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Hindman’s Conjecture
Formulation

Let N = {1, 2, 3, . . .}. In [Hin79] Hindman posed the following conjecture.

Hindman’s Conjecture
For any finite coloring of N there exists a monochromatic set of the form
{x, y, x + y, xy} for some x, y ∈ N.

Hindman’s conjecture postdates a stronger conjecture by Erdős [Erd77],
which was disproved by Hindman. However, the following is still standing.

Conjecture (Graham-Rothschild-Spencer)
For any N ∈ N and any finite coloring of N there exist x1 < . . . < xN ∈ N
such that all finite sums and products formed from the xi are
monochromatic.

[Erd77] Paul Erdős. Problems and results on combinatorial number theory III, Number
theory day (Proc. Conf., Rockefeller Univ., New York, 1976), Lecture Notes in
Math., Vol. 626, Springer, Berlin, 1977.

[Hin79] Neil Hindman, Partitions and sums and products of integers, Transactions of
the American Mathematical Society 247 (1979), 227–245.
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Hindman’s Conjecture
Progress in N

Question: What is known about Hindman’s Conjecure?

Theorem (Moreira, 2017)
For any finite coloring of N there exists a monochromatic set of the form
{x, x + y, xy}.

Theorem (Bowen, 2022)
Any 2-coloring of N contains many monochromatic sets of the form
{x, y, x + y, xy}.

Difficulty: The affine semigroup (N, +, ·) is not amenable, obstructing
analytical approaches (e.g. from Fourier analysis or ergodic theory).

[Bow22] Matt Bowen, Monochromatic sums and products in 2-colorings of N,
arXiv: 2205.12921 (2022).

[Mor17] Joel Moreira,Monochromatic sums and products in N, Annals of Math-
ematics 185 (2017), 1069-1090.
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Hindman’s Conjecture
Progress inQ and Fp

Question: What about analogues of Hindman’s Conjecture in fields such as
(Q, +, ·) or (Fp, +, ·)?

Theorem (Green-Sanders, 2016)
For any r ∈ N there is a cofinite set of primes p such that for any r-coloring
of Fp there exists a monochromatic set of the form {x, y, x + y, xy}.

Theorem (Bowen-Sabok, 2022)
Any finite coloring ofQ admits a monochromatic pattern {x, y, x + y, xy}.

Theorem (Alweiss, 2023)
For any N ∈ N and any finite coloring ofQ there exist x1 < . . . < xN ∈ Q
such that all finite sums and products of the xi are monochromatic.

[Alw23] Ryan Alweiss,Monochromatic Sums and Products overQ, arXiv:2307.08901 (2023).
[BS22] Matt Bowen andMarcin Sabok,Monochromatic products and sums in the rationals,

arXiv:2210.12290v1.
[GS16] Ben Green and Tom Sanders, Monochromatic sums and products, Discrete Analy-

sis 613 (2016).
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Hindman’s Conjecture
Density version in fields

Question: What about “density versions” of Hindman’s Conjecture?

Theorem (Shkredov, 2010)
For any δ > 0 there is a cofinite set of primes p such that any set A ⊂ Fp of
relative density⩾ δ contains {x, x + y, xy}.

Theorem (Bergelson-Moreira, 2015)
Let (K, +, ·) be any infinite countable field. Any set A ⊂ K of positive density
(with respect to a double-Følner sequence) contains {x + y, xy}.

[BM15] V. Bergelson and J. Moreira. Ergodic theorem involving additive andmultiplicative
groups of a field and {x + y, xy} patterns, ETDS, 37(3), 2015.

[Shk10] I. D. Shkredov. Onmonochromatic solutions of some nonlinear equations inZ/pZ,
Mat. Zametki, 88(4):625–634, 2010.



Hindman’s Conjecture
Density version in fields

Question: What about “density versions” of Hindman’s Conjecture?

Theorem (Shkredov, 2010)
For any δ > 0 there is a cofinite set of primes p such that any set A ⊂ Fp of
relative density⩾ δ contains {x, x + y, xy}.

Theorem (Bergelson-Moreira, 2015)
Let (K, +, ·) be any infinite countable field. Any set A ⊂ K of positive density
(with respect to a double-Følner sequence) contains {x + y, xy}.

[BM15] V. Bergelson and J. Moreira. Ergodic theorem involving additive andmultiplicative
groups of a field and {x + y, xy} patterns, ETDS, 37(3), 2015.

[Shk10] I. D. Shkredov. Onmonochromatic solutions of some nonlinear equations inZ/pZ,
Mat. Zametki, 88(4):625–634, 2010.



Hindman’s Conjecture
Density version in fields

Question: What about “density versions” of Hindman’s Conjecture?

Theorem (Shkredov, 2010)
For any δ > 0 there is a cofinite set of primes p such that any set A ⊂ Fp of
relative density⩾ δ contains {x, x + y, xy}.

Theorem (Bergelson-Moreira, 2015)
Let (K, +, ·) be any infinite countable field. Any set A ⊂ K of positive density
(with respect to a double-Følner sequence) contains {x + y, xy}.

[BM15] V. Bergelson and J. Moreira. Ergodic theorem involving additive andmultiplicative
groups of a field and {x + y, xy} patterns, ETDS, 37(3), 2015.

[Shk10] I. D. Shkredov. Onmonochromatic solutions of some nonlinear equations inZ/pZ,
Mat. Zametki, 88(4):625–634, 2010.



Hindman’s Conjecture
Density version in fields

Question: What about “density versions” of Hindman’s Conjecture?

Theorem (Shkredov, 2010)
For any δ > 0 there is a cofinite set of primes p such that any set A ⊂ Fp of
relative density⩾ δ contains {x, x + y, xy}.

Theorem (Bergelson-Moreira, 2015)
Let (K, +, ·) be any infinite countable field. Any set A ⊂ K of positive density
(with respect to a double-Følner sequence) contains {x + y, xy}.

[BM15] V. Bergelson and J. Moreira. Ergodic theorem involving additive andmultiplicative
groups of a field and {x + y, xy} patterns, ETDS, 37(3), 2015.

[Shk10] I. D. Shkredov. Onmonochromatic solutions of some nonlinear equations inZ/pZ,
Mat. Zametki, 88(4):625–634, 2010.



Hindman’s Conjecture
Density version in N

Question: What about a “density version” of Hindman’s Conjecture in N?
Goal for today: Show that patterns such as {x + y, xy}, {x, x + y, xy}, and

{x, y, x+y, xy} are controlled by the local uniformity norms.

This will allow as to address the following two problems:

Moreira’s Conjecture
Any set with positive natural density contains {x + y, xy + 1}.

Theorem
There exists a (multiplicatively invariant) density onN such that any set with
positive measure under this density contains {x + y, xy}.
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Densities on N
Definition

A density on N is a function D : 2N → [0, 1] such that

Unit Range: D(∅) = 0 and D(N) = 1

Monotonicity: if A ⊂ B then D(A) ⩽ D(B)

Subadditivity: for all A, B ⊂ N one has D(A ∪ B) ⩽ D(A) + D(B)

We say that D is additively invariant if D(A − m) = D(A), where

A − m = {n ∈ N : n + m ∈ A}.

We say that D ismultiplicatively invariant if D(A/m) = D(A), where

A/m = {n ∈ N : nm ∈ A}.
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Densities on N
Examples I

The Cesàro average and the logarithmic average of f : N → C over a finite
set A ⊂ N are defined respectively as

En∈A f(n) =
1

|A|
∑
n∈A

f(n) and Elog
n∈A f(n) =

∑
n∈A

f(n)
n∑

n∈A
1
n

.

The upper density of a set A ⊂ N is defined as

d(A) = lim sup
N→∞

1
N |A ∩ {1, . . . ,N}| = lim sup

N→∞
En⩽N 1A(n).

It is additively invariant.

The upper logarithmic density of a set A ⊂ N is defined as

δ(A) = lim sup
N→∞

∑
n∈A

1
n∑

n⩽N
1
n

= lim sup
N→∞

Elog
n⩽N 1A(n).

It is also additively invariant.
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Densities on N
Examples II

Amultiplicative Følner sequence on N is a sequence of finite sets
Ψ = (ΨM)M∈N such that

|ΨM ∩ ΨM/m|
|ΨM|

M→∞−−−−→ 1, ∀m ∈ N.

The upper density with respect to Ψ of a set A ⊂ N is defined as

dΨ(A) = lim sup
M→∞

|A ∩ ΨM|
|ΨM|

= lim sup
M→∞

Em∈ΨM 1A(m).

It is multiplicatively invariant.

REMARK: (N, +, ·) is not amenable and there exists no Følner sequence on
N that is both additively and multiplicatively invariant.
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Main Results
for patterns of the form {x + y, xy + 1}

Moreira’s Conjecture
Any set with positive natural density contains {x + y, xy + 1}.

upper density: d(A) = lim supN→∞
|A∩{1,...,N}|

N

upper logarithmic density: δ(A) = lim supN→∞

∑
n∈A

1
n∑

n⩽N
1
n
.

Example: The set A =
⋃

n⩾4[22
n
, 22

n+1) satisfies d(A) > 0, but does not
contain patterns of the from {x + y, xy + 1}.
Besicovitch’s Example: There is a set A ⊂ N with d(A) > 0 containing no
patterns of the from {x, xy}.

Theorem (Davenport-Erdős, 1936)
If δ(A) > 0 then A contains {x, xy}.

Theorem 1 (R. 2024+)
If δ(A) > 0 then A contains {x + y, xy + 1}.
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Main Results
for patterns of the form {x + y, xy}

Define
δ×(A) = lim sup

M→∞
Em∈ΨM

(
lim
k→∞

Elog
n⩽Nk

1A(mn)︸ ︷︷ ︸
logarithmic density of A/m

)
,

where N1 < N2 < . . . ∈ N is any sequence such that all limits above exist.

Observation

δ×(A) > 0 ⇐⇒
The logarithmic density of A/m is bigger than ε for
a set of m that has positive multiplicative density.

Properties:
• δ× is multiplicatively invariant, i.e., δ×(A/m) = δ×(A)
• δ× is absolutely continuous with respect to the upper logarithmic

density, i.e., δ(A) = 0 ⇒ δ×(A) = 0.

Theorem 2 (R. 2024+)
If δ×(A) > 0 then A contains {x + y, xy}.
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Main Theorems
Outline of proof

Theorem 1
If δ(A) > 0 then A contains {x + y, xy + 1}.

Theorem 2
If δ×(A) > 0 then A contains {x + y, xy}.

Proof Outline:We want to show that

Elog
x⩽N 1A(x + y) 1A(xy + 1) > 0, for many y.

Split A into structured and random components,

1A(n) = fstr.(n) + frand.(n)

controlled by local
Host-Kra seminorms

local nilsequence

Step 1: Elog
x⩽N frand.(x + y) frand.(xy + 1) = 0, for many y,

Step 2: Elog
x⩽N fstr.(x + y) fstr.(xy + 1) > 0, for many y.
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Local Almost Periodicity
Definitions

Definition
Let f ∈ ℓ∞(N).

We say f is locally almost periodic if for all ε > 0 there is q ∈ N such
that

lim
N→∞

Elog
n⩽N |f(n + q) − f(n)| ⩽ ε.

We say f is locally aperiodic if for all α ∈ [0, 1) we have

lim
H→∞

lim
N→∞

Elog
n⩽N

∣∣∣Eh⩽H f(n + h)e(hα)
∣∣∣ = 0.

REMARK: If the limits in N don’t exist then we pass to a subsequence (Nk)
along which the limits exist.

EXAMPLE: In [MRT15] it is shown that the classical Liouville function
λ(n) = (−1)Ω(n) is locally aperiodic (with Cesàro averages).

[MRT15] K. Matomäki, M. Radziwiłł, and T. Tao. An averaged form of Chowla’s conjecture.
Algebra Number Theory, 9(9):2167–2196, 2015.
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Structure Theorem I
locally almost periodic ⊕ locally aperiodic

We say f is locally almost periodic if for all ε > 0 there is q ∈ N such
that

lim
N→∞

Elog
n⩽N|f(n + q) − f(n)| ⩽ ε.

We say f is locally aperiodic if

lim
H→∞

lim
N→∞

sup
α∈R

Elog
n⩽N

∣∣∣Eh⩽H f(n + h)e(hα)
∣∣∣ = 0.

Structure Theorem I
Any f ∈ ℓ∞(N) can be split into f = fper + faper, where

• fper is locally almost periodic,

• faper is locally aperiodic.
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Local Uniformity Norms
Definitions

Definition
Let f ∈ ℓ∞(N). The local uniformity seminorms of f (with respect to
logarithmic averages) are defined as

∥f∥2U1(N) = lim
H→∞

lim
N→∞

Eh⩽H E
log
n⩽N f(n)f(n + h),

∥f∥4U2(N) = lim
H→∞

lim
N→∞

Eh1,h2⩽H E
log
n⩽N f(n)f(n + h1)f(n + h2)f(n + h1 + h2)

∥f∥8U3(N) = lim
H→∞

lim
N→∞

Eh1,h2,h3⩽H E
log
n⩽N f(n)f(n + h1) · · · f(n + h1 + h2 + h3)

...
∥f∥2

k

Uk(N) = lim
H→∞

lim
N→∞

E
h⃗∈[H]k

Elog
n⩽N

∏
ε⃗∈{0,1}k

C|ε⃗|f(n + ε⃗ · h⃗).

REMARK: If the limits in N don’t exist then we pass to a subsequence (Nk)
along which the limits exist.
[HK09] B. Host and B. Kra. Uniformity seminorms on ℓ∞(N) and applications. J. Anal.

Math. 108 (2009).
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Structure Theorem II
Definitions

One can show that

∥f∥U1(N) = 0 ⇐⇒ Elog
n⩽N

∣∣∣Eh⩽H f(n + h)
∣∣∣ = o(1),

f locally aperiodic ⇐⇒ sup
α∈R

Elog
n⩽N

∣∣∣Eh⩽H f(n + h)e(hα)
∣∣∣ = o(1).

∥f∥U2(N) = 0 ⇐⇒ Elog
n⩽N sup

α∈R

∣∣∣Eh⩽H f(n + h)e(hα)
∣∣∣ = o(1).

Hierarchy:
. . . ⇒ ∥f∥U3(N) =0 ⇒ ∥f∥U2(N) =0 ⇒ f locally aperiodic ⇒ ∥f∥U1(N) =0

Relation to Gowers Uk[N]-norms: ∥f∥Uk(N) =0 ⇒ ∥f∥Uk[N]
N→∞−−−−−−−→

in log density
0.

Structure Theorem II
Any f ∈ ℓ∞(N) can be split into f = fnil + funi, where

• fnil is “locally k-step nil”,

• and ∥funi∥Uk+1(N) = 0.
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Generalized von Neumann Theorems
Classical cases

Generalized von Neumann Theorem (Gowers norms)
If limN→∞ ∥f∥Uk[N] = 0 then

lim
N→∞

Em⩽N En⩽N f(n)f(n + m) · · · f(n + km) = 0.

Generalized von Neumann Theorem (local norms)
If ∥f∥Uk(N) = 0 then

lim
M→∞

lim
N→∞

Elog
m⩽M Elog

n⩽N f(n)f(n + m) · · · f(n + km) = 0.

Question: What about a generalized von Neumann theorem for
f(n + m)f(nm)?
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Sums, Products, and Uniformity
controlling {x + y, xy} via uniformity seminorms

Hierarchy:
. . . ⇒ ∥f∥U3(N) =0 ⇒ ∥f∥U2(N) =0 ⇒ f locally aperiodic ⇒ ∥f∥U1(N) =0

Proposition 1
If f is locally aperiodic then

lim
M→∞

lim
N→∞

Elog
m⩽M Elog

n⩽N f(n + m)f(nm) = 0.

Proposition 2
If f is locally U2-uniform (i.e., ∥f∥U2(N) = 0) then

lim
M→∞

lim
N→∞

Elog
m⩽M Elog

n⩽N f(n)f(n + m)f(nm) = 0.

Proposition 3
If f is locally U3-uniform (i.e., ∥f∥U3(N) = 0) then

lim
M→∞

lim
N→∞

Elog
m⩽M Elog

n⩽N f(n)f(m)f(n + m)f(nm) = 0.
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van der Corput’s inequality
Old and new

van der Corput’s Inequality(
Eh∈[H]

∣∣∣Elog
n⩽N f(n)g(n + h)

∣∣∣)2
⩽ 2Eh∈[H]

∣∣∣Elog
n⩽Nf(n)f(n + h)

∣∣∣ +
1
H

+ oN→∞(1).

Orthogonality Criterion
(Daboussi-Delange-Kátai-Bourgain-Sarnak-Ziegler)
Let P ⊂ P be a finite set of primes and g : N → S1 completely multiplicative. Then∣∣∣Elog
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New Orthogonality Criterion
Proof

Theorem 1
If δ(A) > 0 then A contains {x + y, xy + 1}.

Define PW = {p ∈ P : p ≡ 1 mod W}.

Theorem 3
Suppose A ⊂ N. For all ε > 0 there existW, k ∈ N such that

Elog
p1∈PW · · ·Elog

pk∈PW Elog
n∈N1A(n + p1 · · · pk)1A(np1 · · · pk + 1) ⩾ δ(A)2 − ε.

The main idea is that:

Elog
p1∈PW · · ·Elog

pk∈PW Elog
n∈N1A(n + p1 · · · pk)1A(np1 · · · pk + 1)

≈ε Elog
p1∈PW · · ·Elog

pk∈PW Elog
n∈N1A(n + 1)1A(np1 · · · pk + 1)

= Elog
p1∈PW · · ·Elog

pk∈PW Elog
n∈N1A−1(n)1A−1(np1 · · · pk).
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