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A nonlocal (fractional) Fokker-Planck

NLFP

∂tu =
1

εs
[Jsε ∗ u − u] + div(xu) := As

εu + div(xu) := Lsεu (1)

t ≥ 0, x ∈ Rd , ε ∈ (0, 1), s ∈ (0, 2]

Js : Rd → [0,∞) s.t.∫
Rd

Js(x)dx = 1,

∫
Rd

Js(x)x dx = 0, if s ∈ [1, 2]

and Js ∼ Gs if s ∈ (0, 2) and
∫
Rd (J

s − Gs)xixj dx = 0 if s = 2, where

Ĝs(ξ) = e−|ξ|s .

As ε → 0 the operator A2
ε approximates the Laplacian ∆ and As

ε

approximates the fractional Laplacian −(−∆s/2)
[Andreu, Mazon, Rossi & Toledo, 2010]

Not singular, no regularization.
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Questions

Does this equation behave like the (fractional) Fokker-Planck for
large times?

Is there a positivity estimate valid as ε → 0

Can we show exponential convergence towards the equilibrium
uniformly in ε? Can we use entropy methods/ functional inequalities?

Can we estimate the speed of convergence of eL
s
εtu0 to eL

s
0tu0. What

about the limit for s → 2−?

What’s the shape of this equilibrium?
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Motivation

This type of equations are common in models arising in biology
(genetic circuits [Cañizo, Carrillo, Pajaro, 2019], growth
fragmentation [Caceres, Cañizo, Mischler, 2011]) for which
entropy methods work well

The latter are not easy to make it work in the scaling. On which
other tools can we rely?

Harris’s Theorem to get the correct behaviour as ε → 0. Toy model
for harder problems.

Numerical methods: in the pure nonlocal diffusion case, if
J = 1

2(δ−1 + δ1), it’s a numerical scheme for the heat equation.
Practical importance of understanding if a numerical method preserves
the long time behaviour of its limiting equation ([Ayi, Herda,
Hivert, Tristani, 2022], [Dujardin, Herau, Lafitte, 2020] etc..)

Links with (Generalized) Central Limit Theorem.
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Previous results

Nonlocal Diffusion [Andreu et al., 2010]: for every T > 0

lim
ε→0

∥∥∥eAs
εtu0 − e−(−∆s/2)tu0

∥∥∥
L∞(Rd×(0,T ))

= 0

Nonlocal Diffusion [Rey & Toscani, 2012]: Correct speed of
convergence in Fourier distance

Nonlocal Fokker Planck [Mischler & Tristani, 2017]: compactly
supported J, different weights, splitting of the operator.

Related equations: e.g. [Ignat & Rossi, 2007], [Molino & Rossi,
2019], [Auricchio, Toscani, Zanella, 2023].

Others...
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Main result

Theorem (Cañizo, T. (2024))

Under suitable hypotheses on J, there exists a unique equilibrium F s
ε ∈ L1k

of equation (1) such that for u0 ∈ L1k ,

∥u(t, ·)− F s
ε ∥L1k ≤ Ce−λt ∥u0 − F s

ε ∥L1k for every t ≥ 0. (2)

with C ≥ 1 and λ > 0 independent of ε (and s ∈ [s0, 2])

The method is constructive and the constants are explicit

−λ is not the first eigenvalue but provides a bound of it.
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Harris’s Theorem

1 Confining Lyapunov condition: there exist T > 0, 0 < λL < 1, and
K > 0, such that

∥STµ∥V ≤ (1− λL) ∥µ∥V + K ∥µ∥

2 A uniform positivity condition on a set C: there exist T > 0,
0 < α < 1 and a probability η such that

STµ ≥ αη

∫
C
µ

Harris’s Theorem

If a semigroup (St)t≥0 satisfies the previous two hypotheses with C ”big
enough”, then the semigroup has a unique invariant probability measure
µ∗ ∈ PV and there exist λ,C > 0 such that

||Stµ− µ∗||V ≤ Ce−λt ||µ− µ∗||V for t ≥ 0
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Harris’s Theorem

Roughly we require that

For some ⟨x⟩k = (1 + |x |2)k/2

d

dt

∫
u(t, x) ⟨x⟩k dx ≤ CL − λL

∫
u(t, x) ⟨x⟩k dx

If the initial condition is a δx0 , with x0 ”not too far”; then after a fixed
time T ,

u(T , x) ≥ α > 0

for all x ∈ BR .

References:

[Harris, 1956]
[Meyn & Tweedie 1992, 1993]
[Hairer & Mattingly, 2011]
[Cañizo & Mischler, 2023]
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s = 2

We want to use Harris

We check the conditions:

Lyapunov is fairly straightforward

Positivity

No regularization effect
Easy for a fixed ε
Problem to obtain it uniformly in ε: λε → 0!
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Positivity

Write the solution u via Wild’s sums

u(t, x) = e
(d− 1

ε2
)t
[
u0(e

tx)+
∞∑
n=1

( 1

ε2

)n
∫ t

0

∫ tn−1

0

· · ·
∫ t1

0

J t1,...,tn
ε ∗u0(etx)dt1 . . . dtn.

]
where Jt1,...,tnε (x) := Jεet1 ∗ · · · ∗ Jεetn (x).
We want to bound the latter, independently on ε and n.

L∞ Berry-Esseen Central Limit Theorem
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Berry-Esseen Theorem

Assume∫
Rd

xf (x) dx = 0,

∫
Rd

xixj f (x) dx = δij ,

∫
Rd

|x |2+δf (x)dx := ρ2+δ < ∞. (3)

Theorem

Let f ∈ P(Rd) ∩ Lp(R) satisfying (3).

fn(x) := (σ̄2
n)

d/2fσ1 ∗ fσ2 ∗ · · · ∗ fσn(σ̄nx),

with σ̄2
n =

∑n
i=1 σ

2
i . There exist N = N(p) and a constant

CBE (
L
l , p, d , ρ2+δ, ∥f ∥Lp) such that for all n ≥ N

∥fn − G∥L∞ ≤ CBE

nδ/2
.

Idea of the proof from [Goudon, Junca, Toscani, 2002] [Hauray & Mischler, 2014]
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Positivity, again

There exists explicit ε0(N) such that

For ε ∈ [ε0, 1] positivity is straightforward

For ε < ε0,
Jt1,...,tnε (x) ≥ A for all x ∈ Bη

for all ε < ε0 and for any t1, . . . , tn with t ≥ t1 ≥ . . . tn ≥ 0 and n
such that

t

ε2
≤ n ≤ 2

t

ε2
.

Then, formally

u(t, x) ≥ e
(d− 1

ε2
)t

2 t
ε2∑

n= t
ε2

ε−2n

∫ t

0

· · ·
∫ tn−1

0

∫
BR2

J t1,...,tn
ε (etx − y)u0(y) dy dtn . . . dt1

≥ Aedte
− t

ε2

2 t
ε2∑

n= t
ε2

( t

ε2

)n 1

n!

∫
BR2

u0(y) dy ≥ ACLe
dt

∫
BR2

u0(y) dy
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The case s < 2

Let J now be fat tailed,∫
|Js − Gs ||x |2+δ dx < ∞

The previous strategy can be followed to give a similar result, again
using Wild sums formulation (replacing ε2 with εs)

We prove an updated version of Generalized Berry-Esseen Theorem
for stable laws.

Proof of positivity goes as before; for ε < ε0, we use the range of n

t

εs
≤ n ≤ 2

t

εs
.

We get rid of the dependency from s, cheating a bit, bounding
Gs with Gs0 and G where needed.
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Convergence nonlocal to local (for s = 2,)

With additional assumptions on J, for a nice fast enough decaying φ,
we prove the consistency of the operator Lε,

∥(Lε − L0)φ∥L1k ≤ Cε

Consistency + Hille Yosida (
∥∥L−1

ε

∥∥ ≤ C
λ ) give the speed of

convergence of the equilibrium towards the standard Gaussian

∥Fε − G∥L1k ≤ Cε

Theorem

Convergence nonlocal to local: for every t ≥ 0 and ε ∈ (0, 1]∥∥∥eLεtu0 − eL0tu0

∥∥∥
L1k

≤ Cε

Consistency + stability give convergence for finite time
”Spectral gap”+ convergence of the equilibrium
give convergence for large times.
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Convergence for s < 2
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Preliminary results

Only formal results. Under additional assumptions

∥Lεsφ− Ls0φ∥L1k ≤ Cεα

If we assume s ≥ s0

∥J − Js∥L1k ≤ (2− s)

then for a nice φ

∥(Lsε − Lε)φ∥L1k ≤ (2− s)β

Proceeding as before we should be able to prove convergence as
ε → 0 and s → 2−
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In short...

where v and v s are the solution of the classic and fractional Fokker Planck.
(Here Gs is now the standardized stable law)
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Shape of the equilibrium

Regularity: via Fourier Analysis and boostrap arguments one can
prove that the equilibrium

For all ε ∈ (0, 1]
(i) F s

ε ∈ C l−d for all l < 1
εs

such that l ≥ d .
(ii) F s

ε /∈ C l for all l > 1
εs
.

In d = 1 (or for radially symmetric J), F s
ε ∈ C∞(Rd \ {0}).

Non optimal

If u0 decays fast enough, for s = 2

Fε has at least exponential tails.
For compactly supported J, Fε has Poisson-like tails
We conjecture that Fε do not have Gaussian tails (like the local case)

For s = 2 we can explicitly compute the moments, via Bell’s
Polynomials and cumulative generating function.
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Future work

Nonlocal Fokker-Planck with a different potential

Kinetic Fokker-Planck

Nonautonomous equations coming from selfsimilar scaling

Nonlocal diffusion: from

∂τw = J ∗ w − w

to
∂tu = est(Je−t ∗ u − u) + div(xu)

Growth-Fragmentation: from

∂τ f = L+f − Bf

to
∂tg + g + ∂x(xg) = γL+

e−tg − γBe−tg

Tassi, Cañizo (UGR) AB of NLFP ICMS, 2024 20 / 23



Tapadh Leibh!1

1which I have been told it means ”thank you!”
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Polytechnique — Mathématiques, 4, 389–433. https://doi.org/10.5802/jep.46

Rey, T., & Toscani, G. (2013). Large-Time Behavior of the Solutions to
Rosenau-Type Approximations to the Heat Equation. SIAM Journal on Applied
Mathematics, 73(4), 1416–1438. https://doi.org/10.1137/120876290
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