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Let N = {1,2,3,...}. In [Hin79] Hindman posed the following conjecture.

Hindman'’s Conjecture

For any finite coloring of N there exists a monochromatic set of the form
{X,y,x+y,xy} for some x,y € N.

[Hin79] Neil Hindman, Partitions and sums and products of integers, Transactions of
the American Mathematical Society 247 (1979), 227-245.
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Hindman’s Conjecture

Formulation

Let N = {1,2,3,...}. In [Hin79] Hindman posed the following conjecture.

Hindman'’s Conjecture
For any finite coloring of N there exists a monochromatic set of the form
{X,y,x+y,xy} for some x,y € N.

Hindman'’s conjecture postdates a stronger conjecture by Erdés [Erd77],
which was disproved by Hindman. However, the following is still standing.

Conjecture (Graham-Rothschild-Spencer)

For any N € N and any finite coloring of N there exist x, < ... <xy € N
such that all finite sums and products formed from the x; are
monochromatic.

[Erd77] Paul Erdés. Problems and results on combinatorial number theory Ill, Number
theory day (Proc. Conf., Rockefeller Univ., New York, 1976), Lecture Notes in
Math., Vol. 626, Springer, Berlin, 1977.

[Hin79] Neil Hindman, Partitions and sums and products of integers, Transactions of
the American Mathematical Society 247 (1979), 227-245.
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Hindman’s Conjecture
Progress in N

Question: What is known about Hindman's Conjecure?

Theorem (Moreira, 2017)

For any finite coloring of N there exists a monochromatic set of the form
{xox+y,xy}.
Theorem (Bowen, 2022)

Any 2-coloring of N contains many monochromatic sets of the form
Xy, x+y,xy}.

Difficulty: The affine semigroup (N, +, -) is not amenable, obstructing
analytical approaches (e.g. from Fourier analysis or ergodic theory).

[Bow22] Matt Bowen, Monochromatic sums and products in 2-colorings of N,
arXiv: 2205.12921 (2022).

[Mor17] Joel Moreira, Monochromatic sums and products in N, Annals of Math-
ematics 185 (2017), 1069-1090.
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[GS16] Ben Green and Tom Sanders, Monochromatic sums and products, Discrete Analy-
sis 613 (2016).
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Question: What about analogues of Hindman'’s Conjecture in fields such as
(Qa +7 ) or (Fpa +a )?

Theorem (Green-Sanders, 2016)

For any r € N there is a cofinite set of primes p such that for any r-coloring
of F,, there exists a monochromatic set of the form {x, y,x +y, xy}.

Theorem (Bowen-Sabok, 2022)
Any finite coloring of Q admits a monochromatic pattern {x, y,x +y, xy}.

Theorem (Alweiss, 2023)

For any N € N and any finite coloring of Q there exist x, < ... < xy € Q
such that all finite sums and products of the x; are monochromatic.

[A1w23] Ryan Alweiss, Monochromatic Sums and Products over Q, arXiv:2307.08901 (2023).

[BS22] Matt Bowen and Marcin Sabok, Monochromatic products and sums in the rationals,
arXiv:2210.12290v1.

[GS16] Ben Green and Tom Sanders, Monochromatic sums and products, Discrete Analy-
sis 613 (2016).
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Theorem (Shkredov, 2010)

For any § > o there is a cofinite set of primes p such that any set A C F, of
relative density > § contains {x, x +y, xy}.

[Shk10] I D. Shkredov. On monochromatic solutions of some nonlinear equations in Z./ pZ,
Mat. Zametki, 88(4):625-634, 2010.



Hindman’s Conjecture
Density version in fields

Question: What about “density versions” of Hindman'’s Conjecture?

Theorem (Shkredov, 2010)

For any § > o there is a cofinite set of primes p such that any set A C F, of
relative density > § contains {x, x +y, xy}.

Theorem (Bergelson-Moreira, 2015)

Let (K, +, -) be any infinite countable field. Any set A C K of positive density
(with respect to a double-Fglner sequence) contains {x +y, xy}.

[BM15] V. Bergelson and J. Moreira. Ergodic theorem involving additive and multiplicative
groups of a field and {x +y, xy} patterns, ETDS, 37(3), 2015.
[Shk10] I. D. Shkredov. On monochromatic solutions of some nonlinear equations in Z/ pZ,

Mat. Zametki, 88(4):625-634, 2010.
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Hindman's Conjecture
Density version in N

Question: What about a “density version” of Hindman's Conjecture in N?

Goal for today: Show that patterns such as {x +y,xy}, {x,x +y,xy}, and
{x,y,x+y, xy} are controlled by the local uniformity norms.

This will allow as to address the following two problems:

Moreira’s Conjecture

Any set with positive natural density contains {x +y, xy +1}.

There exists a (multiplicatively invariant) density on N such that any set with
positive measure under this density contains {x +y, xy}.
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< Subadditivity: for all A,B C N one has D(A U B) < D(A) + D(B)



Densities on N

Definition

A density on N is a function D: 2~ — [0, 1] such that
& Unit Range: D()) = o and D(N) =1
% Monotonicity: if A C Bthen D(A) < D(B)
< Subadditivity: for all A,B C N one has D(A U B) < D(A) + D(B)

We say that D is additively invariant if D(A — m) = D(A), where

A-m={neN:n+meA}.
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Definition

A density on N is a function D: 2~ — [0, 1] such that

& Unit Range: D()) = o and D(N) =1

% Monotonicity: if A C Bthen D(A) < D(B)

< Subadditivity: for all A,B C N one has D(A U B) < D(A) + D(B)
We say that D is additively invariant if D(A — m) = D(A), where

A-m={neN:n+meA}.

We say that D is multiplicatively invariant if D(A/m) = D(A), where

A/m={ne N:nm e A}
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Examples |

The Cesaro average and the logarithmic average of f: N — C over a finite
set A C N are defined respectively as

log Z €A )
eafln f(n and E ¢, f(n) = =221,
” |A| nGZA €A ZneA %
& The upper density of a set A C N is defined as
d(A) = I|m sup LIAN{1,...,N} = limsup E,cn 1a(n).
N— oo

It is additively invariant.

% The upper logarithmic density of a set A C N is defined as

1
S5(A) = limsup Z”GA'] = limsup En<N 14(n).
N— oo anNﬁ N— oo

It is also additively invariant.
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A multiplicative Fglner sequence on N is a sequence of finite sets
W = (Wy)men such that
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1, Vm e N.

% The upper density with respect to W of a set A C N is defined as
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Densities on N

Examples Il

A multiplicative Fglner sequence on N is a sequence of finite sets
W = (Wy)men such that

Wy NWp/m| Moo
Wl

1, Vm e N.

% The upper density with respect to W of a set A C N is defined as

— ANWY
dy(A) = IimsupM = limsup Eney,, 1a(m).
M— o0 |L'JM| M—o0

It is multiplicatively invariant.

REMARK: (N, +, ) is not amenable and there exists no Falner sequence on
N that is both additively and multiplicatively invariant.
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If 5(A) > o then A contains {x, xy}.



Main Results

for patterns of the form {x +y,xy + 1}

Moreira’s Conjecture

Any set with positive natural density contains {x +y, xy +1}.

upper density:  d(A) = limsupy_, - MNN}I

neA n

upper logarithmic density:  6(A) = limsupy_, % T

n<N N

Example: The set A = Un>4[22 , 22" satisfies d(A) > 0, but does not
contain patterns of the from {x +y, xy +1}.

Besicovitch’s Example: There is a set A C N with d(A) > o containing no
patterns of the from {x, xy}.

Theorem (Davenport-Erdés, 1936)
If 5(A) > o then A contains {x, xy}.

Theorem 1 (R. 2024+)

If 5(A) > o then A contains {x +y,xy +1}.
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Main Results
for patterns of the form {x +y, xy}

Define

§%(A) = limsup ]EmewM(kILn;o EféNku(mn)),

M— o0
—_————
logarithmic density of A/m

where N, < N, < ... € Nis any sequence such that all limits above exist.

Observation

" The logarithmic density of A/m is bigger than ¢ for
0%(A) >0 <= set of m that has positive multiplicative density.

Properties:
e 0 is multiplicatively invariant, i.e., 6 (A/m) = 6> (A)

e ¢ is absolutely continuous with respect to the upper logarithmic
density, i.e., 6(A) =0 = 6*(A) = 0.

Theorem 2 (R. 2024+)

If 6% (A) > o then A contains {x +y, xy}.
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Main Theorems
Outline of proof

Theorem 1

If (A) > o then A contains {x +y, xy +1}.

Theorem 2
If §*(A) > o then A contains {x +y, xy}.

Proof Outline: We want to show that

]EL°<gN 11X +y)1alxy +1) > 0, for many y.
Split A into structured and random components,
14(n) = fstr.(n) + frand (n)

4 x__—
local nilsequence controlled by local

Host-Kra seminorms
Step1: By frand (X +Y) frana (xy +1) = 0, for manyy,

Step2: B o (x+y) fite(xy +1) > 0, for manyy.
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Local Almost Periodicity

Definitions

Let f € £>°(N).

& We say f is locally almost periodic if for all ¢ > o there is g € N such
that
Jim B2 [f(n+a) — f(n)] <.

& We say f is locally aperiodic if for all o € [0, 1) we have

HIi_)mOO NIi_)mOO E':éN Epen f(n + h)e(ha)| = o.

REMARK: If the limits in N don’t exist then we pass to a subsequence (Ny)
along which the limits exist.

EXAMPLE: In [MRT15] it is shown that the classical Liouville function
A(n) = (=) s locally aperiodic (with Cesaro averages).

[MRT15] K. Matomaki, M. Radziwitt, and T. Tao. An averaged form of Chowla’s conjecture.
Algebra Number Theory, 9(9):2167-2196, 2015.
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Structure Theorem |

locally almost periodic @ locally aperiodic

& We say f is locally almost periodic if for all ¢ > o there is g € N such
that
Jim 72 Ifn+q) — f(n)] <e.

% We say f is locally aperiodic if

lim lim sup E'°
H— 00 N—o0 ep n<N

Structure Theorem |

Any f € £>°(N) can be split into f = fper + faper, Where

By f(n + hle(ha)| = 0

e fper is locally almost periodic,

e faper is locally aperiodic.
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Local Uniformity Norms
Definitions

Let f € °°(N). The local uniformity seminorms of f (with respect to
logarithmic averages) are defined as

. . | —
IflEey = Jim lim B, B2 f(n)fn+h),
”fHﬁZ(N) = lim  lim Eh“hng El,?éN f(n)f(n + hy)f(n + hy)f(n + hy + hy,)

H— 00 N—oo

lim lim B, . B8 fn)fn+he) - - fn+hy +h, + hy)

8
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Local Uniformity Norms

Definitions

Let f € °°(N). The local uniformity seminorms of f (with respect to
logarithmic averages) are defined as

[l
11

1B

k
[ e

. o log 7 L\
Hll>moo Nll—)moo EhSH EnéN f(n)f(n + h),

Jimlim B EPE f(n)fn+ ho)fn+ho)f(n + hy + ho)

q 0 |
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Local Uniformity Norms

Definitions

Let f € °°(N). The local uniformity seminorms of f (with respect to
logarithmic averages) are defined as

. o log 7 L\
Hll—>m<>o Nll—)moo EKH EnéN f(n)f(n + h),

e = Jim Jim By e f(n)f(n +h))f(n + ho)f(n + hy + hy)

1110

IFlGey = Jim lim By o o EeEy fnfin+he) - fn+hy+ hy + ho)

||f||ffk(N) = lim lim E. E';gN H C¥f(n+2h).

H—o00 N—oo  h€[HI¥
gef{o,1}k

REMARK: If the limits in N don’t exist then we pass to a subsequence (Ny)
along which the limits exist.

[HK09] B. Host and B. Kra. Uniformity seminorms on £°°(N) and applications. J. Anal.
Math. 108 (2009).
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Structure Theorem I
Definitions

One can show that

Ifluy =0 = ERE[Epcufin+h| = ofa),
f locally aperiodic < 22% IE':éN )Eth f(n+ h)e(ha)‘ = o(1).
Ifloey =0 & Epysup (Eh fln+ h)e(ha)’ = o(1).
[3S

Hierarchy:
oo = |Iflliseg=0 = |fllizey=0 = flocally aperiodic = ||f|lum =0

Relation to Gowers UX[N]-norms: ||f||yxm =0 = [|flluspn —

Structure Theorem Il

Any f € (°°(N) can be split into f = fuji + funi, where
o fniis “locally k-step nil”,

e and ”funiHUk“(N) =0.
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Generalized von Neumann Theorems

Classical cases

Generalized von Neumann Theorem (Gowers norms)
If limy_s oo ||f||Uk[N] = 0 then

N[m Em<nEngn f(n)f(n+m) - - - f(n + km) = 0.

Generalized von Neumann Theorem (local norms)
I [llus = 0 then

Jim i Eé v B f(n)f(n+m)- - f(n+km) = 0.

Question: What about a generalized von Neumann theorem for
f(n + m)f(nm)?
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Sums, Products, and Uniformity

controlling {x +y, xy} via uniformity seminorms

Hierarchy:
= |Ifllis;y=0 = |Ifllezey=0 = flocally aperiodic = ||f||uyq) =0

Proposition 1
If f is locally aperiodic then

lim lim E'8

log —
Jim - lim Ep oy, ]En<N f(n + m)f(nm) = o.

Proposition 2

If f is locally U?-uniform (i.e., ||f||u=qy) = O) then

MILmOO NIiﬂmOO IE'n‘:ggM ]E':éN f(n)f(n + m)f(nm) = o.

Proposition 3
If f is locally U3-uniform (i.e., ||f||lus(y) = ©) then

Jim lim Epg ERE f(f(m)f(n + m)finm) = o.
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van der Corput’s Inequality

<Eh€ [H]

2
Eq2y flng(n +h)D < 2B,y

EE f(n)f(n+h)

1
+ = + ONSy oo (1).
5 on—ool1)

Orthogonality Criterion

(Daboussi-Delange-Katai-Bourgain-Sarnak-Ziegler)

Let P C PP be a finite set of primes and g: N — S' completely multiplicative. Then

=il

+<; :_)) + ons o (1)

2

E\ flng(n)| < Eg8cp|ERE, flan)f(pn)

New Orthogonality Criterion
Let P C P be a finite set of primes. Then
2
I |
(Ec2, ) <Efe

E%, f(n)g(pn) ErE\ flan)f(pn)

+<Z %) g ON—s o0 (1)

peP
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Proof

If 5(A) > o then A contains {x +y, xy +1}.

DefinePyw ={p € P: p=1 mod W}.

Theorem 3
Suppose A C N. For all ¢ > o there exist W, k € N such that

Elog . Elog

o b By, Bagta(n+py - - palnp, - - pi+1) > 5(A)° — .

The main idea is that:

log log log
Ejer,  Enery Enentaln + i piialnps - - - i +1)
~ log log log
~e Byer,,  Bpiery, Enetaln +0)1a(npy - - p+1)
_ mrlog log log
=E, e, Epepy, Encnla—a(n)ia—i(np: - - - py).
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