le N, \\ \bar{\lambda}_0^{N,i} = \text{Law}(X_{i,0}^N), \end{cases}
$$

where

$$
\mathcal{F}_{i}^{N}[\bar{\lambda}_{t}^{N,1},\cdots,\bar{\lambda}_{t}^{N,N}](x) = \sum_{\ell=1}^{N-1} \sum_{j_{1},\cdots,j_{\ell}=1}^{N} w_{ij_{1}\cdots j_{\ell}}^{\ell,N} \int_{\mathbb{R}^{d\ell}} K_{\ell}(x,x_{1},\ldots,x_{\ell}) d\bar{\lambda}_{t}^{N,1}(x_{1})\cdots d\bar{\lambda}_{t}^{N,N}(x_{N})
$$

Graphon reformulation

For every $N \in \mathbb{N}$, and $t \in \mathbb{R}_+$ we define

$$
\mu_t^{N,\xi} := \sum_{i=1}^N \mathbb{1}_{I_i^N}(\xi) \delta_{X_i^N(t)}, \quad \bar{\mu}_t^{N,\xi} := \sum_{i=1}^N \mathbb{1}_{I_i^N}(\xi) \bar{\lambda}_t^{N,i}, \quad \xi \in [0,1],
$$

$$
w_{\ell}^N(\xi, \xi_1, \dots, \xi_{\ell}) := \sum_{i,j_1, \dots, j_{\ell}=1}^N \mathbb{1}_{I_i^N \times I_{j_1}^N \times \dots \times I_{j_{\ell}}^N}(\xi, \xi_1, \dots, \xi_{\ell}) N^{\ell} w_{ij_1 \dots j_{\ell}}^{\ell, N}, \quad \xi, \xi_1, \dots, \xi_{\ell} \in [0,1],
$$

for all
$$
1 \leq \ell \leq N-1
$$
, $w_{\ell}^{N} \equiv 0$ for all $\ell \geq N$.

Lemma

Under the previous assumptions, consider the <mark>unique solution</mark> $(\bar{X}_1^N,\ldots,\bar{X}_N^N)$ to the $\mathsf{intermediate\ particle\ system}$, their associated laws $(\bar{\lambda}^{\mathsf{N},i})_{1\leq i\leq \mathsf{N}}$ and the graphon reformulation $(\bar{\mu}^N,w^N)$. Then, $\bar{\mu}^N$ is a distributional solution to the Vlasov equation with hypergraphon $w^{\hat N}=(w^N_\ell)_{\ell\in\mathbb N}$ and initial datum $\bar\mu^{N,\xi}_{t=0}=\sum_{i=1}^N \mathbb{1}_{I^N_i}(\xi)\operatorname{Law}(X_{i,0}).$

Functional setting

Fibered probability measures

Consider any $\nu \in \mathcal{P}([0,1])$. We define the **space of fibered probability measures** by

$$
\mathcal{P}_\nu(\mathbb{R}^d\times[0,1]):=\{\mu\in\mathcal{P}(\mathbb{R}^d\times[0,1]):\,\pi_{\xi\#}\mu=\nu\},
$$

where $\pi_{\xi}(x,\xi) = \xi$ projection on the second component, and then $\pi_{\xi\#}\mu$ stands for the marginal of μ in the second component.

Consider any $\nu \in \mathcal{P}([0,1])$ and any $p \in [1,\infty]$, we define

$$
\mathcal{P}_{p,\nu}(\mathbb{R}^d\times[0,1]):=\left\{\mu\in\mathcal{P}_\nu(\mathbb{R}^d\times[0,1]):\,\int_0^1d_{\mathrm{BL}}^p(\mu^\xi,\delta_0)\,d\nu(\xi)<\infty\right\},
$$

$$
d_{p,\nu}(\mu_1,\mu_2):=\left(\int_0^1d_{\mathrm{BL}}^p(\mu_1^\xi,\mu_2^\xi)\,d\nu(\xi)\right)^{1/p},\quad\mu_1,\mu_2\in\mathcal{P}_{p,\nu}(\mathbb{R}^d\times[0,1]).
$$

Stability estimates for the Vlasov equation

Theorem

For any initial data $\mu_0, \bar{\mu}_0 \in \mathcal{P}_{\rho,\nu}(\mathbb{R}^d \times [0,1])$ with $\rho \in [1,\infty)$, let $\mu,\bar\mu\in\mathcal C(\mathbb R_+,\mathcal P_{\rho,\nu}(\mathbb R^d\times[0,1]))$ be the <mark>unique global-in-time distributional solutions</mark> issued at μ_0 with given w (respectively, $\bar{\mu}_0$ and \bar{w}). Then, we have

$$
d_{\rho,\nu}(\mu_t,\bar{\mu}_t) \leq e^{(C_{\rho}+L_{\rho})t}\left(d_{\rho,\nu}(\mu_0,\bar{\mu}_0)+\frac{D_{\infty}^{1/q}}{L_{\rho}}\delta_{\Box}(w,\bar{w};(4^{\ell}\|\hat{K}_{\ell}\|_{L^1})_{\ell\in\mathbb{N}})^{1/\rho}\right)
$$

for every $t\geq 0$, where $\frac{1}{p}+\frac{1}{q}=1$.

,

Figure: Social graph (http://inicia.org.ar/blog/7-claves-para-hacer-networking/)

Thank you for your attention !