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There are standard algorithms to cluster points of Euclidean space.

What about ranked choice ballots? 



Edinburgh Ward 2 (Petland Hills): 7 candidates,  11315 ballots, 
1238 distinct ballots.

1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
494 votes for (4).
403 votes for (3, 5, 7).
285 votes for (1, 6, 2).
254 votes for (1, 6, 4).
219 votes for (5, 3).
173 votes for (4, 2).
152 votes for (6, 1, 4).
144 votes for (5, 3, 7).
136 votes for (1, 6, 4, 2).
136 votes for (3, 5, 4)…

1=Graeme Bruce (C), 2 = Emma Farthing (LD), 3 = Neil Gardiner 
(SNP), 4 = Ricky Henderson (Lab), 5 = Ernesta Noreikiene (SNP), 
6= Susan Webber (C), 7 = Evelyn Weston (Grn).



PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean 
space, and perform a standard clustering algorithm on the proxies.

• Any number of clusters is allowed.
• Requires that the distance between proxies corresponds to some 

natural measurement of closeness between ballots.

1. SLATE CLUSTERING: Find the partition of the candidates into two slates 
A,B for which the ballots are most starkly divided into “A>B types” and 
“B>A types”.  Partition the ballots accordingly.

• Always gives 2 clusters
• Good choice for a polarized election
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PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean 
space, and perform a standard clustering algorithm on the proxies.

• Any number of clusters is allowed.
• Requires that the distance between proxies corresponds to some 

natural measurement of closeness between ballots.

1. SLATE CLUSTERING: Find the partition of the candidates into two slates 
A,B for which the ballots are most starkly divided into “A>B types” and 
“B>A types”.  Partition the ballots accordingly.

• Always gives 2 clusters
• Good choice for a polarized election

1342 votes for (1, 6).
759 votes for (6, 1).
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1=Graeme Bruce (C), 2 = Emma Farthing (LD), 3 = Neil Gardiner 
(SNP), 4 = Ricky Henderson (Lab), 5 = Ernesta Noreikiene (SNP), 
6= Susan Webber (C), 7 = Evelyn Weston (Grn).

* Any number of clusters is allowed.

* The distance between proxies must 
correspond to some natural measurement of 
ballot similarity.



SLATE CLUSTERING: Find the partition of the candidates into two slates A,B such 
that the ballots are most starkly divided into “A>B types” and “B>A types”.  
Partition the ballots accordingly.
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1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
494 votes for (4).
403 votes for (3, 5, 7).
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SLATE A:
3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)

SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)

• Always forms 2 clusters
• Good for studying polarized elections

SLATE CLUSTERING: Find the partition of the candidates into two slates A,B such 
that the ballots are most starkly divided into “A>B types” and “B>A types”.  
Partition the ballots accordingly.



1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
494 votes for (4).
403 votes for (3, 5, 7).
285 votes for (1, 6, 2).
254 votes for (1, 6, 4).
219 votes for (5, 3).
173 votes for (4, 2).
152 votes for (6, 1, 4).
144 votes for (5, 3, 7).
136 votes for (1, 6, 4, 2).
136 votes for (3, 5, 4)….

SLATE A:
3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)

SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)

• Always forms 2 clusters
• Good for studying polarized elections
• How should we sort (3,2,4,7)?

SLATE CLUSTERING: Find the partition of the candidates into two slates A,B such 
that the ballots are most starkly divided into “A>B types” and “B>A types”.  
Partition the ballots accordingly.
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Proxy clustering (with Borda proxies and k-means) 



Visualizing clusters

MDS Plot of ballots with more than 10 votes.

(1,6)

(6,1)

(3,5)

(3,5,7)

(4)



Slate clusters
Visualizing clusters



Metric space wishes

GOAL: Find a good metric on Ω𝑛𝑛 = the set of possible ballots on 𝑛𝑛 candidates.

WISH LIST:

• Interpretable as a natural and intuitive “closeness” of the ballots.

• Realizable as the distance between proxy points in Euclidean space.

• Generalizable to ballots that allow ties, so we can measure the closeness of a 
ballot to say the condition SLATE A > SLATE B.  

• Based on well-studied concepts like head-to-head comparisons and/or Borda
points.
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Metric space wishes

GOAL: Find a good metric on Ω𝑛𝑛 = the set of possible ballots on 𝑛𝑛 candidates.

WISH LIST:

• Interpretable as a natural and intuitive “similarity” of the ballots.

• Realizable as the distance between proxy points in coordinate space.

• Generalizable to ballots that allow ties.

• Based on familiar concepts like head-to-head comparisons or Borda points.



Metric space wishes

GOAL: Find a good metric on Ω𝑛𝑛 = the set of possible ballots on 𝑛𝑛 candidates.

WE’LL STUDY TWO METRICS:

• 𝑑𝑑𝐻𝐻 = head-to-head distance
= ballot graph distance
= weighted disagreement count
= distance between head-to-head proxies 

• 𝑑𝑑𝐵𝐵 = Borda distance
= swap count
= distance between Borda proxies

And we’ll show that 𝑑𝑑𝐻𝐻 and 𝑑𝑑𝐵𝐵 are very similar.
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Metric space wishes

GOAL: Find a good metric on Ω𝑛𝑛 = the set of possible ballots on 𝑛𝑛 candidates.

WE’LL STUDY TWO METRICS:

• 𝑑𝑑𝐻𝐻 = head-to-head distance
= ballot graph distance
= weighted disagreement count
= distance between head-to-head proxies 

• 𝑑𝑑𝐵𝐵 = Borda distance
= shift count
= distance between Borda proxies
= distance in augmented ballot graph

And we’ll show that 𝒅𝒅𝑯𝑯 and 𝒅𝒅𝑩𝑩 are very similar.
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The Ballot Graph

The ballot graph for Ω3

• Nodes = all possible ballots

• An edge of weight 1 if related 
by an adjacent swap.

Example:

ABCDEF           ABDCEF in Ω71



The Ballot Graph

The ballot graph for Ω3

• Nodes = all possible ballots

• An edge of weight 1 if related 
by an adjacent swap.

• An edge if related by 
removing/adding final 
candidate.
Weight = # 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2

Example:

AB**** --- ABC*** in Ω6
has weight 3

2
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The Ballot Graph

The ballot graph for Ω3

• Nodes = all possible ballots

• An edge of weight 1 if related 
by an adjacent swap.
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Distance from BA to C = 2.5



The Ballot Graph

The ballot graph for Ω3

• Nodes = all possible ballots

• An edge of weight 1 if related 
by an adjacent swap.

• An edge if related by 
removing/adding final 
candidate.
Weight = # 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2

Between a complete ballot and 
its reversal, the bullet path ties.
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The weighted disagreement count

Consider the ballots ACB and AE in Ω5.  
Among the 10 comparisons:

AB, AC, AD, AE, BC, BD, BE, CD, CE, DE

• Strong disagreements have weight 1.

• Weak disagreements have weight 1
2
.

So, distance from ACB to AE = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1
2
⋅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 2 + 1

2
⋅ 4 = 4.



The weighted disagreement count

Consider the ballots ACB and AE in Ω5.  
Among the 10 comparisons:

AB, AC, AD, AE, BC, BD, BE, CD, CE, DE

• Strong disagreements have weight 1.

• Weak disagreements have weight 1
2
.

So, distance from ACB to AE = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1
2
⋅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 2 + 1

2
⋅ 4 = 4.

(We’ll see that the 1
2

weighting convention makes this a valid metric.)



The head-to-head proxy distance



The head-to-head proxy distance

AB AC AD AE BC BD BE CD CE DE
ACB .5 .5 .5 .5 −.5 .5 .5 .5 .5 0
AE .5 .5 .5 .5 0 0 −.5 0 −.5 −.5

𝑑𝑑𝑑𝑑𝑑𝑑 = 0 0 0 0 -.5 .5 1 .5 1 -.5

KEY:
. 5 = win
−.5 = lose
0 = tie

In Ω5, head-to-head proxies are in 10-dimensional space.
The proxy of ACB is:



The head-to-head proxy distance

AB AC AD AE BC BD BE CD CE DE
ACB .5 .5 .5 .5 −.5 .5 .5 .5 .5 0
AE .5 .5 .5 .5 0 0 −.5 0 −.5 −.5

𝑑𝑑𝑑𝑑𝑑𝑑 = 0 0 0 0 -.5 .5 1 .5 1 -.5

KEY:
. 5 = win
−.5 = lose
0 = tie

In Ω5, head-to-head proxies are in 10-dimensional space.
The proxy of ACB is:



The head-to-head proxy distance

AB AC AD AE BC BD BE CD CE DE
ACB .5 .5 .5 .5 −.5 .5 .5 .5 .5 0
AE .5 .5 .5 .5 0 0 −.5 0 −.5 −.5

𝑑𝑑𝑑𝑑𝑑𝑑 = 0 0 0 0 -.5 .5 1 .5 1 -.5

KEY:
. 5 = win
−.5 = lose
0 = tie

In Ω5, head-to-head proxies are in 10-dimensional space.
The proxy of ACB is:



The head-to-head proxy distance

AB AC AD AE BC BD BE CD CE DE
ACB .5 .5 .5 .5 −.5 .5 .5 .5 .5 0
AE .5 .5 .5 .5 0 0 −.5 0 −.5 −.5

𝑑𝑑𝑑𝑑𝑑𝑑 = 0 0 0 0 -.5 .5 1 .5 1 -.5

KEY:
. 5 = win
−.5 = lose
0 = tie

In Ω5, head-to-head proxies are in 10-dimensional space.
The proxy of ACB is:



The head-to-head proxy distance

AB AC AD AE BC BD BE CD CE DE
ACB .5 .5 .5 .5 −.5 .5 .5 .5 .5 0
AE .5 .5 .5 .5 0 0 −.5 0 −.5 −.5

𝑑𝑑𝑑𝑑𝑑𝑑 = 0 0 0 0 -.5 .5 1 .5 1 -.5

KEY:
. 5 = win
−.5 = lose
0 = tie

𝑑𝑑𝐻𝐻(𝑨𝑨𝑨𝑨𝑨𝑨,𝑨𝑨𝑨𝑨) = the Manhattan distance between their proxies = 2 + 4
2

= 4.

In Ω5, head-to-head proxies are in 10-dimensional space.
The proxies of ACB and AE are:



The head-to-head proxy distance



The head-to-head proxy distance
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The proposition generalizes to ballots that allow ties, like this
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The head-to-head proxy distance

AB AC AD AE BC BD BE CD CE DE
ACB .5 .5 .5 .5 -.5 .5 .5 .5 .5 0

( 𝑨𝑨,𝑬𝑬 , 𝑩𝑩,𝑪𝑪,𝑫𝑫 ) .5 .5 .5 0 0 0 −.5 0 −.5 −.5
𝑑𝑑𝑑𝑑𝑑𝑑 = 0 0 0 0 -.5 .5 1 .5 1 -.5

The proposition generalizes to ballots that allow ties, like this

How is this defined for generalized ballots?



The generalized ballot graph
6
2

Half the product of the sizes of the merged sets
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Adjacent candidate swaps have weight 1, as before:

The generalized ballot graph
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Adjacent candidate swaps have weight 1, as before:

and truncation has the same weight as before:

𝐴𝐴1,𝐴𝐴2 , 𝐵𝐵1,𝐵𝐵2 , {𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4} 𝐴𝐴1,𝐴𝐴2 , 𝐵𝐵1,𝐵𝐵2 , 𝐶𝐶1 , {𝐶𝐶2,𝐶𝐶3,𝐶𝐶4}

3
2

Missing from ballot Missing from ballot

The generalized ballot graph



The Borda proxy distance



A B C D E
ACB 4 2 3 0 0
AE 4 0 0 0 3

𝑑𝑑𝑑𝑑𝑑𝑑 = 0 2 3 0 -3

KEY:
____ ____ ____ ____ ___

4 3 2 1            0
In Ω5, Borda proxies are in 5-dimensional space.
The proxies of ACB is:
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𝑑𝑑𝐵𝐵(𝑨𝑨𝑨𝑨𝑨𝑨,𝑨𝑨𝑨𝑨) = the Manhattan distance between their proxies = 8.

In Ω5, Borda proxies are in 5-dimensional space.
The proxies of ACB and AE are:

The Borda proxy distance



A B C D E
ACB 4 2 3 0 0
AE 4 0 0 0 3

𝑑𝑑𝑑𝑑𝑑𝑑 = 0 2 3 0 -3

KEY:
____ ____ ____ ____ ___

4 3 2 1            0

𝑑𝑑𝐵𝐵(𝑨𝑨𝑨𝑨𝑨𝑨,𝑨𝑨𝑨𝑨) = the Manhattan distance between their proxies = 8.

In Ω5, Borda proxies are in 5-dimensional space.
The proxies of ACB and AE are:

The Borda proxy distance

“Shift counting”



Borda vs. head-to-head distance

• 1 < 𝑑𝑑𝐵𝐵
𝑑𝑑𝐻𝐻

≤ 2.

• 𝑑𝑑𝐵𝐵 = 2 𝑑𝑑𝐻𝐻 for adjacent pairs.

• You can add edges for non-adjacent 
swaps so that 𝑑𝑑𝐵𝐵 equals twice the 
graph distance.

• 𝑑𝑑𝐵𝐵 penalizes strong disagreements 
a bit less than 2𝑑𝑑𝐻𝐻.
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swaps so that 𝑑𝑑𝐵𝐵 equals twice the 
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• 𝑑𝑑𝐵𝐵 penalizes strong disagreements 
a bit less than 2𝑑𝑑𝐻𝐻.
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𝑑𝑑𝐻𝐻

≤ 2.

• 𝑑𝑑𝐵𝐵 = 2 𝑑𝑑𝐻𝐻 for adjacent pairs.

• After adding an edge for each non-
adjacent swap, 𝑑𝑑𝐵𝐵 equals twice the 
graph distance.

• 𝑑𝑑𝐵𝐵 penalizes strong disagreements 
a bit less than 2𝑑𝑑𝐻𝐻.
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• 1 < 𝑑𝑑𝐵𝐵
𝑑𝑑𝐻𝐻

≤ 2.

• 𝑑𝑑𝐵𝐵 = 2 𝑑𝑑𝐻𝐻 for adjacent pairs.

• After adding an edge for each non-
adjacent swap, 𝑑𝑑𝐵𝐵 equals twice the 
graph distance.

• 𝑑𝑑𝐵𝐵 penalizes strong disagreements 
a bit less than 2 𝑑𝑑𝐻𝐻.



Borda vs. head-to-head distance

2 𝑑𝑑𝐻𝐻 = 2 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1 ⋅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑑𝑑𝐵𝐵 = 𝛼𝛼 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1 ⋅ (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

For 𝛼𝛼 ∈ 1,2 that depends on the pair of ballots.



PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean 
space, and perform a standard clustering algorithm on the proxies.

• Any number of clusters is allowed.
• Requires that the distance between proxies corresponds to some 

natural measurement of closeness between ballots.

1. SLATE CLUSTERING: Find the partition of the candidates into two slates 
A,B for which the ballots are most starkly divided into “A>B types” and 
“B>A types”.  Partition the ballots accordingly.

• Always gives 2 clusters
• Good choice for a polarized election

1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
494 votes for (4).
403 votes for (3, 5, 7).
285 votes for (1, 6, 2).
254 votes for (1, 6, 4).
219 votes for (5, 3).
173 votes for (4, 2).
152 votes for (6, 1, 4).
144 votes for (5, 3, 7).
136 votes for (1, 6, 4, 2).
136 votes for (3, 5, 4)….



PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean 
space, and perform a standard clustering algorithm on the proxies.

• Any number of clusters is allowed.
• Requires that the distance between proxies corresponds to some 

natural measurement of closeness between ballots.

1. SLATE CLUSTERING: Find the partition of the candidates into two slates 
A,B for which the ballots are most starkly divided into “A>B types” and 
“B>A types”.  Partition the ballots accordingly.

• Always gives 2 clusters
• Good choice for a polarized election

1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
494 votes for (4).
403 votes for (3, 5, 7).
285 votes for (1, 6, 2).
254 votes for (1, 6, 4).
219 votes for (5, 3).
173 votes for (4, 2).
152 votes for (6, 1, 4).
144 votes for (5, 3, 7).
136 votes for (1, 6, 4, 2).
136 votes for (3, 5, 4)….

Borda or head-to-
head proxies?

k-means or k-
medoids?

All choices yield 
about the same 
clusters (∼ 4%)



Only slight differenced between the methods
(averaged over elections from 17 wards of Edinburgh)

Proxy cluster methods



k-means
• Center = centroid (center of mass)
• Minimizes summed squared 𝐿𝐿2 distances of 

data points to their centers.

k-medoids
• Centers are data points
• Minimizes summed distance of data points 

to their center with respect to arbitrary 
metric (we use 𝐿𝐿1).



2-medoid clusters with head-to-head proxies.

Medoids: (3,5,7) and (1,6)



1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
494 votes for (4).
403 votes for (3, 5, 7).
285 votes for (1, 6, 2).
254 votes for (1, 6, 4).
219 votes for (5, 3).
173 votes for (4, 2).
152 votes for (6, 1, 4).
144 votes for (5, 3, 7).
136 votes for (1, 6, 4, 2).
136 votes for (3, 5, 4)….

SLATE A:
3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)

SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)

SLATE CLUSTERING: Find the partition of the candidates into two slates A,B such 
that the ballots are most starkly divided into “A>B types” and “B>A types”.  
Partition the ballots accordingly.
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SLATE CLUSTERING: Find the partition of the candidates into two slates A,B such 
that the ballots are most starkly divided into “A>B types” and “B>A types”.  
Partition the ballots accordingly.

METHOD: Exhaustively try all partitions to find the one with the best score.

SCORE = the sum of the distances of the ballots 
to “A>B” or “B>A” (whichever is closest)
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SLATE B:
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2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
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to “A>B” or “B>A” (whichever is closest)



𝑨𝑨𝟏𝟏𝑨𝑨𝟐𝟐 𝑩𝑩𝟏𝟏𝑩𝑩𝟐𝟐 𝑩𝑩𝟏𝟏𝑩𝑩𝟑𝟑 𝑩𝑩𝟐𝟐𝑩𝑩𝟑𝟑 𝑨𝑨𝟏𝟏𝑩𝑩𝟏𝟏 𝑨𝑨𝟏𝟏𝑩𝑩𝟐𝟐 𝑨𝑨𝟏𝟏𝑩𝑩𝟑𝟑 𝑨𝑨𝟐𝟐𝑩𝑩𝟏𝟏 𝑨𝑨𝟐𝟐𝑩𝑩𝟐𝟐 𝑨𝑨𝟐𝟐𝑩𝑩𝟑𝟑

𝑨𝑨𝟏𝟏𝑩𝑩𝟐𝟐𝑨𝑨𝟐𝟐 .5 -.5 0 .5 .5 .5 .5 .5 -.5 .5
{𝑨𝑨𝟏𝟏,𝑨𝑨𝟐𝟐} > {𝑩𝑩𝟏𝟏,𝑩𝑩𝟐𝟐,𝑩𝑩𝟑𝟑} 0 0 0 0 .5 .5 .5 .5 .5 .5

𝑑𝑑𝑑𝑑𝑑𝑑 = .5 -.5 0 .5 0 0 0 0 1 0

METHOD: Exhaustively try all partitions to find the one with the best score.

SCORE = the sum of the distances of the ballots 
to “A>B” or “B>A” (whichever is closest)



𝑨𝑨𝟏𝟏𝑨𝑨𝟐𝟐 𝑩𝑩𝟏𝟏𝑩𝑩𝟐𝟐 𝑩𝑩𝟏𝟏𝑩𝑩𝟑𝟑 𝑩𝑩𝟐𝟐𝑩𝑩𝟑𝟑 𝑨𝑨𝟏𝟏𝑩𝑩𝟏𝟏 𝑨𝑨𝟏𝟏𝑩𝑩𝟐𝟐 𝑨𝑨𝟏𝟏𝑩𝑩𝟑𝟑 𝑨𝑨𝟐𝟐𝑩𝑩𝟏𝟏 𝑨𝑨𝟐𝟐𝑩𝑩𝟐𝟐 𝑨𝑨𝟐𝟐𝑩𝑩𝟑𝟑

𝑨𝑨𝟏𝟏𝑩𝑩𝟐𝟐𝑨𝑨𝟐𝟐 .5 -.5 0 .5 .5 .5 .5 .5 -.5 .5
{𝑨𝑨𝟏𝟏,𝑨𝑨𝟐𝟐} > {𝑩𝑩𝟏𝟏,𝑩𝑩𝟐𝟐,𝑩𝑩𝟑𝟑} 0 0 0 0 .5 .5 .5 .5 .5 .5

𝑑𝑑𝑑𝑑𝑑𝑑 = .5 -.5 0 .5 0 0 0 0 1 0

METHOD: Exhaustively try all partitions to find the one with the best score.

SCORE = the sum of the distances of the ballots 
to “A>B” or “B>A” (whichever is closest)

or just use this partnot as relevant



Slate clusters
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