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Introduction

Collective dynamics models

Social dynamics model

d

dt
xi (t) =

1

N

N∑
j=1

aij (xj(t)− xi (t)),

where:

xi ∈ Rd is the state variable (opinion, position)

aij ∈ R is the interaction coefficient.

Hegselmann-Krause dynamics

d

dt
xi =

1

N

N∑
j=1

a(‖xi − xj‖)(xj − xi ), xi ∈ Rd , i ∈ {1, . . . ,N} (HK)

with aij = a(‖xi − xj‖) where a : R+ → R+ is the influence function.
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Two types of questions

• Self-organization: emergence of well organized group patterns.

[Hegselmann and Krause, ’02]

• Large Population Limit: N the number of agents goes to infinity.
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The classical approach : The mean-field limit

No longer follow each agent’s individual trajectory,

the population is represented by its probability density,

the limit measure µt(x) represents the density of agents with opinion x at time t.

HK model: macroscopic

∂tµt +∇ · (V [µt ]µt) = 0 V [µt ](x) =

∫
Rd

a(‖x − y‖)(y − x)dµt(y).

Limitation: Indistinguishability of the particles ⇒ reduces the span of models that
can be studied.
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The new approach : The graph limit

The θ-nearest-neighbor interactions model

d

dt
xi =

1

N

i+∑̀
j=i−`

(xj − xi ) with ` = bθNc, θ ∈ [0, 1] (θ-nearest)

• (θ-nearest) : system of ODE on graph GN =< V (GN),E(GN) > with

V (GN) = {1, 2, . . . ,N} E(GN) = {(i , j) ∈ {1, 2, . . . ,N}2| 0 < dist(i , j) ≤ `}

where dist(i , j) = min{|i − j |,N − |i − j |}.

Scheme of the θ-nearest-neighbor interactions [Biccari, Ko, Zuazua, ’19]
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• Let wGN : [0, 1]2 → {0, 1}

wGN (ξ, ζ) = 1 if (i , j) ∈ E(GN) and (ξ, ζ) ∈
[
i − 1

N
,
i

N

)
×
[
j − 1

N
,
j

N

)
.

Plot of the support of the function wGN representing the adjacency matrix of the
`-nearest-neighbor graph (a) and that of its limit W (b) [Medvedev, ’13].

• {wGN } converges to the {0, 1}-valued function w(ξ, ζ) = χ[0,θ](|ξ − ζ|).
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The graph limit (or the continuum limit)

Let I = [0, 1] , IN1 := [0, 1
N

) and ∀i ∈ {1, . . . ,N}, INi := [ i−1
N
, i
N

). Let w : I 2 → R a
graphon on I 2.

Define a sequence of weighted graphs GN =< {1, . . . ,N}, {1, . . . ,N}2, w̄N > with:

w̄N
ij = N2

∫∫
INi ×INj

w(ξ, ζ)dξ dζ.

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Introduction

The graph limit (or the continuum limit)

Let I = [0, 1] , IN1 := [0, 1
N

) and ∀i ∈ {1, . . . ,N}, INi := [ i−1
N
, i
N

). Let w : I 2 → R a
graphon on I 2.

Define a sequence of weighted graphs GN =< {1, . . . ,N}, {1, . . . ,N}2, w̄N > with:

w̄N
ij = N2

∫∫
INi ×INj

w(ξ, ζ)dξ dζ.

The nonlinear heat equation on GN

d

dt
xi =

1

N

N∑
j=1

(w̄N)ijφ(xj − xi ), xi ∈ Rd , i ∈ {1, . . . ,N}

with wij = (w̄N)ij .
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The graph limit (or the continuum limit)

Let I = [0, 1] , IN1 := [0, 1
N

) and ∀i ∈ {1, . . . ,N}, INi := [ i−1
N
, i
N

). Let w : I 2 → R a
graphon on I 2.

Define a sequence of weighted graphs GN =< {1, . . . ,N}, {1, . . . ,N}2, w̄N > with:

w̄N
ij = N2

∫∫
INi ×INj

w(ξ, ζ)dξ dζ.

The nonlinear heat equation on GN

d

dt
xi =

1

N

N∑
j=1

(w̄N)ijφ(xj − xi ), xi ∈ Rd , i ∈ {1, . . . ,N}

Theorem [Medvedev, ’13]: Graph Limit

If w ∈ L∞(I ), it holds
‖x − xN‖C([0,T ];L2(I )) −−−−−→

N→+∞
0

where x is the solution to the integro-differential equation

∂tx(t, ξ) =

∫
I

w(ξ, ζ)φ(x(t, ζ)− x(t, ξ))dζ.
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The mean-field limit

� The exchangeable particle system

d

dt
xi =

1

N

N∑
j=1

φ(xj − xi )

The exchangeable mean-field limit

∂tµt(x) +∇x ·
((∫

Rd

φ(y − x)µt(dy)

)
µt(x)

)
= 0

The non-exchangeable mean-field limit

∂tµ
ξ
t (x) +∇x ·

((∫
I

∫
Rd

w(ξ, ζ)φ(y − x)µζt (dy)dζ

)
µξt (x)

)
= 0

Kaliuzhnyi-Verbovetskyi, Medvedev, ’18
Chiba, Medvedev, ’19
Gkogkas, Kuehn, 20
Kuehn, Xu, 21
Jabin, Poyato, Soler, ’22
Bet, Copini, Nardi, ’23

� More details and links between the two approaches
⇒ Review paper (A., Pouradier Duteil, ’24)
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The different systems/equations

The microscopic dynamics:

d

dt
xi =

1

N

N∑
j=1

wijφ(xj − xi )

The graph limit equation:

∂tx(t, ξ) =

∫
I

w(ξ, ζ)φ(x(t, ζ)− x(t, ξ))dζ.

The non-exchangeable mean-field limit equation:

∂tµ
ξ
t (x) +∇x ·

((∫
I

∫
Rd

w(ξ, ζ)φ(y − x)µζt (dy)dζ

)
µξt (x)

)
= 0
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From one system/equation to another

The system of ODEs

d

dt
xNi (t) =

1

N

N∑
j=1

wijφ(xNi (t), xNj (t))

The graph limit equation

∂tx(t, ξ) =

∫
I
w(ξ, ζ)φ(x(t, ξ), x(t, ζ))dζ

The non-exchangeable mean-field limit equation

∂tµ
ξ
t (x) +∇x ·

((∫
I×Rd

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
µξt (x)

)
= 0

N →∞

N →∞

12

Figure: Links between the different equations.

• The red arrows corresponds to large population limits, respectively graph limit and
non-exchangeable mean-field limit.
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From graph limit to non-exchangeable limit (A., Pouradier Duteil, ’24)

• Let x(t, ξ) denote the solution to the graph limit equation. Let µt denote a
“continuous” empirical measure defined by

µt(ξ, x) =

∫
I

δx(t,ζ)(x)δζ(ξ)dζ.

• For all test functions f ∈ C∞(I × Rd),

d

dt

∫
I×Rd

f (ξ, x)dµt(ξ, x)dξ =
d

dt

∫
I

f (ξ, x(t, ξ))dξ

=

∫
I

∇x f (ξ, x(t, ξ)) ·
(∫

I

w(ξ, ζ)φ(x(t, ξ), x(t, ζ))dζ

)
dξ

=

∫
I×Rd

∇x f (ξ, x) ·
(∫

I×Rd

w(ξ, ζ)φ(x , y)dµt(ζ, y)dζ

)
dµt(ξ, x)dξ,

=⇒ µt(ξ, x) solution of the Vlasov equation

∂tµ
ξ
t (x) +∇x ·

((∫
I×Rd

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
µξt (x)

)
= 0

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Introduction

From the non-exchangeable mean-field limit to the graph limit (d=1)

We denote

x̄(t, ξ) :=

∫
R
x dµξt (x).

Then,

∂t x̄(t, ξ) =∂t

∫
R
x dµξt (x) =

∫
R
∂x(x)

(∫
I×R

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
dµξt (x)

=

∫
R

(∫
I×R

w(ξ, ζ)φ(x , y)dµζt (y)dζ

)
dµξt (x).

Hypothesis

We suppose that
φ(x , y) = (λ1x + λ2y),

with (λ1, λ2) ∈ R2.

Example: the original Hegselmann-Krause for which the interation corresponds to
(y − x).
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We obtain

∂t x̄(t, ξ) =

∫
R

(∫
I×R

w(ξ, ζ)(λ1x + λ2y)dµζt (y)dζ

)
dµξt (x)

=

∫
I

w(ξ, ζ)

(
λ1

∫
R
xdµξt (x) + λ2

∫
R
ydµζt (y)

)
dζ

=

∫
I

w(ξ, ζ) (λ1x̄(t, ξ) + λ2x̄(t, ζ)) dζ

=

∫
I

w(ξ, ζ)φ(x̄(t, ξ), x̄(t, ζ))dζ.

• Obtaining a closed equation in the general (nonlinear) case: still open (for further
comments, see Paul, Trélat, ’22).
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Purpose of the talk

Discussion around three variants of the previous model:

adaptive dynamical networks,

random weighted graphs,

higher-order interactions.

References:

- Mean-field and graph limits for collective dynamics models with time-varying
weights, A., Pouradier Duteil, ’21,

- Graph limit for interacting particle systems on weighted random graphs, A.,
Pouradier Duteil, ’23,

- Large-population limits of non-exchangeable particle systems, A., Pouradier Duteil,
’24,

- Mean-field limit of non-exchangeable multi-agent system over hypergraphs with
unbounded rank, A., Pouradier Duteil, Poyato, ’24.
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Adaptive dynamical network

Adaptive dynamical network

• Real-life interactions: not only are relationships influence our opinions, but our
opinions also exert a reciprocal effect, inducing alterations in the network structure of
our relationships.

=⇒ the connectivity of the network evolves over time and this evolution can depend
on the states of the system itself.

Definition

We will say that a network is adaptive if the evolution of the edge (i , j) explicitly
depends on the states of the nodes i and j .

General form:
d

dt
xi (t) = fi (xi (t), t) +

N∑
j=1

wij(t)φ (xi (t), xj(t), t) for all i ∈ {1, · · · ,N},

d

dt
wij(t) = hij(w

N(t), xN(t), t),

where xN = (xi )1≤i≤N and wN = (wij)1≤i,j≤N
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Weight-varying opinion dynamics (A. Pouradier Duteil, ’21)

Opinion dynamics with time-varying influence
d

dt
xi (t) =

1

N

N∑
j=1

mj(t)φ(xj(t)− xi (t))

d

dt
mi (t) = ψi (m(t), x(t))

(DN)

where:

xi ∈ Rd is the state variable (opinion, position)

mi ∈ R+ is the agent’s weight

N =
∑N

i=1 mi (0) is the (initial) total weight of the system

φ is the interaction function (often, φ(xj − xi ) = a(‖xi (t)− xj(t)‖)(xj(t)− xi (t)))

ψi dictate the weight dynamics. We suppose
∑

i ψi ≡ 0.
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The model viewed on a graph


d

dt
xi (t) =

1

N

N∑
j=1

mj(t)φ(xj(t)− xi (t))

d

dt
mi (t) = ψi (m(t), x(t))

The edge weights depend on time mi (t).

Their evolution is coupled with the evolution of the nodes xi (t).
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Adaptive dynamical network

Convergence of the microscopic system to the Graph limit equation

Theorem [A., Pouradier Duteil, ’21]

Under suitable regularity assumptions on φ and ψ and a sublinear growth bound for ψ,
then for xN , mN defined as, for ξ ∈ [0, 1] and t ∈ [0,T ],{

xN(ξ, t) = PN
c (xN(t)) :=

∑N
i=1 x

N
i (t)1

[ i−1
N
, i
N

)
(ξ)

mN(ξ, t) = PN
c (mN(t)) :=

∑N
i=1 m

N
i (t)1

[ i−1
N
, i
N

)
(ξ).

where (xN ,mN) solution to the microscopic dynamics (DN) with appropriate initial
conditions, there exists (x ,m) ∈ C([0,T ]; L∞(I ,Rd))× C([0,T ]; L∞(I ,R)) such that

‖x − xN‖C([0,T ];L2(I ,Rd )) −−−−−→
N→+∞

0 and ‖m −mN‖C([0,T ];L2(I ,R)) −−−−−→
N→+∞

0.

Moreover, the limit functions x and m are solutions to the graph limit equation ∂tx(ξ, t) =

∫
I

m(ζ, t)φ(x(ξ, t)− x(ζ, t))dζ; x(·, 0) = x0

∂tm(ξ, t) = ψ(ξ, x(·, t),m(·, t)); m(·, 0) = m0.
(GL)
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Figure: Links between the different equations (A., Pouradier-Duteil, ’24)
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Adaptive dynamical network

Other results

The setting of Kuramoto-type model (Gkogkas, Kuehn, Xu, ’23)
d

dt
xi = ωi (xi , t) +

1

N

N∑
j=1

wijφ (xi , xj) for all i ∈ {1, · · · ,N}

d

dt
wij = −ε (wij + H(xi , xj))

Generalization of the evolving-weight dynamics (Throm, ’23)
d

dt
xi = ωi (x , t) +

1

N

N∑
j=1

wijφ (xi , xj) for all i ∈ {1, · · · ,N}

d

dt
wij = ψ

(N)
ij (x(t),w(t))

(1)

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Weighted random graphs

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Weighted random graphs

About random graphs

• Random graph: a graph which is generated by a random process.
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Weighted random graphs

About random graphs

• Random graph: a graph which is generated by a random process.

• Example 1: Erdos-Rényi graph: the edge between a pair of distinct nodes is inserted
with probability p.

Figure: Pixel pictures of the Erdos-Rényi graph with N = 40 and p = 0.5 (left), N = 600 and
p = 0.5 (right) [Medvedev, 2014]
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Weighted random graphs

About random graphs

• Random graph: a graph which is generated by a random process.

• Example 2 : Small world graph: replacing a random set of the local connections by
randomly chosen long-range ones.

Figure: Pixel pictures of the Small world graph, p starts at 0 and increases from left to right
[Medvedev, 2014]

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Weighted random graphs

Dynamical systems on W -random graph

• Let ξ = (ξ1, ξ2, ξ3, . . . ) and ξ
N

= (ξ1, ξ2, . . . , ξN) where ξi , i ∈ N are i.i.d. random
variables with L(ξ1) = U(I ).

Definition [Medvedev, ’14]

A W-random graph on N nodes generated by the random sequence ξ, denoted
GN = G(ξN ,W ) is such that the edges of GN are selected at random and

P((i , j) ∈ E(GN)) = W (ξi , ξj) for each (i , j) ∈ {1, . . . ,N}2 for i 6= j .

The decision wether to include a pair (i , j) ∈ {1, . . . ,N}2 is made independently as for
the decisions of other pairs.

Dynamical systems on W-random graph

d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t))

with L(σij |ξ) = B(W (ξi , ξj)).
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Random graph limit

Dynamical systems on W-random graph

d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t)) (S̃r−r
N )

with L(σij |ξ) = B(W (ξi , ξj)).
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Weighted random graphs

Random graph limit

Dynamical systems on W-random graph

d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t)) (S̃r−r
N )

with L(σij |ξ) = B(W (ξi , ξj)).

Medvedev obtains the convergence to

The random graph limit equation

∂tx(ξ, t) =

∫
I

W (ξ, ζ)φ(x(ζ, t)− x(ξ, t))dζ. (C)
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Weighted random graphs

Random graph limit

Theorem [Medvedev, ’14]: Random Graph Limit

Suppose W ∈ W0, a class of symmetric measurable function on I 2 with values on I . φ is
a Lipschitz continuous function on R and g ∈ L∞(I ). Let T > 0 and suppose that the
solution of (C) x(ξ, ζ) satisfies the following inequality

min
t∈[0,T ]

∫
I

{∫
I

W (ξ, ζ)φ(x(ζ, t)− x(ξ, t))2dζ

−
(∫

I

W (ξ, ζ)φ(x(ζ, t)− x(ξ, t)dζ

)2
}
≥ c1

for some positive constant c1. Then, the solution of (S̃r−r
N ) and (C) satisfy the following

relation
lim

N→+∞
P{N1/2 sup

t∈[0,T ]

‖xN(t)− P
ξ
N x(ξ, t)‖2,N ≤ C} = 1

for some constant C > 0 with P
ξ
N x(ξ, t) = (x(ξN1 , t), x(ξN2 , t), . . . , x(ξNN , t)) and

(x , y)N :=
1

N

N∑
i=1

xiyi , and the corresponding norm ‖x‖2,N :=
√

(x , x)N .
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Weighted random graph

Example [Garlaschelli, ’09]

A weighted random graph model in which the probability of drawing an edge of
discrete weight w ∈ N between vertices i and j is given by

P(σN
ij = w) = qij(w) = pw (1− p).

Lack of a general framework !

Definition [A., Pouradier Duteil, ’23]

A q-weighted random graph on N nodes generated by the random sequence ξ, denoted
GN , is such that the weight of an edge of GN is randomly attributed. More precisely, the
law for the weight of the edge (i , j) is q(ξi , ξj , .) where

q : I × I → P(R+)

(ξ, ζ) 7→ q(ξ, ζ; .).

The decision of the attribution of the weight of a pair (i , j) ∈ {1, . . . ,N}2 is made
independently from the decision for other pairs.
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Weighted random graphs

Examples

W-random graph (Medvedev, ’14): Generate between any two nodes (ξ, ζ) an
edge (of weight 1) with probability W(ξ, ζ).

q(ξ, ζ; ·) = (1−W (ξ, ζ))δ0 + W (ξ, ζ)δ1, for all ξ, ζ ∈ R.

Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any
two nodes an edge with weight w ∈ N, with probability pw (1− p).

q(ξ, ζ; ·) = (1− p)
+∞∑
i=0

piδi , for all ξ, ζ ∈ R.
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Weighted random graph limit

• Let ξ = (ξ1, ξ2, ξ3, . . . ) and ξ
N

= (ξ1, ξ2, . . . , ξN) where ξi , i ∈ N are i.i.d. random
variables with L(ξ1) = U(I ).

Dynamical systems on q-weighted random graph
d

dt
xN
i (t) =

1

N

N∑
j=1

σijφ(xN
j (t)− xN

i (t)),

xN
i (0) = g(ξNi ), i ∈ {1, . . . ,N}

(Sr−r
N )

with L(σij |ξ) = q(ξi , ξj ; ·).

We prove the convergence towards the continuum limit

The weighted random graph limit equation∂tx(ξ, t) =

∫
I

(∫
R+

wq(ξ, ζ; dw)

)
φ(x(ζ, t)− x(ξ, t))dζ

x(ξ, 0) = g(ξ), ξ ∈ I ,

(C2)
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Our result

Hypothesis 1

Let φ ∈ L∞(R) be bounded and Lipschitz continuous, with ‖φ‖Lip := L and
‖φ‖L∞(R) := K .

Hypothesis 2

There exists M > 0 such that for all (ξ, ζ) ∈ I 2, for all k ∈ {1, · · · , 4},(∫
R+

w kq(ξ, ζ; dw)

)1/k

≤ M,

i.e. the first four moments of the probability measure q(ξ, ζ; ·) are bounded uniformly in
ξ and ζ.
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Our result

Theorem [A., Pouradier Duteil, 2023]: Weighted Random Graph Limit

Let φ satisfy Hypothesis 1, let g ∈ L∞(I ) and let q be a weighted random graph law
satisfying Hypothesis 2. Then, as N goes to infinity, solution xN to the discrete system
(Sr−r

N ) converges to the solution x of the continuous model (C2). More precisely,

P

[
sup

t∈[0,T ]

‖xN(t)− P
ξ
N x(·, t)‖2,N ≥

C1(T )√
N

]
≤ C̃1

N

where the constants C1(T ) and C̃1 are respectively defined by

C1(T ) :=
√
T
√

1 + M2K 2e( 1
2

+4ML)T and C̃1 := 3M4K 4 + 6.
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Numerical Illustration: the weighted Erdös-Rényi random graph

Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any
two nodes an edge with weight w ∈ N, with probability pw (1− p).

q(ξ, ζ; ·) = (1− p)
+∞∑
i=0

piδi , for all ξ, ζ ∈ R.

First moment given by:

w̄(ξ, ζ) =

∫
R+

wq(ξ, ζ; dw) = (1− p)
+∞∑
i=1

ipi =
p

1− p

Limit equation: ∂tx(ξ, t) = p
1−p

∫
I

φ(u(ζ, t)− u(ξ, t))dζ

x(ξ, 0) = g(ξ), ξ ∈ I .

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Weighted random graphs

Figure: Left and Centers: Random interaction matrices generated by deterministic sequences for
N = 20, N = 60 and N = 150, for the random weighted graphon (30), Right: Corresponding
graphon.
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Figure: Convergence of supt∈[0,T ] ‖xN(t)− P
ξ
N x(·, t)‖2,N for different values of N, with 20 runs

for each value of N.
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Numerical Illustration: Weighted “Small World” network

Model for a “small-world” network (Watts, Strogatz, ’98): Connect each node
with its k closest neighbors to form a ring lattice. Then, rewire each edge at
random with probability p.

Refined model for a weighted “small-world” network: Connect two nodes with
an edge of weight 1 if they are among each other’s closest k neighbors, i.e. if

|ξi − ξj | ≤ r , where r := k
2N

. Then, with probability p =
|ξi−ξj |

r
, rewire each edge

at random, giving the new edge a weight drawn uniformly in the interval [0, 1].

q(ξ, ζ; dw) =

{
ρ(ξ,ζ)

r
dλ[0,1] + (1− ρ(ξ,ζ)

r
)δ1 if ρ(ξ − ζ) ≤ r

dλ[0,1] otherwise
(2)

where ρ(ξ, ζ) = min{|ξ − ζ|, |ξ − ζ − 1|, |ζ − ξ − 1|}.
First moment:

w̄(ξ, ζ) =

∫
R+

wq(ξ − ζ; dw) =

{
(1− ρ(ξ−ζ)

2r
) if ρ(ξ − ζ) ≤ r

1
2

otherwise.
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Figure: Values of the random interaction matrices generated from a random sequence (left) and a
deterministic sequence (right) according to the random weighted graph law (2) for N = 60.
Right: Corresponding continuous graphon (ξ, ζ) 7→ w̄(ξ, ζ).

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Weighted random graphs

Figure: Convergence of supt∈[0,T ] ‖xN(t)− P
ξ
N x(·, t)‖2,N for different values of N, with 20 runs

for each value of N. Case of the random weighted graph law (30).
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Higher Order Interactions

Hypergraphs

• Many existing models focus on binary interactions 6= real-life dynamics often involve
interactions within groups containing more than just two individuals (virtual group
chats, physical meetings . . . )

Figure: Higher-order group interactions in social context [Neuhauser et al, 2022]
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Hypergraphs

• Hypergraph H = (V ,E) where V are the vertices, E the hyperedges.

Figure: Pairwise and higher-order interactions [Battiston et al, 2021]
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Models of multi-agent dynamics on hypergraphs

Extension of the Kuramoto-Saraguchi model on hypergraphs (Skardal, Arenas, ’20)

d

dt
xi =

N∑
j1=1

wN,1
ij1

sin(xj1 − xi ) +
N∑

j1=1

N∑
j2=1

wN,2
ij1j2

sin(2xj1 − xj2 − xi )

+
N∑

j1=1

N∑
j2=1

N∑
j3=1

wN,3
ij1j2j3

sin(xj1 + xj2 − xj3 − xi )

Higher-order opinion dynamics on a uniform hypergraph of rank 2 (Neuhauser,
Lambiotte, Schaub ’22)

d

dt
xi =

N∑
j1=1

N∑
j2=1

wN,2
ij1j2

eλ|xj1−xj2 |
(xj1 + xj2

2
− xi

)
.
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About Graph Theory

• Graphons are natural limit objects associated to a sequence of (dense) graphs.

Graphon space

Given W > 0,

GW := {w ∈ L∞+ ([0, 1]2) : ‖w‖L∞ ≤W , and w is symmetric}.

Cut-distance

For any two graphons w , w̄ ∈ GW ,

labelled cut-distance: d�(w , w̄) := sup
S,T⊂[0,1]

∣∣∣∣∫∫
S×T

(w(ξ, ζ)− w̄(ξ, ζ)) dξ dζ

∣∣∣∣ ,
(unlabelled) cut-distance: δ�(w , w̄) = infΦ d�(w , w̄Φ),

with Φ : [0, 1] −→ [0, 1] bijective, measure-preserving and w̄Φ(ξ, ζ) = w̄(Φ(ξ),Φ(ζ)).

• Comparison with the L1-norm: for all w , w̄ ∈ GW ,

d�(w , w̄) ≤ ‖w − w̄‖L1 .
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Hypergraph theory

Hypergraphons of unbounded rank (UR-hypergraphons)

Given W > 0, HW :=

{
w = (w`)`∈N :

w` ∈ L∞+ ([0, 1]`+1), ‖w`‖L∞ ≤W ,
and w` is symmetric for all ` ∈ N

}
.

Cut-distance

For any w , w̄ ∈ HW , ∀` ∈ N, the `t-th order labeled cut distance is

d�,`(w`, w̄`) := sup
S,S1,...,S`⊂[0,1]

∣∣∣∣∫
S×S1×···×S`

(w` − w̄`) dξ dξ1 . . . dξ`

∣∣∣∣ , .
For any strictly positive summable sequence (α`)`∈N, we define

the labeled cut distance: d�(w , w̄ ; (α`)`∈N) :=
∞∑
`=1

α` d�,`(w`, w̄`),

the unlabeled cut distance: δ�(w , w̄ ; (α`)`∈N) = infΦ d�(w , w̄Φ; (α`)`∈N),

where Φ bijective, measure-preserving maps Φ : [0, 1] −→ [0, 1], and

w̄Φ
` (ξ, ξ1, . . . , ξ`) = w̄`(Φ(ξ),Φ(ξ1), . . . ,Φ(ξ`)).

Nathalie Ayi GL and MFL for interacting particle systems Facets of Kinetic Theory, 25 Sep. 2024



Higher Order Interactions

Convergence of a sequence of hypergraphs

Construction of piecewise-constant function associated to a sequence of hypergraphs

For any sequence of hypergraphs (HN)N∈N, for all ` ∈ N,

I if ` ≤ N − 1, for all (ξ, ξ1, · · · , ξ`) ∈ [0, 1]`+1,

wHN
` (ξ, ξ1, · · · , ξ`) :=

N∑
i,j1,···j`=1

w `,N
ij1···j`N

`
1INi ×INj1

×···INj`
(ξ, ξ1, · · · , ξ`),

I if ` ≥ N, for all (ξ, ξ1, · · · , ξ`) ∈ [0, 1]`+1, wHN
` (ξ, ξ1, · · · , ξ`) = 0.

Convergence

The sequence of hypergraphs (HN)N∈N is said to converge to a UR-hypergraphon w
when

lim
N→∞

δ�(w ,wHN ; (α`)`∈N) = 0

for some positive and summable sequence (α`)`∈N.
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The θ-nearest neighbor example

The hypergraph: for θ ∈ (0, 1], for each ` ∈ {1, · · · ,N − 1},

w `,N
ij1···j` =

1 if max
k1,k2∈{i,j1...,j`}

|k1 − k2| ≤ θN,

0 otherwise.

Figure: Pixel representation for ` = 1, 2 with θ = 0.3 and N = 20.

The unbounded rank hypergraphon: for all ` ∈ N,

w`(ξ0, ξ1, · · · , ξ`) =

1 if max
i,j∈{0,··· ,`}

|ξi − ξj | ≤ θ

0 otherwise.
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Non-exchangeable mean-field limit for higher order case

The microscopic dynamics
dXN

i (t)

dt
=

N−1∑
`=1

N∑
j1,...,j`=1

w `,N
ij1···j` K`(X

N
i (t),XN

j1 (t), . . . ,XN
j` (t)),

XN
i (0) = XN

i,0, i ∈ {1, · · · ,N}.

The non-exchangeable mean-field limit

{
∂tµ

ξ
t + divx(Fw [µt ](·, ξ)µξt ) = 0, t ≥ 0, x ∈ Rd , ξ ∈ [0, 1],

µξt=0 = µξ0 .

where

Fw [µt ](x , ξ) :=
∞∑
`=1

∫
[0,1]`

w`(ξ, ξ1, . . . , ξ`)

×
(∫

Rd`

K`(x , x1, . . . , x`) dµ
ξ1
t (x1) · · · dµξ`t (x`)

)
dξ1, . . . dξ`.
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Our main result

Theorem [A., Pouradier Duteil, Poyato, ’24]

Assume that the kernels K` satisfy some regularity assumptions and the coupling
weights some suitable scaling. Suppose additionnally that both of them satisfy some
symmetries.
For any (XN

1,0, . . . ,X
N
N,0) with i.i.d. XN

i,0 (but N dependent law) such that there exists

p ∈ [1, 2] for which XN
i,0 satisfies

sup
N∈N

max
1≤i≤N

E|XN
i,0|p <∞,

consider the unique solutions (XN
1 , . . . ,X

N
N ) to the microscopic dynamics. Then, there is

a subsequence Nk →∞ such that the mean-field limit of the multi-agent system is
characterized in a suitable sense by a solution to the Vlasov-type equation for some
(µξt )ξ∈[0,1] ⊂ P(Rd) and some w = (w`)`∈N such that sup`∈N ‖w`‖L∞ ≤W .
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Strategy of the proof

Intermediate Particle Systems
dX̄N

i

dt
=

N−1∑
`=1

N∑
j1,...,j`=1

w `,N
ij1···j` E

N
i K`(X̄

N
i , X̄

N
j1 , . . . , X̄

N
j` ),

X̄N
i (0) = XN

i,0,

where EN
i = E[ · |F̄N

i ] denotes the expectation conditioned to the natural filtration

F̄N
i (t) = σ({X̄N

i (s) : 0 ≤ s ≤ t}).

Error estimate (
1

N

N∑
i=1

E|XN
i (t)− X̄N

i (t)|p
)1/p

≤ e(C̃N
∞+CN

p )tεNp ,

with

C̃N
∞ ≤W

∞∑
`=1

L`, CN
p ≤W

∞∑
`=1

`L`, εNp ≤ 2W
∞∑
`=1

√
`!B`
N`/2

.
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Associated PDE system

We denote their associated laws

λ̄N,i
t := Law(X̄N

i (t)), t ≥ 0, 1 ≤ i ≤ N.

Solution of the PDE system

Then, (λ̄N,i )1≤i≤N is a solution in distributional sense to the following coupled PDE
system {

∂t λ̄
N,i
t + divx(FN

i [λ̄N,1
t , · · · , λ̄N,N

t ] λ̄N,i
t ) = 0, t ≥ 0, x ∈ Rd , 1 ≤ i ≤ N,

λ̄N,i
0 = Law(XN

i,0),

where

FN
i [λ̄N,1

t , · · · , λ̄N,N
t ](x) =

N−1∑
`=1

N∑
j1,··· ,j`=1

w `,N
ij1···j`

∫
Rd`

K`(x , x1, . . . , x`) d λ̄
N,1
t (x1) · · · d λ̄N,N

t (xN).
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Graphon reformulation

For every N ∈ N, and t ∈ R+ we define

µN,ξ
t : =

N∑
i=1

1INi
(ξ)δXN

i (t), µ̄N,ξ
t :=

N∑
i=1

1INi
(ξ) λ̄N,i

t , ξ ∈ [0, 1],

wN
` (ξ, ξ1, . . . , ξ`) : =

N∑
i,j1,...,j`=1

1INi ×INj1
×···×INj`

(ξ, ξ1, . . . , ξ`)N
`w `,N

ij1···j` , ξ, ξ1, · · · , ξ` ∈ [0, 1],

for all 1 ≤ ` ≤ N − 1, wN
` ≡ 0 for all ` ≥ N.

Lemma

Under the previous assumptions, consider the unique solution (X̄N
1 , . . . , X̄

N
N ) to the

intermediate particle system, their associated laws (λ̄N,i )1≤i≤N and the graphon
reformulation (µ̄N ,wN). Then, µ̄N is a distributional solution to the Vlasov equation
with hypergraphon wN = (wN

` )`∈N and initial datum µ̄N,ξ
t=0 =

∑N
i=1 1INi

(ξ)Law(Xi,0).
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Functional setting

Fibered probability measures

Consider any ν ∈ P([0, 1]). We define the space of fibered probability measures by

Pν(Rd × [0, 1]) := {µ ∈ P(Rd × [0, 1]) : πξ#µ = ν},

where πξ(x , ξ) = ξ projection on the second component, and thenπξ#µ stands for the
marginal of µ in the second component.

Consider any ν ∈ P([0, 1]) and any p ∈ [1,∞], we define

Pp,ν(Rd × [0, 1]) :=

{
µ ∈ Pν(Rd × [0, 1]) :

∫ 1

0

dp
BL(µξ, δ0) dν(ξ) <∞

}
,

dp,ν(µ1, µ2) :=

(∫ 1

0

dp
BL(µξ1 , µ

ξ
2) dν(ξ)

)1/p

, µ1, µ2 ∈ Pp,ν(Rd × [0, 1]).
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Stability estimates for the Vlasov equation

Theorem

For any initial data µ0, µ̄0 ∈ Pp,ν(Rd × [0, 1]) with p ∈ [1,∞), let
µ, µ̄ ∈ C(R+,Pp,ν(Rd × [0, 1])) be the unique global-in-time distributional solutions
issued at µ0 with given w (respectively, µ̄0 and w̄). Then, we have

dp,ν(µt , µ̄t) ≤ e(Cp+LF )t

(
dp,ν(µ0, µ̄0) +

D
1/q
∞

LF
δ�(w , w̄ ; (4`‖K̂`‖L1 )`∈N)1/p

)
,

for every t ≥ 0, where 1
p

+ 1
q

= 1.
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Figure: Social graph (http://inicia.org.ar/blog/7-claves-para-hacer-networking/)

Thank you for your attention !
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