

École Polytechnique Fédérale de Lausanne

"Uniformity norms and Hindman's conjecture"

By Florian K. Richter

Additive Combinatorics Conference ICMS, Bayes Centre, Edinburgh

23 JULY 2024

Formulation

Formulation

Let $\mathbb{N} = \{1, 2, 3, ...\}$. In [Hin79] Hindman posed the following conjecture.

Hindman's Conjecture

For any finite coloring of \mathbb{N} there exists a monochromatic set of the form $\{x, y, x + y, xy\}$ for some $x, y \in \mathbb{N}$.

[Hin79] Neil Hindman, *Partitions and sums and products of integers*, Transactions of the American Mathematical Society **247** (1979), 227–245.

Formulation

Let $\mathbb N$ = {1, 2, 3, . . .}. In [Hin79] Hindman posed the following conjecture.

Hindman's Conjecture

For any finite coloring of \mathbb{N} there exists a monochromatic set of the form $\{x, y, x + y, xy\}$ for some $x, y \in \mathbb{N}$.

Hindman's conjecture postdates a stronger conjecture by Erdős [Erd77], which was disproved by Hindman. However, the following is still standing.

[Erd77] Paul Erdős. Problems and results on combinatorial number theory III, Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), Lecture Notes in Math., Vol. 626, Springer, Berlin, 1977.

[Hin79] Neil Hindman, *Partitions and sums and products of integers*, Transactions of the American Mathematical Society **247** (1979), 227–245.

Formulation

Let $\mathbb N$ = {1, 2, 3, . . .}. In [Hin79] Hindman posed the following conjecture.

Hindman's Conjecture

For any finite coloring of \mathbb{N} there exists a monochromatic set of the form $\{x, y, x + y, xy\}$ for some $x, y \in \mathbb{N}$.

Hindman's conjecture postdates a stronger conjecture by Erdős [Erd77], which was disproved by Hindman. However, the following is still standing.

Conjecture (Graham-Rothschild-Spencer)

For any $N \in \mathbb{N}$ and any finite coloring of \mathbb{N} there exist $x_1 < \ldots < x_N \in \mathbb{N}$ such that all finite sums and products formed from the x_i are monochromatic.

- [Erd77] Paul Erdős. Problems and results on combinatorial number theory III, Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), Lecture Notes in Math., Vol. 626, Springer, Berlin, 1977.
- [Hin79] Neil Hindman, Partitions and sums and products of integers, Transactions of the American Mathematical Society 247 (1979), 227–245.

Progress in \mathbb{N}

Question: What is known about Hindman's Conjecure?

Progress in \mathbb{N}

Question: What is known about Hindman's Conjecure?

Theorem (Moreira, 2017)

For any finite coloring of \mathbb{N} there exists a monochromatic set of the form $\{x, x + y, xy\}$.

[Mor17] Joel Moreira, Monochromatic sums and products in ℕ, Annals of Mathematics **185** (2017), 1069-1090.

Progress in \mathbb{N}

Question: What is known about Hindman's Conjecure?

Theorem (Moreira, 2017)

For any finite coloring of \mathbb{N} there exists a monochromatic set of the form $\{x, x + y, xy\}$.

Theorem (Bowen, 2022)

Any 2-coloring of \mathbb{N} contains many monochromatic sets of the form $\{x, y, x + y, xy\}$.

- [Mor17] Joel Moreira, Monochromatic sums and products in \mathbb{N} , Annals of Mathematics **185** (2017), 1069-1090.

Progress in \mathbb{N}

Question: What is known about Hindman's Conjecure?

Theorem (Moreira, 2017)

For any finite coloring of \mathbb{N} there exists a monochromatic set of the form $\{x, x + y, xy\}$.

Theorem (Bowen, 2022)

Any 2-coloring of \mathbb{N} contains many monochromatic sets of the form $\{x, y, x + y, xy\}$.

Difficulty: The affine semigroup $(\mathbb{N}, +, \cdot)$ is not amenable, obstructing analytical approaches (e.g. from Fourier analysis or ergodic theory).

- [Mor17] Joel Moreira, Monochromatic sums and products in \mathbb{N} , Annals of Mathematics **185** (2017), 1069-1090.

Progress in \mathbb{Q} and \mathbb{F}_p

Progress in \mathbb{Q} and \mathbb{F}_p

Question: What about analogues of Hindman's Conjecture in fields such as $(\mathbb{Q}, +, \cdot)$ or $(\mathbb{F}_p, +, \cdot)$?

Progress in \mathbb{Q} and \mathbb{F}_p

Question: What about analogues of Hindman's Conjecture in fields such as $(\mathbb{Q}, +, \cdot)$ or $(\mathbb{F}_p, +, \cdot)$?

Theorem (Green-Sanders, 2016)

For any $r \in \mathbb{N}$ there is a cofinite set of primes p such that for any r-coloring of \mathbb{F}_p there exists a monochromatic set of the form $\{x, y, x + y, xy\}$.

[GS16] Ben Green and Tom Sanders, *Monochromatic sums and products*, Discrete Analysis **613** (2016).

Progress in \mathbb{Q} and \mathbb{F}_p

Question: What about analogues of Hindman's Conjecture in fields such as $(\mathbb{Q}, +, \cdot)$ or $(\mathbb{F}_p, +, \cdot)$?

Theorem (Green-Sanders, 2016)

For any $r \in \mathbb{N}$ there is a cofinite set of primes p such that for any r-coloring of \mathbb{F}_p there exists a monochromatic set of the form $\{x, y, x + y, xy\}$.

Theorem (Bowen-Sabok, 2022)

Any finite coloring of \mathbb{Q} admits a monochromatic pattern $\{x, y, x + y, xy\}$.

- [BS22] Matt Bowen and Marcin Sabok, Monochromatic products and sums in the rationals, arXiv:2210.12290v1.
- [GS16] Ben Green and Tom Sanders, *Monochromatic sums and products*, Discrete Analysis **613** (2016).

Progress in \mathbb{Q} and \mathbb{F}_p

Question: What about analogues of Hindman's Conjecture in fields such as $(\mathbb{Q}, +, \cdot)$ or $(\mathbb{F}_p, +, \cdot)$?

Theorem (Green-Sanders, 2016)

For any $r \in \mathbb{N}$ there is a cofinite set of primes p such that for any r-coloring of \mathbb{F}_p there exists a monochromatic set of the form $\{x, y, x + y, xy\}$.

Theorem (Bowen-Sabok, 2022)

Any finite coloring of \mathbb{Q} admits a monochromatic pattern $\{x, y, x + y, xy\}$.

Theorem (Alweiss, 2023)

For any $N \in \mathbb{N}$ and any finite coloring of \mathbb{Q} there exist $x_1 < \ldots < x_N \in \mathbb{Q}$ such that all finite sums and products of the x_i are monochromatic.

- [A1w23] Ryan Alweiss, Monochromatic Sums and Products over \mathbb{Q} , arXiv:2307.08901 (2023).
- [BS22] Matt Bowen and Marcin Sabok, Monochromatic products and sums in the rationals, arXiv:2210.12290v1.
- [GS16] Ben Green and Tom Sanders, *Monochromatic sums and products*, Discrete Analysis **613** (2016).

Density version in fields

Density version in fields

Question: What about "density versions" of Hindman's Conjecture?

Density version in fields

Question: What about "density versions" of Hindman's Conjecture?

Theorem (Shkredov, 2010)

For any $\delta > 0$ there is a cofinite set of primes p such that any set $A \subset \mathbb{F}_p$ of relative density $\geq \delta$ contains $\{x, x + y, xy\}$.

[Shk10] I. D. Shkredov. On monochromatic solutions of some nonlinear equations in $\mathbb{Z}/p\mathbb{Z}$, Mat. Zametki, 88(4):625–634, 2010.

Density version in fields

Question: What about "density versions" of Hindman's Conjecture?

Theorem (Shkredov, 2010)

For any $\delta > 0$ there is a cofinite set of primes p such that any set $A \subset \mathbb{F}_p$ of relative density $\geq \delta$ contains $\{x, x + y, xy\}$.

Theorem (Bergelson-Moreira, 2015)

Let $(K, +, \cdot)$ be any infinite countable field. Any set $A \subset K$ of positive density (with respect to a double-Følner sequence) contains $\{x + y, xy\}$.

- [BM15] V. Bergelson and J. Moreira. Ergodic theorem involving additive and multiplicative groups of a field and $\{x + y, xy\}$ patterns, ETDS, 37(3), 2015.
- $\label{eq:shk10} [Shk10] I. D. Shkredov. On monochromatic solutions of some nonlinear equations in \mathbb{Z}/p\mathbb{Z}, Mat. Zametki, 88(4):625-634, 2010.$

Density version in $\ensuremath{\mathbb{N}}$

Density version in $\ensuremath{\mathbb{N}}$

Question: What about a "density version" of Hindman's Conjecture in \mathbb{N} ?

Density version in $\ensuremath{\mathbb{N}}$

Question: What about a "density version" of Hindman's Conjecture in \mathbb{N} ? Goal for today: Show that patterns such as $\{x + y, xy\}$, $\{x, x + y, xy\}$, and $\{x, y, x+y, xy\}$ are controlled by the local uniformity norms.

Density version in $\ensuremath{\mathbb{N}}$

Question: What about a "density version" of Hindman's Conjecture in \mathbb{N} ? **Goal for today:** Show that patterns such as $\{x + y, xy\}$, $\{x, x + y, xy\}$, and $\{x, y, x+y, xy\}$ are controlled by the local uniformity norms.

This will allow as to address the following two problems:

Density version in $\ensuremath{\mathbb{N}}$

Question: What about a "density version" of Hindman's Conjecture in \mathbb{N} ? **Goal for today:** Show that patterns such as $\{x + y, xy\}$, $\{x, x + y, xy\}$, and $\{x, y, x+y, xy\}$ are controlled by the local uniformity norms.

This will allow as to address the following two problems:

Moreira's Conjecture

Any set with positive natural density contains $\{x + y, xy + 1\}$.

Density version in $\ensuremath{\mathbb{N}}$

Question: What about a "density version" of Hindman's Conjecture in \mathbb{N} ? **Goal for today:** Show that patterns such as $\{x + y, xy\}$, $\{x, x + y, xy\}$, and $\{x, y, x+y, xy\}$ are controlled by the local uniformity norms.

This will allow as to address the following two problems:

Moreira's Conjecture

Any set with positive natural density contains $\{x + y, xy + 1\}$.

Theorem

There exists a (multiplicatively invariant) density on \mathbb{N} such that any set with positive measure under this density contains $\{x + y, xy\}$.

Definition

Densities on \mathbb{N}

Definition

A density on $\mathbb N$ is a function $D\colon 2^\mathbb N\to [0,1]$ such that

- Unit Range: $D(\emptyset) = 0$ and $D(\mathbb{N}) = 1$
- Monotonicity: if $A \subset B$ then $D(A) \leq D(B)$
- Subadditivity: for all $A, B \subset \mathbb{N}$ one has $D(A \cup B) \leq D(A) + D(B)$

Densities on $\mathbb N$

Definition

A density on $\mathbb N$ is a function $D\colon 2^\mathbb N\to [0,1]$ such that

- Unit Range: $D(\emptyset) = 0$ and $D(\mathbb{N}) = 1$
- Monotonicity: if $A \subset B$ then $D(A) \leq D(B)$
- ◆ Subadditivity: for all $A, B \subset \mathbb{N}$ one has $D(A \cup B) \leq D(A) + D(B)$

We say that D is **additively invariant** if D(A - m) = D(A), where

$$A-m = \{n \in \mathbb{N} : n+m \in A\}.$$

Densities on \mathbb{N}

Definition

A density on $\mathbb N$ is a function $D\colon 2^\mathbb N\to [0,1]$ such that

- ◆ Unit Range: D(∅) = 0 and D(ℕ) = 1
- Monotonicity: if $A \subset B$ then $D(A) \leq D(B)$
- Subadditivity: for all $A, B \subset \mathbb{N}$ one has $D(A \cup B) \leq D(A) + D(B)$

We say that D is **additively invariant** if D(A - m) = D(A), where

$$A-m = \{n \in \mathbb{N} : n + m \in A\}.$$

We say that D is **multiplicatively invariant** if D(A/m) = D(A), where

$$\mathsf{A}/m = \{n \in \mathbb{N} : nm \in \mathsf{A}\}.$$

Examples I

Examples I

The **Cesàro average** and the **logarithmic average** of $f: \mathbb{N} \to \mathbb{C}$ over a finite set $A \subset \mathbb{N}$ are defined respectively as

$$\mathbb{E}_{n\in A} f(n) = \frac{1}{|A|} \sum_{n\in A} f(n) \quad \text{and} \quad \mathbb{E}_{n\in A}^{\log} f(n) = \frac{\sum_{n\in A} \frac{f(n)}{n}}{\sum_{n\in A} \frac{1}{n}}.$$

(1)

Densities on $\mathbb N$

Examples I

The **Cesàro average** and the **logarithmic average** of $f: \mathbb{N} \to \mathbb{C}$ over a finite set $A \subset \mathbb{N}$ are defined respectively as

$$\mathbb{E}_{n\in A} f(n) = \frac{1}{|A|} \sum_{n\in A} f(n) \quad \text{and} \quad \mathbb{E}_{n\in A}^{\log} f(n) = \frac{\sum_{n\in A} \frac{f(n)}{n}}{\sum_{n\in A} \frac{1}{n}}.$$

c1 \

• The **upper density** of a set $A \subset \mathbb{N}$ is defined as

$$\overline{d}(A) = \limsup_{N \to \infty} \frac{1}{N} |A \cap \{1, \dots, N\}| = \limsup_{N \to \infty} \mathbb{E}_{n \leq N} \mathbf{1}_{A}(n).$$

It is additively invariant.

Densities on $\mathbb N$

Examples I

The **Cesàro average** and the **logarithmic average** of $f: \mathbb{N} \to \mathbb{C}$ over a finite set $A \subset \mathbb{N}$ are defined respectively as

$$\mathbb{E}_{n\in A} f(n) = \frac{1}{|A|} \sum_{n\in A} f(n) \quad \text{and} \quad \mathbb{E}_{n\in A}^{\log} f(n) = \frac{\sum_{n\in A} \frac{f(n)}{n}}{\sum_{n\in A} \frac{1}{n}}.$$

(1)

• The **upper density** of a set $A \subset \mathbb{N}$ is defined as

$$\overline{d}(A) = \limsup_{N \to \infty} \frac{1}{N} |A \cap \{1, \dots, N\}| = \limsup_{N \to \infty} \mathbb{E}_{n \leq N} \mathbf{1}_{A}(n).$$

It is additively invariant.

• The upper logarithmic density of a set $A \subset \mathbb{N}$ is defined as

$$\overline{\delta}(A) = \limsup_{N \to \infty} \frac{\sum_{n \in A} \frac{1}{n}}{\sum_{n \in N} \frac{1}{n}} = \limsup_{N \to \infty} \mathbb{E}_{n \in N}^{\log} \mathbf{1}_{A}(n).$$

It is also additively invariant.

Examples II

Examples II

A multiplicative Følner sequence on $\mathbb N$ is a sequence of finite sets Ψ = $(\Psi_M)_{M\in\mathbb N}$ such that

$$\frac{|\Psi_{\mathsf{M}} \cap \Psi_{\mathsf{M}}/m|}{|\Psi_{\mathsf{M}}|} \xrightarrow{\mathsf{M} \to \infty} \mathsf{1}, \qquad \forall m \in \mathbb{N}.$$

Examples II

A multiplicative Følner sequence on \mathbb{N} is a sequence of finite sets $\Psi = (\Psi_M)_{M \in \mathbb{N}}$ such that

$$\frac{|\Psi_{\mathsf{M}} \cap \Psi_{\mathsf{M}}/m|}{|\Psi_{\mathsf{M}}|} \xrightarrow{\mathsf{M} \to \infty} \mathbf{1}, \qquad \forall m \in \mathbb{N}.$$

• The **upper density with respect to** Ψ of a set $A \subset \mathbb{N}$ is defined as

$$\overline{d}_{\Psi}(A) = \limsup_{M \to \infty} \frac{|A \cap \Psi_M|}{|\Psi_M|} = \limsup_{M \to \infty} \mathbb{E}_{m \in \Psi_M} \mathbf{1}_A(m).$$

It is multiplicatively invariant.

Examples II

A multiplicative Følner sequence on \mathbb{N} is a sequence of finite sets $\Psi = (\Psi_M)_{M \in \mathbb{N}}$ such that

$$\frac{|\Psi_{\mathsf{M}} \cap \Psi_{\mathsf{M}}/m|}{|\Psi_{\mathsf{M}}|} \xrightarrow{\mathsf{M} \to \infty} \mathbf{1}, \qquad \forall m \in \mathbb{N}.$$

• The **upper density with respect to** Ψ of a set $A \subset \mathbb{N}$ is defined as

$$\overline{d}_{\Psi}(A) = \limsup_{M \to \infty} \frac{|A \cap \Psi_M|}{|\Psi_M|} = \limsup_{M \to \infty} \mathbb{E}_{m \in \Psi_M} \mathbf{1}_A(m).$$

It is multiplicatively invariant.

REMARK: $(\mathbb{N}, +, \cdot)$ is not amenable and there exists no Følner sequence on \mathbb{N} that is both additively and multiplicatively invariant.
for patterns of the form $\{x + y, xy + 1\}$

for patterns of the form $\{x + y, xy + 1\}$

Moreira's Conjecture

Any set with positive natural density contains $\{x + y, xy + 1\}$.

for patterns of the form $\{x + y, xy + 1\}$

Moreira's Conjecture

Any set with positive natural density contains $\{x + y, xy + 1\}$.

upper density: $\overline{d}(A) = \limsup_{N \to \infty} \frac{|A \cap \{1, \dots, N\}|}{N}$ upper logarithmic density: $\overline{\delta}(A) = \limsup_{N \to \infty} \frac{\sum_{n \in A} \frac{1}{n}}{\sum_{n \leq N} \frac{1}{n}}$.

Example: The set $A = \bigcup_{n \ge 4} [2^{2^n}, 2^{2^{n+1}}]$ satisfies $\overline{d}(A) > 0$, but does not contain patterns of the from $\{x + y, xy + 1\}$.

for patterns of the form $\{x + y, xy + 1\}$

Moreira's Conjecture

Any set with positive natural density contains $\{x + y, xy + 1\}$.

upper density: $\overline{d}(A) = \limsup_{N \to \infty} \frac{|A \cap \{1, \dots, N\}|}{N}$ upper logarithmic density: $\overline{\delta}(A) = \limsup_{N \to \infty} \frac{N}{\sum_{n \in A} \frac{1}{n}}{\sum_{n \leq N} \frac{1}{n}}$.

Example: The set $A = \bigcup_{n \ge 4} [2^{2^n}, 2^{2^{n+1}})$ satisfies $\overline{d}(A) > 0$, but does not contain patterns of the from $\{x + y, xy + 1\}$. **Besicovitch's Example:** There is a set $A \subset \mathbb{N}$ with $\overline{d}(A) > 0$ containing no

patterns of the from $\{x, xy\}$.

for patterns of the form $\{x + y, xy + 1\}$

Moreira's Conjecture

Any set with positive natural density contains $\{x + y, xy + 1\}$.

upper density: $\overline{d}(A) = \limsup_{N \to \infty} \frac{|A \cap \{1, \dots, N\}|}{N}$ upper logarithmic density: $\overline{\delta}(A) = \limsup_{N \to \infty} \frac{\sum_{n \in A} \frac{1}{n}}{\sum_{n \leq N} \frac{1}{n}}$.

Example: The set $A = \bigcup_{n \ge 4} [2^{2^n}, 2^{2^{n+1}})$ satisfies $\overline{d}(A) > 0$, but does not contain patterns of the from $\{x + y, xy + 1\}$. **Besicovitch's Example:** There is a set $A \subset \mathbb{N}$ with $\overline{d}(A) > 0$ containing no patterns of the from $\{x, xy\}$.

Theorem (Davenport-Erdős, 1936)

If $\overline{\delta}(A) > 0$ then A contains $\{x, xy\}$.

for patterns of the form $\{x + y, xy + 1\}$

Moreira's Conjecture

Any set with positive natural density contains $\{x + y, xy + 1\}$.

upper density: $\overline{d}(A) = \limsup_{N \to \infty} \frac{|A \cap \{1, \dots, N\}|}{N}$ upper logarithmic density: $\overline{\delta}(A) = \limsup_{N \to \infty} \frac{\sum_{n \in A} \frac{1}{n}}{\sum_{n \leq N} \frac{1}{n}}$.

Example: The set $A = \bigcup_{n \ge 4} [2^{2^n}, 2^{2^{n+1}})$ satisfies $\overline{d}(A) > 0$, but does not contain patterns of the from $\{x + y, xy + 1\}$. **Besicovitch's Example:** There is a set $A \subset \mathbb{N}$ with $\overline{d}(A) > 0$ containing no patterns of the from $\{x, xy\}$.

Theorem (Davenport-Erdős, 1936)

If $\overline{\delta}(A) > 0$ then A contains $\{x, xy\}$.

Theorem 1 (R. 2024+)

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

for patterns of the form $\{x + y, xy\}$

for patterns of the form $\{x + y, xy\}$

Define

$$\delta^{\times}(A) = \limsup_{M \to \infty} \mathbb{E}_{m \in \Psi_M} \left(\underbrace{\lim_{k \to \infty} \mathbb{E}_{n \leq N_k}^{\log} \mathbf{1}_A(mn)}_{\text{logarithmic density of } A/m} \right),$$

where $N_1 < N_2 < \ldots \in \mathbb{N}$ is any sequence such that all limits above exist.

for patterns of the form $\{x + y, xy\}$

Observation $\delta^{\times}(A) > 0 \iff$ The logarithmic density of A/m is bigger than ε for
a set of m that has positive multiplicative density.

for patterns of the form $\{x + y, xy\}$

where $N_1 < N_2 < \ldots \in \mathbb{N}$ is any sequence such that all limits above exist.

Observation $\delta^{\times}(A) > 0 \iff$ The logarithmic density of A/m is bigger than ε for
a set of m that has positive multiplicative density.

Properties:

δ[×] is multiplicatively invariant, i.e., δ[×](A/m) = δ[×](A)

for patterns of the form $\{x + y, xy\}$

where $N_1 < N_2 < \ldots \in \mathbb{N}$ is any sequence such that all limits above exist.

Observation $\delta^{\times}(A) > 0 \iff$ The logarithmic density of A/m is bigger than ε for
a set of m that has positive multiplicative density.

Properties:

- δ^{\times} is multiplicatively invariant, i.e., $\delta^{\times}(A/m) = \delta^{\times}(A)$
- δ[×] is absolutely continuous with respect to the upper logarithmic density, i.e., δ(A) = 0 ⇒ δ[×](A) = 0.

for patterns of the form $\{x + y, xy\}$

Define

$$\delta^{\times}(A) = \limsup_{M \to \infty} \mathbb{E}_{m \in \Psi_{M}} \left(\underbrace{\lim_{k \to \infty} \mathbb{E}_{n \leq N_{k}}^{\log} \mathbf{1}_{A}(mn)}_{\text{logarithmic density of } A/m} \right),$$

where $N_1 < N_2 < \ldots \in \mathbb{N}$ is any sequence such that all limits above exist.

Observation $\delta^{\times}(A) > 0 \iff$ The logarithmic density of A/m is bigger than ε for
a set of m that has positive multiplicative density.

Properties:

- δ^{\times} is multiplicatively invariant, i.e., $\delta^{\times}(A/m) = \delta^{\times}(A)$
- δ[×] is absolutely continuous with respect to the upper logarithmic density, i.e., δ(A) = 0 ⇒ δ[×](A) = 0.

Theorem 2 (R. 2024+)

If $\delta^{\times}(A) > 0$ then A contains $\{x + y, xy\}$.

Outline of proof

Outline of proof

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Theorem 2

If $\delta^{\times}(A) > 0$ then A contains $\{x + y, xy\}$.

Outline of proof

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Theorem 2

If $\delta^{\times}(A) > 0$ then A contains $\{x + y, xy\}$.

Proof Outline:

Outline of proof

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Theorem 2

If $\delta^{\times}(A) > 0$ then A contains $\{x + y, xy\}$.

Proof Outline: We want to show that

$$\mathbb{E}^{\log}_{x \leq N} \mathbf{1}_A(x+y) \mathbf{1}_A(xy+1) > 0, \qquad \text{for many } y.$$

Outline of proof

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Theorem 2

If $\delta^{\times}(A) > 0$ then A contains $\{x + y, xy\}$.

Proof Outline: We want to show that

$$\mathbb{E}^{\log}_{x\leqslant N} \mathbf{1}_A(x+y) \mathbf{1}_A(xy+1) > 0, \qquad \text{for many } y.$$

Split A into structured and random components,

$$1_A(n) = f_{str.}(n) + f_{rand.}(n)$$

Outline of proof

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Theorem 2

If $\delta^{\times}(A) > o$ then A contains $\{x + y, xy\}$.

Proof Outline: We want to show that

$$\mathbb{E}^{\log}_{x \leqslant N} \, \mathbf{1}_A(x+y) \, \mathbf{1}_A(xy+1) > 0, \qquad \text{for many } y.$$

Split A into structured and random components,

Outline of proof

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Theorem 2

If $\delta^{\times}(A) > 0$ then A contains $\{x + y, xy\}$.

Proof Outline: We want to show that

$$\mathbb{E}^{\log}_{x \leq N} \mathbf{1}_{A}(x+y) \mathbf{1}_{A}(xy+1) > 0, \qquad \text{for many } y.$$

Split A into structured and random components,

$$1_A(n) = f_{str.}(n) + f_{rand.}(n)$$

 \uparrow controlled by local
Host-Kra seminorms

Step 1:
$$\mathbb{E}_{x \leq N}^{\log} f_{rand.}(x+y) f_{rand.}(xy+1) = 0$$
, for many y,Step 2: $\mathbb{E}_{x \leq N}^{\log} f_{str.}(x+y) f_{str.}(xy+1) > 0$, for many y.

Definitions

Definitions

Definition			
Let $f \in \ell^{\infty}(\mathbb{N})$.			

Definitions

Definition

Let $f \in \ell^{\infty}(\mathbb{N})$.

We say *f* is locally almost periodic if for all ε > 0 there is *q* ∈ N such that

$$\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}|f(n+q)-f(n)|\leqslant \varepsilon.$$

Definitions

Definition

Let $f \in \ell^{\infty}(\mathbb{N})$.

We say *f* is locally almost periodic if for all ε > 0 there is *q* ∈ N such that

$$\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}|f(n+q)-f(n)|\leqslant \varepsilon.$$

♦ We say *f* is locally aperiodic if for all $\alpha \in [0, 1)$ we have

$$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}\left|\mathbb{E}_{h\leqslant H}f(n+h)e(h\alpha)\right|=0.$$

Definitions

Definition

Let $f \in \ell^{\infty}(\mathbb{N})$.

We say *f* is locally almost periodic if for all ε > 0 there is *q* ∈ N such that

$$\lim_{N\to\infty}\mathbb{E}^{\log}_{n\leqslant N}|f(n+q)-f(n)|\leqslant \varepsilon.$$

• We say *f* is locally aperiodic if for all $\alpha \in [0, 1)$ we have

$$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}\left|\mathbb{E}_{h\leqslant H}f(n+h)e(h\alpha)\right|=0.$$

REMARK: If the limits in N don't exist then we pass to a subsequence (N_k) along which the limits exist.

Definitions

Definition

Let $f \in \ell^{\infty}(\mathbb{N})$.

We say *f* is locally almost periodic if for all ε > 0 there is *q* ∈ N such that

$$\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}|f(n+q)-f(n)|\leqslant \varepsilon.$$

• We say *f* is locally aperiodic if for all $\alpha \in [0, 1)$ we have

$$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}\left|\mathbb{E}_{h\leqslant H}f(n+h)e(h\alpha)\right|=0.$$

REMARK: If the limits in N don't exist then we pass to a subsequence (N_k) along which the limits exist.

EXAMPLE: In [MRT15] it is shown that the classical Liouville function $\lambda(n) = (-1)^{\Omega(n)}$ is locally aperiodic (with Cesàro averages).

[MRT15] K. Matomäki, M. Radziwiłł, and T. Tao. An averaged form of Chowla's conjecture. Algebra Number Theory, 9(9):2167–2196, 2015.

Structure Theorem I

locally almost periodic \oplus locally aperiodic

Structure Theorem I

locally almost periodic \oplus locally aperiodic

We say *f* is locally almost periodic if for all *ε* > 0 there is *q* ∈ N such that

$$\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}|f(n+q)-f(n)|\leqslant \varepsilon.$$

• We say *f* is locally aperiodic if

$$\lim_{H\to\infty} \lim_{N\to\infty} \sup_{\alpha\in\mathbb{R}} \mathbb{E}_{n\leqslant N}^{\log} \left| \mathbb{E}_{h\leqslant H} f(n+h) e(h\alpha) \right| = 0.$$

Structure Theorem I

Structure Theorem I

locally almost periodic \oplus locally aperiodic

We say *f* is locally almost periodic if for all ε > 0 there is *q* ∈ N such that

$$\lim_{N\to\infty}\mathbb{E}_{n\leqslant N}^{\log}|f(n+q)-f(n)|\leqslant \varepsilon.$$

• We say *f* is locally aperiodic if

$$\lim_{H\to\infty} \lim_{N\to\infty} \sup_{\alpha\in\mathbb{R}} \mathbb{E}_{n\leqslant N}^{\log} \left| \mathbb{E}_{h\leqslant H} f(n+h) e(h\alpha) \right| = 0.$$

Structure Theorem I

Any $f \in \ell^{\infty}(\mathbb{N})$ can be split into $f = f_{per} + f_{aper}$, where

- *f*_{per} is locally almost periodic,
- *f*_{aper} is locally aperiodic.

Definitions

Definitions

Definition

Let $f \in \ell^{\infty}(\mathbb{N})$. The **local uniformity seminorms** of f (with respect to logarithmic averages) are defined as

Definitions

Definition

Let $f \in \ell^{\infty}(\mathbb{N})$. The **local uniformity seminorms** of f (with respect to logarithmic averages) are defined as

$$\|f\|_{U^{1}(\mathbb{N})}^{2} = \lim_{H \to \infty} \lim_{N \to \infty} \mathbb{E}_{h \leq H} \mathbb{E}_{n \leq N}^{\log} f(n) \overline{f(n+h)},$$

Definitions

Definition

Let $f \in \ell^{\infty}(\mathbb{N})$. The **local uniformity seminorms** of f (with respect to logarithmic averages) are defined as

$$\|f\|_{U^{1}(\mathbb{N})}^{2} = \lim_{H \to \infty} \lim_{N \to \infty} \mathbb{E}_{h \leq H} \mathbb{E}_{n \leq N}^{\log} f(n) \overline{f(n+h)},$$

$$\|f\|_{U^2(\mathbb{N})}^4 = \lim_{H \to \infty} \lim_{N \to \infty} \mathbb{E}_{h_1, h_2 \leq H} \mathbb{E}_{n \leq N}^{\log} f(n) \overline{f(n+h_1)f(n+h_2)} f(n+h_1+h_2)$$

Definitions

Definition				
Let $f \in \ell^{\infty}$ logarithm	°(ℕ). ic ave	The local uniformity seminorms of <i>f</i> (with respect to erages) are defined as		
$\ f\ ^2_{U^1(\mathbb{N})}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h)},$		
$\ f\ _{U^2(\mathbb{N})}^4$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h_1,h_2\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h_1)f(n+h_2)}f(n+h_1+h_2)$		
$\ f\ ^8_{U^3(\mathbb{N})}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h_1,h_2,h_3\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h_1)}\cdots\overline{f(n+h_1+h_2+h_3)}$		
	÷			

Definitions

Definition					
Let $f \in \ell^{\infty}(\mathbb{N})$. The local uniformity seminorms of f (with respect to logarithmic averages) are defined as					
$\ f\ ^2_{U^1(\mathbb{N})}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h)},$			
$\ f\ ^4_{U^2(\mathbb{N})}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h_1,h_2\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h_1)f(n+h_2)}f(n+h_1+h_2)$			
$\ f\ _{U^{3}(\mathbb{N})}^{8}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h_1,h_2,h_3\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h_1)}\cdots\overline{f(n+h_1+h_2+h_3)}$			
	÷				
$\ f\ _{U^k(\mathbb{N})}^{2^k}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{\vec{h}\in[H]^k}\mathbb{E}_{n\leqslant N}^{\log}\prod_{\vec{\varepsilon}\in\{0,1\}^k}\mathcal{C}^{ \vec{\varepsilon} }f(n+\vec{\varepsilon}\cdot\vec{h}).$			

Definitions

Definition					
Let $f \in \ell^{\infty}(\mathbb{N})$. The local uniformity seminorms of f (with respect to logarithmic averages) are defined as					
$\ f\ ^2_{U^1(\mathbb{N})}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h)},$			
$\ f\ ^4_{U^2(\mathbb{N})}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h_1,h_2\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h_1)f(n+h_2)}f(n+h_1+h_2)$			
$\ f\ ^8_{U^3(\mathbb{N})}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{h_1,h_2,h_3\leqslant H}\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h_1)}\cdots\overline{f(n+h_1+h_2+h_3)}$			
	÷				
$\ f\ _{U^k(\mathbb{N})}^{2^k}$	=	$\lim_{H\to\infty}\lim_{N\to\infty}\mathbb{E}_{\vec{h}\in[H]^k}\mathbb{E}_{n\leqslant N}^{\log}\prod_{\vec{\varepsilon}\in\{0,1\}^k}\mathcal{C}^{ \vec{\varepsilon} }f(n+\vec{\varepsilon}\cdot\vec{h}).$			

REMARK: If the limits in N don't exist then we pass to a subsequence (N_k) along which the limits exist.

[HK09] B. Host and B. Kra. Uniformity seminorms on $\ell^{\infty}(\mathbb{N})$ and applications. J. Anal. Math. 108 (2009).

Structure Theorem II

Definitions

One can show that
Definitions

One can show that

$$\|f\|_{U^{1}(\mathbb{N})} = 0 \quad \iff \quad \mathbb{E}_{n \leq N}^{\log} \left|\mathbb{E}_{h \leq H} f(n+h)\right| = o(1),$$

Definitions

One can show that

$$\|f\|_{U^{1}(\mathbb{N})} = 0 \quad \iff \quad \mathbb{E}_{n \leq N}^{\log} \left| \mathbb{E}_{h \leq H} f(n+h) \right| = o(1),$$

f locally aperiodic
$$\iff \quad \sup_{\alpha \in \mathbb{R}} \mathbb{E}_{n \leq N}^{\log} \left| \mathbb{E}_{h \leq H} f(n+h) e(h\alpha) \right| = o(1).$$

Definitions

One can show that $\|f\|_{U^{1}(\mathbb{N})} = 0 \quad \iff \quad \mathbb{E}_{n \leq N}^{\log} \left|\mathbb{E}_{h \leq H} f(n+h)\right| = o(1),$ *f* locally aperiodic $\iff \quad \sup_{\alpha \in \mathbb{R}} \mathbb{E}_{n \leq N}^{\log} \left|\mathbb{E}_{h \leq H} f(n+h) e(h\alpha)\right| = o(1).$ $\|f\|_{U^{2}(\mathbb{N})} = 0 \quad \iff \quad \mathbb{E}_{n \leq N}^{\log} \sup_{\alpha \in \mathbb{R}} \left|\mathbb{E}_{h \leq H} f(n+h) e(h\alpha)\right| = o(1).$

Definitions

One can show that $\|f\|_{U^{1}(\mathbb{N})} = 0 \iff \mathbb{E}_{n \leq N}^{\log} \left| \mathbb{E}_{h \leq H} f(n+h) \right| = o(1),$ *f* locally aperiodic $\iff \sup_{\alpha \in \mathbb{R}} \mathbb{E}_{n \leq N}^{\log} \left| \mathbb{E}_{h \leq H} f(n+h) e(h\alpha) \right| = o(1).$ $\|f\|_{U^{2}(\mathbb{N})} = 0 \iff \mathbb{E}_{n \leq N}^{\log} \sup_{\alpha \in \mathbb{R}} \left| \mathbb{E}_{h \leq H} f(n+h) e(h\alpha) \right| = o(1).$ Hierarchy:

 $\ldots \ \Rightarrow \ \|f\|_{U^3(\mathbb{N})} = \mathsf{O} \ \Rightarrow \ \|f\|_{U^2(\mathbb{N})} = \mathsf{O} \ \Rightarrow \ f \text{ locally aperiodic } \ \Rightarrow \ \|f\|_{U'(\mathbb{N})} = \mathsf{O}$

Definitions

One can show that $\|f\|_{U^{1}(\mathbb{N})} = 0 \iff \mathbb{E}_{n \leq N}^{\log} \left| \mathbb{E}_{h \leq H} f(n+h) \right| = o(1),$ *f* locally aperiodic $\iff \sup_{\alpha \in \mathbb{R}} \mathbb{E}_{n \leq N}^{\log} \left| \mathbb{E}_{h \leq H} f(n+h) e(h\alpha) \right| = o(1).$ $\|f\|_{U^{2}(\mathbb{N})} = 0 \iff \mathbb{E}_{n \leq N}^{\log} \sup_{\alpha \in \mathbb{R}} \left| \mathbb{E}_{h \leq H} f(n+h) e(h\alpha) \right| = o(1).$

Hierarchy:

 $\dots \Rightarrow \|f\|_{U^{3}(\mathbb{N})} = 0 \Rightarrow \|f\|_{U^{2}(\mathbb{N})} = 0 \Rightarrow f \text{ locally aperiodic } \Rightarrow \|f\|_{U^{1}(\mathbb{N})} = 0$ **Relation to Gowers** $U^{k}[N]$ -norms: $\|f\|_{U^{k}(\mathbb{N})} = 0 \Rightarrow \|f\|_{U^{k}[N]} \xrightarrow[\text{in log density}]{N \to \infty} 0.$

Definitions

One can show that $\|f\|_{U^{1}(\mathbb{N})} = 0 \iff \mathbb{E}_{n \leq N}^{\log} \left|\mathbb{E}_{h \leq H} f(n+h)\right| = o(1),$ *f* locally aperiodic $\iff \sup_{\alpha \in \mathbb{R}} \mathbb{E}_{n \leq N}^{\log} \left|\mathbb{E}_{h \leq H} f(n+h)e(h\alpha)\right| = o(1).$ $\|f\|_{U^{2}(\mathbb{N})} = 0 \iff \mathbb{E}_{n \leq N}^{\log} \sup_{\alpha \in \mathbb{R}} \left|\mathbb{E}_{h \leq H} f(n+h)e(h\alpha)\right| = o(1).$

Hierarchy:

 $\dots \Rightarrow \|f\|_{U^{3}(\mathbb{N})} = 0 \Rightarrow \|f\|_{U^{2}(\mathbb{N})} = 0 \Rightarrow f \text{ locally aperiodic } \Rightarrow \|f\|_{U^{1}(\mathbb{N})} = 0$ Relation to Gowers $U^{k}[N]$ -norms: $\|f\|_{U^{k}(\mathbb{N})} = 0 \Rightarrow \|f\|_{U^{k}[N]} \xrightarrow[\text{in log density}]{N \to \infty} 0.$

Structure Theorem II

Any $f \in \ell^{\infty}(\mathbb{N})$ can be split into $f = f_{nil} + f_{uni}$, where

- f_{nil} is "locally k-step nil",
- and $||f_{uni}||_{U^{k+1}(\mathbb{N})} = 0.$

Classical cases

Classical cases

Generalized von Neumann Theorem (Gowers norms)

If $\lim_{N\to\infty} \|f\|_{U^k[N]} = 0$ then

 $\lim_{N\to\infty}\mathbb{E}_{m\leqslant N}\mathbb{E}_{n\leqslant N}f(n)f(n+m)\cdots f(n+km)=0.$

Classical cases

Generalized von Neumann Theorem (Gowers norms)

If $\lim_{N\to\infty} \|f\|_{U^k[N]} = 0$ then

$$\lim_{N\to\infty}\mathbb{E}_{m\leqslant N}\mathbb{E}_{n\leqslant N}f(n)f(n+m)\cdots f(n+km)=0.$$

Generalized von Neumann Theorem (local norms)

If $||f||_{U^k(\mathbb{N})} = 0$ then

$$\lim_{M\to\infty}\lim_{N\to\infty}\mathbb{E}_{m\leqslant M}^{\log}\mathbb{E}_{n\leqslant N}^{\log}f(n)f(n+m)\cdots f(n+km)=0.$$

Classical cases

Generalized von Neumann Theorem (Gowers norms)

If $\lim_{N\to\infty} \|f\|_{U^k[N]} = 0$ then

 $\lim_{N\to\infty}\mathbb{E}_{m\leqslant N}\mathbb{E}_{n\leqslant N}f(n)f(n+m)\cdots f(n+km)=0.$

Generalized von Neumann Theorem (local norms)

If $||f||_{U^k(\mathbb{N})} = 0$ then

$$\lim_{M\to\infty}\lim_{N\to\infty} \mathbb{E}_{m\leqslant M}^{\log} \mathbb{E}_{n\leqslant N}^{\log} f(n)f(n+m)\cdots f(n+km) = 0.$$

Question: What about a generalized von Neumann theorem for f(n + m)f(nm)?

controlling $\{x + y, xy\}$ via uniformity seminorms

controlling $\{x + y, xy\}$ via uniformity seminorms

Hierarchy:

$$\ldots \Rightarrow \|f\|_{U^3(\mathbb{N})} = \mathsf{O} \Rightarrow \|f\|_{U^2(\mathbb{N})} = \mathsf{O} \Rightarrow f \text{ locally aperiodic } \Rightarrow \|f\|_{U^1(\mathbb{N})} = \mathsf{O}$$

controlling $\{x + y, xy\}$ via uniformity seminorms

Hierarchy:

 $\ldots \ \Rightarrow \ \|f\|_{U^3(\mathbb{N})} = \mathsf{O} \ \Rightarrow \ \|f\|_{U^2(\mathbb{N})} = \mathsf{O} \ \Rightarrow \ f \text{ locally aperiodic } \ \Rightarrow \ \|f\|_{U^1(\mathbb{N})} = \mathsf{O}$

Proposition 1

If f is locally aperiodic then

$$\lim_{M\to\infty}\lim_{N\to\infty}\mathbb{E}_{m\leqslant M}^{\log}\mathbb{E}_{n\leqslant N}^{\log}f(n+m)f(nm)=0.$$

controlling $\{x + y, xy\}$ via uniformity seminorms

Hierarchy:

 $\ldots \Rightarrow \|f\|_{U^3(\mathbb{N})} = \mathsf{O} \Rightarrow \|f\|_{U^2(\mathbb{N})} = \mathsf{O} \Rightarrow f \text{ locally aperiodic } \Rightarrow \|f\|_{U^1(\mathbb{N})} = \mathsf{O}$

Proposition 1

If f is locally aperiodic then

$$\lim_{M\to\infty}\lim_{N\to\infty}\mathbb{E}^{\log}_{m\leqslant M}\mathbb{E}^{\log}_{n\leqslant N}f(n+m)f(nm)=0.$$

Proposition 2

If *f* is locally U^2 -uniform (i.e., $||f||_{U^2(\mathbb{N})} = 0$) then

 $\lim_{M\to\infty}\lim_{N\to\infty}\mathbb{E}^{\log}_{m\leqslant M}\mathbb{E}^{\log}_{n\leqslant N}f(n)f(n+m)f(nm)=0.$

controlling $\{x + y, xy\}$ via uniformity seminorms

Hierarchy:

 $\ldots \Rightarrow \|f\|_{U^3(\mathbb{N})} = \mathsf{O} \Rightarrow \|f\|_{U^2(\mathbb{N})} = \mathsf{O} \Rightarrow f \text{ locally aperiodic } \Rightarrow \|f\|_{U^1(\mathbb{N})} = \mathsf{O}$

Proposition 1

If f is locally aperiodic then

$$\lim_{M\to\infty}\lim_{N\to\infty}\mathbb{E}_{m\leqslant M}^{\log}\mathbb{E}_{n\leqslant N}^{\log}f(n+m)f(nm)=0.$$

Proposition 2

If *f* is locally U^2 -uniform (i.e., $||f||_{U^2(\mathbb{N})} = 0$) then

 $\lim_{M\to\infty}\lim_{N\to\infty}\mathbb{E}^{\log}_{m\leqslant M}\mathbb{E}^{\log}_{n\leqslant N}f(n)f(n+m)f(nm)=0.$

Proposition 3

If *f* is locally U^3 -uniform (i.e., $||f||_{U^3(\mathbb{N})} = 0$) then

 $\lim_{M\to\infty}\lim_{N\to\infty}\mathbb{E}^{\log}_{m\leqslant M}\mathbb{E}^{\log}_{n\leqslant N}f(n)f(m)f(n+m)f(nm)=0.$

Old and new

Old and new

van der Corput's Inequality

$$\left(\mathbb{E}_{h\in[H]}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(n+h)\right|\right)^2 \ \leqslant \ 2\,\mathbb{E}_{h\in[H]}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h)}\right| + \frac{1}{H} + o_{N\to\infty}(1).$$

Old and new

van der Corput's Inequality

$$\left(\mathbb{E}_{h\in[H]}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(n+h)\right|\right)^2 \ \leqslant \ 2\,\mathbb{E}_{h\in[H]}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h)}\right| + \frac{1}{H} + o_{N\to\infty}(1).$$

Orthogonality Criterion (Daboussi-Delange-Kátai-Bourgain-Sarnak-Ziegler)

Let $P \subset \mathbb{P}$ be a finite set of primes and $g \colon \mathbb{N} \to S^1$ completely multiplicative. Then

$$\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(n)\right|^2 \leqslant \left|\mathbb{E}_{p,q\in P}^{\log}\right| \mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)} \left| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + O_{N\to\infty}(1)\right|$$

Old and new

van der Corput's Inequality

$$\left(\mathbb{E}_{h\in[H]}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(n+h)\right|\right)^2 \leqslant 2\mathbb{E}_{h\in[H]}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)\overline{f(n+h)}\right| + \frac{1}{H} + o_{N\to\infty}(1).$$

Orthogonality Criterion (Daboussi-Delange-Kátai-Bourgain-Sarnak-Ziegler)

Let $P \subset \mathbb{P}$ be a finite set of primes and $g \colon \mathbb{N} \to S^1$ completely multiplicative. Then

$$\mathbb{E}_{n \leq N}^{\log} f(n)g(n) \Big|^2 \leq \mathbb{E}_{p,q \in P}^{\log} \Big| \mathbb{E}_{n \leq N}^{\log} f(qn) \overline{f(pn)} \Big| + \Big(\sum_{p \in P} \frac{1}{p}\Big)^{-1} + O_{N \to \infty}(1)$$

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + O_{N\to\infty}(1)$$

Proof

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

$$\left(\mathbb{E}_{p\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right| \right)^2$$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

$$\left(\mathbb{E}_{p\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right| \right)^{2} = \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f(n) g(pn) \right)^{2}$$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leq N}^{\log}f(n)g(pn)\right|\right)^{2} \leq \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leq N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

Proof. Define $u_p = \operatorname{sgn}\left(\mathbb{E}_{n \leq N}^{\log} f(n) g(pn)\right)$. Then

$$\left(\mathbb{E}_{p \in P}^{\log} \left| \mathbb{E}_{n \leq N}^{\log} f(n) g(pn) \right| \right)^{2} = \left(\mathbb{E}_{p \in P}^{\log} u_{p} \mathbb{E}_{n \leq N}^{\log} f(n) g(pn) \right)^{2}$$

$$\approx \left(\mathbb{E}_{p \in P}^{\log} u_{p} \mathbb{E}_{n \leq N}^{\log} f\left(\frac{n}{p}\right) g(n) p \mathbf{1}_{p|n} \right)^{2}$$

Property of log averages

Proof

Pro

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

$$\left(\mathbb{E}_{p\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right| \right)^{2} = \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right)^{2}$$

$$\approx \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right)g(n)p \mathbf{1}_{p|n}\right)^{2}$$
Property of log averages
$$\ll \mathbb{E}_{n\leqslant N}^{\log} \left| \mathbb{E}_{p\in P}^{\log} u_{p} f\left(\frac{n}{p}\right)p \mathbf{1}_{p|n} \right|^{2}$$
Rearrange and Cauchy-Schwarz

Proof

Rea

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

$$\left(\mathbb{E}_{p\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right| \right)^{2} = \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right)^{2}$$

$$\approx \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right)g(n)p \mathbf{1}_{p|n} \right)^{2}$$
Property of log averages
$$\leqslant \mathbb{E}_{n\leqslant N}^{\log} \left| \mathbb{E}_{p\in P}^{\log} u_{p} f\left(\frac{n}{p}\right)p \mathbf{1}_{p|n} \right|^{2}$$
earrange and Cauchy-Schwarz
Expand the square

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

$$\left(\mathbb{E}_{p\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right| \right)^{2} = \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f(n)g(pn) \right)^{2}$$

$$\approx \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right)g(n)p \mathbf{1}_{p|n} \right)^{2}$$

$$\approx \left(\mathbb{E}_{p\in P}^{\log} u_{p} \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right)p \mathbf{1}_{p|n} \right)^{2}$$

$$\approx \left(\mathbb{E}_{p\neq P}^{\log} u_{p} \mathbb{E}_{p\neq P}^{\log} u_{p} f\left(\frac{n}{p}\right)p \mathbf{1}_{p|n} \right)^{2}$$

$$\approx \mathbb{E}_{p,q\in P}^{\log} \left| \mathbb{E}_{p\leqslant N}^{\log} f\left(\frac{n}{p}\right) f\left(\frac{n}{q}\right)p \mathbf{1}_{lcm(p,q)|n} \right|$$

$$= \mathbb{E}_{p,q\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right) f\left(\frac{n}{q}\right)p \mathbf{1}_{lcm(p,q)|n} \right|$$

$$= \mathbb{E}_{p,q\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right) f\left(\frac{n}{q}\right)p \mathbf{1}_{lcm(p,q)|n} \right|$$

$$= \mathbb{E}_{p,q\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right) f\left(\frac{n}{q}\right)p \mathbf{1}_{lcm(p,q)|n} \right|$$

$$= \mathbb{E}_{p,q\in P}^{\log} \left| \mathbb{E}_{n\leqslant N}^{\log} f\left(\frac{n}{p}\right) f\left(\frac{n}{q}\right)p \mathbf{1}_{lcm(p,q)|n} \right|$$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(n)g(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{n\leqslant N}^{\log}f(qn)\overline{f(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o_{N\to\infty}(1)$$

$$\left(\mathbb{E}_{p \in P}^{\log} \left| \mathbb{E}_{n \leqslant N}^{\log} f(n) g(pn) \right| \right)^{2} = \left(\mathbb{E}_{p \in P}^{\log} u_{p} \mathbb{E}_{n \leqslant N}^{\log} f(n) g(pn) \right)^{2}$$

$$\approx \left(\mathbb{E}_{p \in P}^{\log} u_{p} \mathbb{E}_{n \leqslant N}^{\log} f\left(\frac{n}{p}\right) g(n) p \mathbf{1}_{p|n} \right)^{2}$$

$$\approx \left(\mathbb{E}_{p \in P}^{\log} u_{p} \mathbb{E}_{n \leqslant N}^{\log} f\left(\frac{n}{p}\right) p \mathbf{1}_{p|n} \right)^{2}$$

$$\approx \left(\mathbb{E}_{p \in P}^{\log} u_{p} \mathbb{E}_{n \leqslant N}^{\log} f\left(\frac{n}{p}\right) p \mathbf{1}_{p|n} \right)^{2}$$

$$\approx \mathbb{E}_{p,q \in P}^{\log} u_{p} \overline{u_{q}} \mathbb{E}_{n \leqslant N}^{\log} f\left(\frac{n}{p}\right) \overline{f\left(\frac{n}{q}\right)} p q \mathbf{1}_{lcm(p,q)|n}$$

$$\approx \mathbb{E}_{p,q \in P}^{\log} \left| \mathbb{E}_{n \leqslant N}^{\log} f\left(\frac{n}{p}\right) \overline{f\left(\frac{n}{q}\right)} p q \mathbf{1}_{lcm(p,q)|n} \right|$$

$$\approx \mathbb{E}_{p,q \in P}^{\log} \left| \mathbb{E}_{n \leqslant N}^{\log} f\left(\frac{n}{p}\right) \overline{f\left(\frac{n}{q}\right)} p q \mathbf{1}_{pq|n} \right| + \left(\sum_{p \in P} \frac{1}{p}\right)^{-1}.$$

Proof

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(n)g_{m}(pn)\right|\right)^{2} \leq \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(qn)\overline{f_{q,m}(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o(1)$$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(n)g_{m}(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(qn)\overline{f_{q,m}(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o(1)$$

Proposition 1

If f is locally aperiodic then

 $\mathbb{E}_{m \leq M}^{\log} \mathbb{E}_{n \leq N}^{\log} f(n+m) f(nm) = 0.$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(n)g_{m}(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(qn)\overline{f_{q,m}(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o(1)$$

Proposition 1

If f is locally aperiodic then

 $\mathbb{E}_{m \leq M}^{\log} \mathbb{E}_{n \leq N}^{\log} f(n+m) f(nm) = 0.$

Proof. By Turán-Kubilius inequality, we have

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(n)g_{m}(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(qn)\overline{f_{q,m}(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o(1)$$

Proposition 1

If f is locally aperiodic then

 $\mathbb{E}_{m\leqslant M}^{\log} \mathbb{E}_{n\leqslant N}^{\log} f(n+m)f(nm) = 0.$

Proof. By Turán-Kubilius inequality, we have

 $\mathbb{E}_{m \leqslant M}^{\log} \mathbb{E}_{n \leqslant N}^{\log} f(n+m) f(nm) \approx \mathbb{E}_{p \in P}^{\log} \mathbb{E}_{m \leqslant M}^{\log} \mathbb{E}_{n \leqslant N}^{\log} f(n+pm) f(npm).$

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(n)g_{m}(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(qn)\overline{f_{q,m}(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o(1)$$

Proposition 1

If f is locally aperiodic then

 $\mathbb{E}_{m\leqslant M}^{\log} \mathbb{E}_{n\leqslant N}^{\log} f(n+m)f(nm) = 0.$

Proof. By Turán-Kubilius inequality, we have

 $\mathbb{E}_{m \leqslant M}^{\log} \mathbb{E}_{n \leqslant N}^{\log} f(n+m) f(nm) \approx \mathbb{E}_{p \in P}^{\log} \mathbb{E}_{m \leqslant M}^{\log} \mathbb{E}_{n \leqslant N}^{\log} f(n+pm) f(npm).$

Applying the above with $f_{p,m}(n) = f(n + pm)$ and $g_m(n) = f(nm)$, we obtain

Proof

New Orthogonality Criterion

Let $P \subset \mathbb{P}$ be a finite set of primes. Then

$$\left(\mathbb{E}_{p\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(n)g_{m}(pn)\right|\right)^{2} \leqslant \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{m\leq M}^{\log}\mathbb{E}_{n\leq N}^{\log}f_{p,m}(qn)\overline{f_{q,m}(pn)}\right| + \left(\sum_{p\in P}\frac{1}{p}\right)^{-1} + o(1)$$

Proposition 1

If f is locally aperiodic then

 $\mathbb{E}_{m\leqslant M}^{\log} \mathbb{E}_{n\leqslant N}^{\log} f(n+m)f(nm) = 0.$

Proof. By Turán-Kubilius inequality, we have

 $\mathbb{E}_{m \leqslant M}^{\log} \mathbb{E}_{n \leqslant N}^{\log} f(n+m) f(nm) \approx \mathbb{E}_{p \in P}^{\log} \mathbb{E}_{m \leqslant M}^{\log} \mathbb{E}_{n \leqslant N}^{\log} f(n+pm) f(npm).$

Applying the above with $f_{p,m}(n) = f(n + pm)$ and $g_m(n) = f(nm)$, we obtain

$$\left|\mathbb{E}_{m\leqslant M}^{\log}\mathbb{E}_{n\leqslant N}^{\log}f(n+m)f(nm)\right|^{2}\lesssim \mathbb{E}_{p,q\in P}^{\log}\left|\mathbb{E}_{m\leqslant M}^{\log}\mathbb{E}_{n\leqslant N}^{\log}f(qn+pm)\overline{f(pn+qm)}\right|$$
Thank you

Proof

Proof

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Theorem 1

If $\overline{\delta}(A) > 0$ then A contains $\{x + y, xy + 1\}$.

Define $\mathbb{P}_W = \{p \in \mathbb{P} : p \equiv 1 \mod W\}.$

Theorem 1

```
If \overline{\delta}(A) > 0 then A contains \{x + y, xy + 1\}.
```

Define $\mathbb{P}_W = \{ p \in \mathbb{P} : p \equiv 1 \mod W \}.$

Theorem 3

Suppose $A \subset \mathbb{N}$. For all $\varepsilon > 0$ there exist $W, k \in \mathbb{N}$ such that

$$\mathbb{E}_{p_1 \in \mathbb{P}_W}^{\log} \cdots \mathbb{E}_{p_k \in \mathbb{P}_W}^{\log} \mathbb{E}_{n \in \mathbb{N}}^{\log} \mathbf{1}_A (n + p_1 \cdots p_k) \mathbf{1}_A (np_1 \cdots p_k + 1) \geqslant \delta(\mathsf{A})^2 - \varepsilon.$$

Theorem 1

```
If \overline{\delta}(A) > 0 then A contains \{x + y, xy + 1\}.
```

Define $\mathbb{P}_W = \{ p \in \mathbb{P} : p \equiv 1 \mod W \}.$

Theorem 3

Suppose $A \subset \mathbb{N}$. For all $\varepsilon > 0$ there exist $W, k \in \mathbb{N}$ such that

$$\mathbb{E}_{p_{1}\in\mathbb{P}_{W}}^{\log}\cdots\mathbb{E}_{p_{k}\in\mathbb{P}_{W}}^{\log}\mathbb{E}_{n\in\mathbb{N}}^{\log}\mathbf{1}_{A}(n+p_{1}\cdots p_{k})\mathbf{1}_{A}(np_{1}\cdots p_{k}+1)\geqslant\delta(A)^{2}-\varepsilon$$

The main idea is that:

$$\begin{split} \mathbb{E}_{p_{1}\in\mathbb{P}_{W}}^{\log}\cdots\mathbb{E}_{p_{k}\in\mathbb{P}_{W}}^{\log} & \mathbb{E}_{n\in\mathbb{N}}^{\log}\mathbf{1}_{A}(n+p_{1}\cdots p_{k})\mathbf{1}_{A}(np_{1}\cdots p_{k}+1) \\ & \approx_{\varepsilon} \mathbb{E}_{p_{1}\in\mathbb{P}_{W}}^{\log}\cdots\mathbb{E}_{p_{k}\in\mathbb{P}_{W}}^{\log} \mathbb{E}_{n\in\mathbb{N}}^{\log}\mathbf{1}_{A}(n+1)\mathbf{1}_{A}(np_{1}\cdots p_{k}+1) \\ & = \mathbb{E}_{p_{1}\in\mathbb{P}_{W}}^{\log}\cdots\mathbb{E}_{p_{k}\in\mathbb{P}_{W}}^{\log} \mathbb{E}_{n\in\mathbb{N}}^{\log}\mathbf{1}_{A-1}(n)\mathbf{1}_{A-1}(np_{1}\cdots p_{k}). \end{split}$$