Ballot Clustering Algorithms

Kristopher Tapp, Saint Joseph’s University joint with Moon Duchin \& David Shmoys

There are standard algorithms to cluster points of Euclidean space.
What about ranked choice ballots?

Edinburgh Ward 2 (Petland Hills): 7 candidates, 11315 ballots, 1238 distinct ballots.

1342 votes for $(1,6)$.
759 votes for $(6,1)$.
578 votes for $(3,5)$.
494 votes for (4).
403 votes for $(3,5,7)$.
285 votes for (1, 6, 2).
254 votes for ($1,6,4$).
219 votes for $(5,3)$.
173 votes for $(4,2)$.
152 votes for $(6,1,4)$.
144 votes for $(5,3,7)$.
136 votes for ($1,6,4,2$).
136 votes for $(3,5,4) \ldots$

1=Graeme Bruce (C), 2 = Emma Farthing (LD), 3 = Neil Gardiner (SNP), 4 = Ricky Henderson (Lab), 5 = Ernesta Noreikiene (SNP), 6= Susan Webber (C), 7 = Evelyn Weston (Grn).

PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean space, and perform a standard clustering algorithm on the proxies.

1342 votes for $(1,6)$.
759 votes for $(6,1)$.
578 votes for $(3,5)$.
494 votes for (4).
403 votes for $(3,5,7)$. 285 votes for $(1,6,2)$ 254 votes for $(1,6,4)$. 219 votes for $(5,3)$. 173 votes for $(4,2)$.
152 votes for $(6,1,4)$.
144 votes for $(5,3,7)$.
136 votes for (1, 6, 4, 2).
1=Graente Bruce (C), 2 = Emma Farthing (LD), 3 = Neil Gardiner (SINP), 4 = Ricky Henderson (Lab), 5 = Ernesta Noreikiene (SNP),

136 votes for $(3,5,4)$

PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean space, and perform a standard clustering algorithm on the proxies.

1342 votes for $(1,6)$.
759 votes for $(6,1)$.
578 votes for $(3,5)$.
494 votes for (4).
403 votes for $(3,5,7)$.
285 votes for $(1,6,2)$. 254 votes for $(1,6,4)$. 219 votes for $(5,3)$.

* Any number of clusters is allowed.

173 votes for $(4,2)$.
152 votes for $(6,1,4)$.
144 votes for $(5,3,7)$.
136 votes for (1, 6, 4, 2).
136 votes for $(3,5,4) . .$.

* The distance between proxies must correspond to some natural measurement of ballot similarity.

SLATE CLUSTERING: Find the partition of the candidates into two slates A, B such that the ballots are most starkly divided into " $A>B$ types" and " $B>A$ types". Partition the ballots accordingly.

SLATE CLUSTERING: Find the partition of the candidates into two slates A, B such that the ballots are most starkly divided into "A>B types" and "B>A types". Partition the ballots accordingly.

```
1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
4 9 4 \text { votes for (4).}
403 votes for (3, 5, 7).
285 votes for (1, 6, 2).
254 votes for (1, 6, 4).
219 votes for (5, 3).
173 votes for (4, 2).
152 votes for (6, 1, 4).
144 votes for (5, 3, 7).
136 votes for (1, 6, 4, 2).
1 3 6 \text { votes for (3, 5, 4)....}
```


SLATE A:

3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)

```
SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)
```

SLATE CLUSTERING: Find the partition of the candidates into two slates A, B such that the ballots are most starkly divided into "A>B types" and "B>A types". Partition the ballots accordingly.

$$
\begin{aligned}
& 1342 \text { votes for }(1,6) . \\
& 759 \text { votes for }(6,1) \text {. } \\
& 578 \text { votes for }(3,5) \text {. } \\
& 494 \text { votes for }(4) \text {. } \\
& 403 \text { votes for }(3,5,7) \text {. } \\
& 285 \text { votes for }(1,6,2) \text {. } \\
& 254 \text { votes for }(1,6,4) \text {. } \\
& 219 \text { votes for }(5,3) \text {. } \\
& 173 \text { votes for }(4,2) \text {. } \\
& 152 \text { votes for }(6,1,4) \text {. } \\
& 144 \text { votes for }(5,3,7) \text {. } \\
& 136 \text { votes for }(1,6,4,2) \text {. } \\
& 136 \text { votes for }(3,5,4) . . .
\end{aligned}
$$

```
SLATE A:
3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)
```

```
SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)
```

- Always forms 2 clusters
- Good for studying polarized elections

SLATE CLUSTERING: Find the partition of the candidates into two slates A, B such that the ballots are most starkly divided into "A>B types" and "B>A types". Partition the ballots accordingly.

$$
\begin{aligned}
& 1342 \text { votes for }(1,6) \text {. } \\
& 759 \text { votes for }(6,1) \text {. } \\
& 578 \text { votes for }(3,5) \text {. } \\
& 494 \text { votes for }(4) \text {. } \\
& 403 \text { votes for }(3,5,7) \text {. } \\
& 285 \text { votes for }(1,6,2) \text {. } \\
& 254 \text { votes for }(1,6,4) \text {. } \\
& 219 \text { votes for }(5,3) \text {. } \\
& 173 \text { votes for }(4,2) \text {. } \\
& 152 \text { votes for }(6,1,4) \text {. } \\
& 144 \text { votes for }(5,3,7) \text {. } \\
& 136 \text { votes for }(1,6,4,2) \text {. } \\
& 136 \text { votes for }(3,5,4) \ldots .
\end{aligned}
$$

SLATE A:

$$
3 \text { = Neil Gardiner (SNP) }
$$

$$
5 \text { = Ernesta Noreikiene (SNP) }
$$

$$
7 \text { = Evelyn Weston (Grn) }
$$

```
SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)
```

- Always forms 2 clusters
- Good for studying polarized elections
- How should we sort ($3,2,4,7$)?

Visualizing clusters

Proxy clustering (with Borda proxies and k-means)

Visualizing clusters

Proxy clustering (with Borda proxies and k-means)

Visualizing clusters

MDS Plot of ballots with more than 10 votes.

Visualizing clusters

Borda Scores of Candidates by Cluster

Candidate Mentions Stacked by Ballot Position

Metric space wishes

 －

 －

 ic on $\Omega_{n}=$ the set of possible ballots on n candidates． － ． T \square T

．
2
\qquad
\square

$$
1
$$ －

\qquad
有

GOAL：Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates．
WISH LIST：
－
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\square

都
\square
\square
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WISH LIST:

- Interpretable as a natural and intuitive "similarity" of the ballots.

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WISH LIST:

- Interpretable as a natural and intuitive "similarity" of the ballots.
- Realizable as the distance between proxy points in coordinate space (Euclidean or Manhattan)

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WISH LIST:

- Interpretable as a natural and intuitive "similarity" of the ballots.
- Realizable as the distance between proxy points in coordinate space.
- Generalizable to ballots that allow ties.

$$
\text { like: }(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}, B_{3}\right\}, \underbrace{\left\{C_{1}, C_{2}, C_{3}\right\}}_{\text {Unmentioned candidates are group last }})
$$

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WISH LIST:

- Interpretable as a natural and intuitive "similarity" of the ballots.
- Realizable as the distance between proxy points in coordinate space.
- Generalizable to ballots that allow ties.

or like: SLATE A > SLATE B.

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WISH LIST:

- Interpretable as a natural and intuitive "similarity" of the ballots.
- Realizable as the distance between proxy points in coordinate space.
- Generalizable to ballots that allow ties.
- Based on familiar concepts like head-to-head comparisons or Borda points.

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WE’LL STUDY TWO METRICS:

- $d_{H}=\underline{\text { head-to-head distance }}$
- $d_{B}=\underline{\text { Borda distance }}$

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WE'LL STUDY TWO METRICS:

- $d_{H}=\underline{\text { head-to-head distance }}$
= ballot graph distance
= weighted disagreement count
= distance between head-to-head proxies
- $d_{B}=\underline{\text { Borda distance }}$
= shift count
= distance between Borda proxies
= distance in augmented ballot graph

Metric space wishes

GOAL: Find a good metric on $\Omega_{n}=$ the set of possible ballots on n candidates.

WE'LL STUDY TWO METRICS:

- $d_{H}=\underline{\text { head-to-head distance }}$
= ballot graph distance
= weighted disagreement count
= distance between head-to-head proxies
- $d_{B}=\underline{\text { Borda distance }}$
= shift count
= distance between Borda proxies
= distance in augmented ballot graph

And we'll show that d_{H} and d_{B} are very similar.

The Ballot Graph
(1)
，
－路

\square

\square
都
\square
\square
\square
\square

号

．

\square
\square

 I
都 R ？

The Ballot Graph

- Nodes = all possible ballots

$$
\begin{array}{cr}
A B & A C \\
& \\
A B C & A C B
\end{array}
$$

The ballot graph for Ω_{3}

$$
\begin{array}{cccc}
& A B C & A C B & \\
& & & \\
B A & B A C & C A B & C A \\
& & & \\
B & B C A & C B A & C
\end{array}
$$

The Ballot Graph

- Nodes = all possible ballots
- An edge of weight 1 if related by an adjacent swap.

Example:
ABCDEF $\xlongequal{-}$ ABDCEF in Ω_{7}

The Ballot Graph

- Nodes = all possible ballots
- An edge of weight 1 if related by an adjacent swap.
- An edge if related by removing/adding final candidate.
Weight $=\frac{\# \text { missing }}{2}$
Example:

$$
\mathrm{AB}^{* * * *}---\mathrm{ABC}{ }^{* * *} \text { in } \Omega_{6}
$$

has weight $\frac{3}{2}$

The Ballot Graph

- Nodes = all possible ballots
- An edge of weight 1 if related by an adjacent swap.
- An edge if related by removing/adding final candidate.
Weight $=\frac{\# \text { missing }}{2}$
Example:
3 head-to-head changes
AB ${ }^{* * * *}---A B C^{* * *}$ in Ω_{6}
has weight $\frac{3}{2}$

The ballot graph for Ω_{3}

The Ballot Graph

- Nodes = all possible ballots
- An edge of weight 1 if related by an adjacent swap.
- An edge if related by removing/adding final candidate.
Weight $=\frac{\# \text { missing }}{2}$
Example:
3 head-to-head changes
$\mathrm{AB}{ }^{* * * *}--\mathrm{ABC}{ }^{* * *}$ in Ω_{6}
has weight $\frac{3}{2}$

The ballot graph for Ω_{3}

The Ballot Graph

- Nodes = all possible ballots
- An edge of weight 1 if related by an adjacent swap.
- An edge if related by removing/adding final candidate.
Weight $=\frac{\# \text { missing }}{2}$
Example:
3 head-to-head changes
$\mathrm{AB}{ }^{* * * *}--\mathrm{ABC}{ }^{* * *}$ in Ω_{6}
has weight $\frac{3}{2}$

The ballot graph for Ω_{3}

The Ballot Graph

- Nodes = all possible ballots
- An edge of weight 1 if related by an adjacent swap.
- An edge if related by removing/adding final candidate.
Weight $=\frac{\# \text { missing }}{2}$
Distance from $\mathbf{B A}$ to $\mathbf{C}=2.5$

The Ballot Graph

- Nodes = all possible ballots
- An edge of weight 1 if related by an adjacent swap.
- An edge if related by removing/adding final candidate.
Weight $=\frac{\# \text { missing }}{2}$

Between a complete ballot and its reversal, the bullet path ties.

r^{2} -
ᄃ
五
\qquad
\qquad

The weighted disagreement count

The weighted disagreement count

Consider the ballots $\mathbf{A C B}$ and AE in Ω_{5}. Among the 10 comparisons:
$A B, A C, A D, A E, B C, B D, B E, C D, C E, D E$

The weighted disagreement count

Consider the ballots $\mathbf{A C B}$ and $\mathbf{A E}$ in Ω_{5}. Among the 10 comparisons:

$$
A B, A C, A D, A E, B C, B D B E, C D, C E, D E
$$

- Strong disagreements have weight 1.

The weighted disagreement count

Consider the ballots $\mathbf{A C B}$ and $\mathbf{A E}$ in Ω_{5}. Among the 10 comparisons:

$$
A B, A C, A D, A E B C, B D, B E, C D, C E, D E
$$

- Strong disagreements have weight 1.
- Weak disagreements have weight $\frac{1}{2}$.

The weighted disagreement count

Consider the ballots $\mathbf{A C B}$ and $\mathbf{A E}$ in Ω_{5}. Among the 10 comparisons:
$A B, A C, A D, A E, B C, B D, B E, C D, C E, D E$

- Strong disagreements have weight 1.
- Weak disagreements have weight $\frac{1}{2}$.

So, distance from $\mathbf{A C B}$ to $\mathbf{A E}=$ strong $+\frac{1}{2} \cdot$ weak $=2+\frac{1}{2} \cdot 4=4$.

Consider the ballots $\mathbf{A C B}$ and $\mathbf{A E}$ in Ω_{5}. Among the 10 comparisons:
$A B, A C, A D, A E, B C, B D, B E, C D, C E, D E$

- Strong disagreements have weight 1.
- Weak disagreements have weight $\frac{1}{2}$.

So, distance from $\mathbf{A C B}$ to $\mathbf{A E}=$ strong $+\frac{1}{2} \cdot$ weak $=2+\frac{1}{2} \cdot 4=4$.
(We'll see that the $\frac{1}{2}$ weighting convention makes this a valid metric.)

The head-to-head proxy distance
五

The (- (

A
A.
.
A.

Pa

The head-to-head proxy distance

In Ω_{5}, head-to-head proxies are in 10-dimensional space. The proxy of ACB is:

KEY:

$$
.5=\operatorname{win}
$$

$$
-.5=\text { lose }
$$

$$
0=\text { tie }
$$

	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE
ACB	.5	.5	.5	.5	-.5	.5	.5	.5	.5	0

The head-to-head proxy distance

In Ω_{5}, head-to-head proxies are in 10-dimensional space. The proxy of ACB is:

KEY:

$.5=$ win
$-.5=$ lose
$0=$ tie

	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE
ACB	.5	.5	.5	.5	-.5	.5	.5	.5	.5	0

The head-to-head proxy distance

In Ω_{5}, head-to-head proxies are in 10-dimensional space. The proxy of ACB is:

KEY:

$.5=$ win
$-.5=$ lose
$0=$ tie

	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE
ACB	.5	.5	.5	.5	-.5	.5	.5	.5	.5	0

The head-to-head proxy distance

In Ω_{5}, head-to-head proxies are in 10-dimensional space. The proxy of ACB is:

KEY:

$.5=$ win
$-.5=$ lose
$0=$ tie

	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE
ACB	.5	.5	.5	.5	-.5	.5	.5	.5	.5	0

The head-to-head proxy distance

In Ω_{5}, head-to-head proxies are in 10-dimensional space. The proxies of ACB and AE are:

KEY:

$$
\begin{aligned}
& .5=\text { win } \\
& -.5=\text { lose } \\
& 0=\text { tie }
\end{aligned}
$$

	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE
ACB	.5	.5	.5	.5	-.5	.5	.5	.5	.5	0
AE	.5	.5	.5	.5	0	0	-.5	0	-.5	-.5
dif $=$	0	0	0	0	-.5	.5	1	.5	1	-.5

$d_{H}(\boldsymbol{A C B}, \boldsymbol{A} \boldsymbol{E})=$ the Manhattan distance between their proxies $=2+\frac{4}{2}=4$.

The head-to-head proxy distance

Proposition 4.1. For $\mathcal{B}_{1}, \mathcal{B}_{2} \in \Omega_{n}$, the following are equivalent definitions of $d_{H}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$.

1. The ballot graph distance
2. The Manhattan distance between their head-to-head proxies.
3. The weighted disagreement count.

The head-to-head proxy distance

Proposition 4.1. For $\mathcal{B}_{1}, \mathcal{B}_{2} \in \Omega_{n}$, the following are equivalent definitions of $d_{H}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$.

1. The ballot graph distance
2. The Manhattan distance between their head-to-head proxies.
3. The weighted disagreement count.

The proposition generalizes to ballots that allow ties, like this

$A B \quad A C$ AD AE BC BD BE CD CE DE

$$
(\{\boldsymbol{A}, \boldsymbol{E}\},\{\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}\}) \quad .5 \begin{array}{llllllllll}
.5 & .5 & 0 & 0 & 0 & -.5 & 0 & -.5 & -.5
\end{array}
$$

The head-to-head proxy distance

Proposition 4.1. For $\mathcal{B}_{1}, \mathcal{B}_{2} \in \Omega_{n}$, the following are equivalent definitions of $d_{H}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$.

1. The ballot graph distance
2. The Manhattan distance between their head-to-head proxies.
3. The weighted disagreement count.

The proposition generalizes to ballots that allow ties, like this

$A B \quad A C$ AD AE BC BD BE CD CE DE

$$
\left(\left\{\begin{array}{lllllllllll}
& \{A, E\},\{B, C, D\}) & .5 & .5 & .5 & 0 & 0 & 0 & -.5 & 0 & -.5 \\
-.
\end{array}\right.\right.
$$

The head-to-head proxy distance

Proposition 4.1. For $\mathcal{B}_{1}, \mathcal{B}_{2} \in \Omega_{n}$, the following are equivalent definitions of $d_{H}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$.

1. The ballot graph distance
2. The Manhattan distance between their head-to-head proxies.
3. The weighted disagreement count.

The proposition generalizes to ballots that allow ties, like this

$A B \quad A C$ AD AE BC BD BE CD CE DE

The head-to-head proxy distance

Proposition 4.1. For $\mathcal{B}_{1}, \mathcal{B}_{2} \in \Omega_{n}$, the following are equivalent definitions of $d_{H}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$.

1. The ballot graph distance
2. The Manhattan distance between their head-to-head proxies.
3. The weighted disagreement count.

The proposition generalizes to ballots that allow ties, like this

$A B \quad A C$ AD AE BC BD BE CD CE DE

The generalized ballot graph

$\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}, B_{3}\right\},\left\{C_{1}, C_{2}\right\},\{D\}\right)-\overline{2}\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}, B_{3}, C_{1}, C_{2}\right\},\{D\}\right)$

The generalized ballot graph

$\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}, B_{3}\right\},\left\{C_{1}, C_{2}\right\},\{D\}\right)-\overline{2}\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}, B_{3}, C_{1}, C_{2}\right\},\{D\}\right)$

Adjacent candidate swaps have weight 1, as before:

$$
\left(\left\{A_{1}, A_{2}\right\},\{B\},\{C\},\{D\}\right) \xrightarrow{\frac{1}{2}}\left(\left\{A_{1}, A_{2}\right\},\{B, C\},\{D\}\right) \xrightarrow{\frac{1}{2}}\left(\left\{A_{1}, A_{2}\right\},\{C\},\{B\},\{D\}\right)
$$

The generalized ballot graph

$\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}, B_{3}\right\},\left\{C_{1}, C_{2}\right\},\{D\}\right)-\frac{\overline{2}}{}\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}, B_{3}, C_{1}, C_{2}\right\},\{D\}\right)$

Adjacent candidate swaps have weight 1, as before:

$$
\left(\left\{A_{1}, A_{2}\right\},\{B\},\{C\},\{D\}\right) \frac{\frac{1}{2}}{-}\left(\left\{A_{1}, A_{2}\right\},\{B, C\},\{D\}\right) \frac{\frac{1}{2}}{}\left(\left\{A_{1}, A_{2}\right\},\{C\},\{B\},\{D\}\right)
$$

and truncation has the same weight as before:

$$
\begin{gathered}
(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}\right\},\{\underbrace{\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}})-\frac{\frac{3}{2}}{}\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}, B_{2}\right\},\left\{C_{1}\right\},\left\{C_{2}, C_{3}, C_{4}\right\}\right) \\
\text { Missing from ballot }
\end{gathered}
$$

The Borda proxy distance
? (

\qquad -星 -\square

The Borda proxy distance

In Ω_{5}, Borda proxies are in 5-dimensional space. The proxies of ACB is:

	A	B	C	D	E
ACB	4	2	3	0	0

$$
\begin{array}{lllll}
\text { KEY: } & & \\
\frac{}{4} & \frac{}{3} & \\
& \frac{1}{2}
\end{array}
$$

The Borda proxy distance

In Ω_{5}, Borda proxies are in 5-dimensional space. The proxies of ACB and AE are:

	A	B	C	D	E
ACB	4	2	3	0	0
AE	4	0	0	0	3
dif $=$	0	2	3	0	-3

$d_{B}(\boldsymbol{A C B}, \boldsymbol{A E})=$ the Manhattan distance between their proxies $=8$.

The Borda proxy distance

In Ω_{5}, Borda proxies are in 5 -dimensional space. The proxies of ACB and AE are:

	A	\mathbf{B}	C	D	\mathbf{E}
$\mathbf{A C B}$	4	2	3	0	0
AE	4	0	0	0	3
dif $=$	0	2	3	0	-3

$d_{B}(\boldsymbol{A C B}, \boldsymbol{A} \boldsymbol{E})=$ the Manhattan distance between their proxies $=8$.

Borda vs．head － $1<\frac{d_{B}}{d_{H}} \leq 2$

Borda vs．head－to－head distance

> P ．

（
 ，
\square
\square
\square
\square
里
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

D

\qquad
\qquad
\qquad

$$
0
$$ （

\qquad
\qquad
\qquad

\square
I
\square \square
－

$$
D
$$ \square $+$ \log

 \square \square \square
五 0

 \square \square \square $+\infty$
 －
路
\qquad
\qquad
\qquad
\qquad

\begin{abstract}

Abstract

\square $+$

\end{abstract}

\qquad
\qquad
\square
\square

Abstract

\square

\qquad

Borda vs. head-to-head distance

- $d_{B}=2 d_{H}$ for adjacent pairs.

Borda vs. hea - $1<\frac{d_{B}}{d_{H}} \leq 2$.

${ }^{2} d_{H}$ for adjacent pairs.
路

Borda vs. head-to-head distance

- $1<\frac{d_{B}}{d_{H}} \leq 2$.
- $d_{B}=2 d_{H}$ for adjacent pairs.
- After adding an edge for each nonadjacent swap, d_{B} equals twice the graph distance.

Borda vs. head-to-head distance

- $1<\frac{d_{B}}{d_{H}} \leq 2$.
- $d_{B}=2 d_{H}$ for adjacent pairs.
- After adding an edge for each nonadjacent swap, d_{B} equals twice the graph distance.
- d_{B} penalizes strong disagreements a bit less than $2 d_{H}$.

Borda vs. head-to-head distance

$$
\begin{aligned}
2 d_{H} & =2 \cdot(\text { strong })+1 \cdot(\text { weak }) \\
d_{B} & =\alpha \cdot(\text { strong })+1 \cdot(\text { weak })
\end{aligned}
$$

For $\alpha \in[1,2]$ that depends on the pair of ballots.
.

Abstract

R

For $\alpha, 2]$ that depends on the pair of ballots.

C
(元 (

.
|
\qquad
\qquad
\qquad
\qquad
\qquad \square T (都 -

PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean space, and perform a standard clustering algorithm on the proxies.

1342 votes for $(1,6)$.
759 votes for $(6,1)$.
578 votes for $(3,5)$.
494 votes for (4).
403 votes for $(3,5,7)$. 285 votes for $(1,6,2)$. 254 votes for $(1,6,4)$. 219 votes for $(5,3)$.
173 votes for $(4,2)$.
152 votes for $(6,1,4)$.
144 votes for $(5,3,7)$.
136 votes for (1, 6, 4, 2).
136 votes for $(3,5,4) . \ldots$

PROXY CLUSTERING: Associate each ballot to a proxy point of Euclidean space, and perform a standard clustering algorithm on the proxies.

1342 votes for $(1,6)$.
759 votes for $(6,1)$.
578 votes for $(3,5)$. 494 votes for (4). 403 votes for $(3,5,7)$. 285 votes for (1, 6, 2). 254 votes for ($1,6,4$). 219 votes for $(5,3)$.

Borda or head-tohead proxies?
k-means or k medoids?

All choices yield about the same clusters ($\sim 4 \%$)

173 votes for $(4,2)$.
152 votes for $(6,1,4)$.
144 votes for $(5,3,7)$.
136 votes for (1, 6, 4, 2).
136 votes for $(3,5,4) . \ldots$

Only slight differenced between the methods (averaged over elections from 17 wards of Edinburgh)

Proxy cluster methods

| | MeanB | MeanH | MedoB | MedoH | Slate | Random |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MeanB | 0 | 0.014 | 0.052 | 0.039 | 0.077 | 0.431 |
| MeanH | - | 0 | 0.050 | 0.036 | 0.081 | 0.431 |
| MedoB | - | - | 0 | 0.032 | 0.076 | 0.429 |
| MedoH | - | - | - | 0 | 0.077 | 0.428 |
| Slate | - | - | - | - | 0 | 0.429 |
| Random | - | - | - | - | - | 0.459 |

k-means

- Center = centroid (center of mass)
- Minimizes summed squared L^{2} distances of data points to their centers.

k-medoids

- Centers are data points
- Minimizes summed distance of data points to their center with respect to arbitrary metric (we use L^{1}).

2-medoid clusters with head-to-head proxies.

Medoids: $(3,5,7)$ and $(1,6)$

SLATE CLUSTERING: Find the partition of the candidates into two slates A, B such that the ballots are most starkly divided into "A>B types" and "B>A types". Partition the ballots accordingly.

```
1342 votes for (1, 6).
759 votes for (6, 1).
578 votes for (3, 5).
4 9 4 \text { votes for (4).}
403 votes for (3, 5, 7).
285 votes for (1, 6, 2).
254 votes for (1, 6, 4).
219 votes for (5, 3).
173 votes for (4, 2).
152 votes for (6, 1, 4).
144 votes for (5, 3, 7).
136 votes for (1, 6, 4, 2).
1 3 6 \text { votes for (3, 5, 4)....}
```


SLATE A:

3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)

```
SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)
```

SLATE CLUSTERING: Find the partition of the candidates into two slates A, B such that the ballots are most starkly divided into "A>B types" and "B>A types". Partition the ballots accordingly.

$$
\begin{aligned}
& 1342 \text { votes for }(1,6) . \\
& 759 \text { votes for }(6,1) . \\
& 578 \text { votes for }(3,5) . \\
& 494 \text { votes for }(4) . \\
& 403 \text { votes for }(3,5,7) \text {. } \\
& 285 \text { votes for }(1,6,2) \text {. } \\
& 254 \text { votes for }(1,6,4) \text {. } \\
& 219 \text { votes for }(5,3) .
\end{aligned}
$$

```
SLATE A:
3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)
```

```
SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)
```

METHOD: Exhaustively try all partitions to find the one with the best score.
SCORE $=$ the sum of the distances of the ballots to " $A>B$ " or " $B>A$ " (whichever is closest)

SLATE CLUSTERING: Find the partition of the candidates into two slates A, B such that the ballots are most starkly divided into "A>B types" and "B>A types". Partition the ballots accordingly.

$$
\begin{aligned}
& 1342 \text { votes for }(1,6) . \\
& 759 \text { votes for }(6,1) . \\
& 578 \text { votes for }(3,5) . \\
& 494 \text { votes for }(4) . \\
& 403 \text { votes for }(3,5,7) \text {. } \\
& 285 \text { votes for }(1,6,2) \text {. } \\
& 254 \text { votes for }(1,6,4) \text {. } \\
& 219 \text { votes for }(5,3) .
\end{aligned}
$$

```
SLATE A:
3 = Neil Gardiner (SNP)
5 = Ernesta Noreikiene (SNP)
7 = Evelyn Weston (Grn)
```

```
SLATE B:
1 = Graeme Bruce (C)
2 = Emma Farthing (LD)
4 = Ricky Henderson (Lab)
6= Susan Webber (C)
```

METHOD: Exhaustively try all partitions to find the one with the best score.
SCORE $=$ the sum of the distances of the ballots to " $A>B$ " or " $B>A$ " (whichever is closest)

	$A_{1} A_{2}$	$B_{1} B_{2}$	$B_{1} B_{3}$	$B_{2} B_{3}$	$A_{1} B_{1}$	$A_{1} B_{2}$	$A_{1} B_{3}$	$A_{2} B_{1}$	$A_{2} B_{2}$	$A_{2} B_{3}$
$A_{1} B_{2} A_{2}$.5	-.5	0	.5	.5	.5	.5	.5	-.5	.5
$\left\{A_{1}, A_{2}\right\}>\left\{B_{1}, B_{2}, B_{3}\right\}$	0	0	0	0	.5	.5	.5	.5	.5	.5
$\operatorname{dif}=$.5	-.5	0	.5	0	0	0	0	1	0

METHOD: Exhaustively try all partitions to find the one with the best score.
SCORE $=$ the sum of the distances of the ballots to " $A>B$ " or " $B>A$ " (whichever is closest)

	$A_{1} A_{2}$	$B_{1} B_{2}$	$B_{1} B_{3}$	$B_{2} B_{3}$	$A_{1} B_{1}$	$A_{1} B_{2}$	$A_{1} B_{3}$	$A_{2} B_{1}$	$A_{2} B_{2}$	$A_{2} B_{3}$
$A_{1} B_{2} A_{2}$.5	-.5	0	.5	.5	.5	.5	.5	-.5	.5
$\left\{A_{1}, A_{2}\right\}>\left\{B_{1}, B_{2}, B_{3}\right\}$	0	0	0	0	.5	.5	.5	.5	.5	.5
dif $=$.5	-.5	0	.5	0	0	0	0	1	0

METHOD: Exhaustively try all partitions to find the one with the best score.
SCORE $=$ the sum of the distances of the ballots to " $A>B$ " or " $B>A$ " (whichever is closest)

Borda Scores of Candidates by Cluster

Candidate Mentions Stacked by Ballot Position

