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Quantitative inverse theorem
For f : Z → C with finite support, define

∥f ∥Uk (Z) =
( ∑

n,h1,...,hk∈Z

∏
ω∈{0,1}k

C|ω|f (n + ω · h)
)1/2k

and for f : [N] → C define

∥f ∥Uk [N] =
∥f 1[N]∥Uk (Z)

∥1[N]∥Uk (Z)
.

Improving on Green–Tao–Ziegler (2012), Manners (2018), we have

Theorem (Leng–Sah–Sawhney, 2024)

Let f : [N] → C be 1-bounded, δ ∈ (0, 1/2), and

∥f ∥Uk [N] ≥ δ.

Then there is a nilmanifold G/Γ of step k − 1, of complexity
≤ exp((log(1/δ)Ck )) and of dimension ≤ (log(1/δ))Ck , such that for some
1-Lipschitz F : G/Γ → C and polynomial sequence g : Z → G we have∣∣∣ 1

N

∑
n≤N

f (n)F (g(n)Γ)
∣∣∣ ≥ exp(−(log(1/δ)Ck )).
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Consequences of quasipolynomial inverse theorem

The quasipolynomial inverse theorem leads to several new avenues
and applications:

1 Simpler approach to proving Gowers uniformity.

2 A quantitative theory of higher order Fourier analysis.

3 New qualitative applications in ergodic theory.

3 / 24



Gowers uniformity of the primes

The cornerstone of the study of patterns in the primes is the
Gowers uniformity of the von Mangoldt function.

Improving on Green–Tao–Ziegler (2012), Tao–T. (2021), we have

Theorem (Leng, 2024)

Let
Λw (n) =

∏
p≤w

p

p − 1
1(n,p)=1

be the Cramér model with w = exp((logN)1/10). Then

∥Λ − Λw∥Uk [N] ≪k,A (logN)−A.

This implies an asymptotic for linear equations in the primes with
any power of logarithm savings in the error term (Leng, 2024).

4 / 24



Proof of Gowers uniformity of the primes

Suppose ∥Λ − Λw∥Uk [N] ≥ δ. Green–Tao approach:

1 Show that the inverse theorem continues to hold for
unbounded functions bounded by a pseudorandom measure.

2 Show that the primes are bounded by a pseudorandom
measure.

3 Deduce that Λ − Λw correlates with a nilsequence.

Leng’s result allows bypassing steps 1 and 2 by looking at the
bounded function Λ(n)−Λw (n)

logN .

∥Λ − Λw∥Uk [N] ≥ (logN)−A =⇒
∥∥∥∥Λ − Λw

logN

∥∥∥∥
Uk [N]

≥ (logN)−A−1

=⇒
∣∣∣ 1

N

∑
n≤N

(Λ(n) − Λw (n))F (g(n)Γ)
∣∣∣ ≥ exp(−(log logN)Ck ).
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Proof of Gowers uniformity of the primes

Recall∣∣∣ 1

N

∑
n≤N

(Λ(n) − Λw (n))F (g(n)Γ)
∣∣∣ ≥ exp(−(log logN)Ck ).

By Vaughan’s identity, Λ(n) is a sum of O((logN)O(1)) type I
sums

∑
d |n,d≤N1/3 αd and type II sums

∑
n=ℓm,ℓ∈[N1/3,N2/3] αℓβm.

Also Λw is essentially a type I sum.

Type I and II sum estimates for nilsequences
=⇒ F (g(n)Γ) essentially periodic =⇒∣∣∣ 1

N

∑
n≤N

n≡b (mod r)

(Λ(n) − Λw (n))
∣∣∣ ≫ exp(−O((log logN)Ck ))

for some 1 ≤ b ≤ r .

If we assume GRH, we can conclude.

Otherwise, the Siegel–Walfisz theorem is a bottleneck.
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Siegel model for the primes

Solution: use a refined model. If β is the Siegel zero and χ
(mod q) the corresponding real character (L(β, χ) = 0), define

ΛSiegel
w (n) = Λw (n)(1 − χ(n)nβ−1).

(if no Siegel zero exists, put β = 1, χ = 0).

Then the Landau–Page theorem says∣∣∣ 1

N

∑
n≤N

n≡b (mod r)

(Λ(n) − ΛSiegel
w (n))

∣∣∣ ≪ exp(−(logN)c).
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Removing the Siegel model

ΛSiegel
w is essentially a type I sum, so the previous argument gives

∥Λ − ΛSiegel
w ∥Uk [N] ≪ exp(−(logw)ck ) ≪A (logN)−A.

By the triangle inequality for Gowers norms, suffices to show

∥Λw − ΛSiegel
w ∥Uk [N] ≪A (logN)−A.

Since Λw (n) − ΛSiegel
w (n) = Λw (n)χ(n)nβ−1, we are left with

estimating

∥χ∥Uk [N] ≍k

 1

Nk+1

∑
n,h1,...,hk∈[N]

∏
ω∈{0,1}k

χ(n + ω · h)

1/2k

.

By the Weil bound, |
∑

n≤N χ(P(n))| ≪degP Nq−1/2 unless P(y)
is a square modulo q. Using this, we get

∥χ∥Uk [N] ≪ q−ck ≪A (logN)−A

since q ≫A (logN)A by Siegel’s bound.
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A general recipe

The same recipe can be used to give good quantitative bounds for
the Gowers norms of any “nice” arithmetic function f , e.g.
f (n) = d(n) (divisor function),
f (n) = r(n) (representation function of sums of two squares),
f (n) = µ(n) (Möbius function).

1 Find a model function fmodel that mimics the distribution of f
in APs (f − fmodel has negligible mean in arithmetic
progressions).

2 In practice, f (n), fmodel(n) ≪ d(n)C for some C . Tail bounds
for d(n) =⇒ f (n), fmodel(n) ≪ (logN)A for some A outside
a negligible set of n.

3 Apply the quasipolynomial inverse theorem to
(f (n) − fmodel(n))/(logN)A.

4 In practice, f , fmodel are linear combinations of type I and II
sums, so can use the equidistribution theory of nilsequences to
conclude.
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Quantitative higher order Fourier analysis

Let’s then look at how the quantitative inverse theorem can be
used to prove quantitative results on patterns.

Some results in higher order Fourier analysis of the primes:

1 Linear patterns in primes (Green–Tao–Ziegler).

2 Polynomial patterns in primes (Tao–Ziegler).

3 Positive density sets contain APs with difference p − 1
(Frantzikinakis–Host–Kra, Wooley–Ziegler).

(1) was quantified by Leng (2024), (3) was quantified by Tao–T.
(2021). What about (2)?
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Polynomial progressions in the primes

Improving on Tao–Ziegler (2018), we have

Theorem (Matthiesen–T.–Wang, 2024)

Let P1, . . . ,Pk be polynomials of degree ≤ d , and suppose
deg(Pi − Pj) = d for i < j . Then

1

Nd+1

∑
n≤Nd

∑
m≤N

Λ(n + P1(m)) · · ·Λ(n + Pk(m)) =
∏
p

βp + O((logN)−A),

where βp are suitable local factors.

A similar result for the Möbius function, under a weaker hypothesis
on the polynomials (for some ℓ we have deg(Pℓ − Pi ) = d , i ̸= ℓ).

For Möbius function, a qualitative result was known for any
polynomials with Pi − Pj nonconstant
(Matomäki–Radziwi l l–Tao–T.–Ziegler, 2020).
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Proof sketch

Consider a model case

1

N3

∑
n≤N2

∑
m≤N

Λ(n)Λ(n + m2)Λ(n + 2m2).

For j ∈ {1, 2, 3}, decompose Λ = ΛSiegel
wj + Ej . Get a Siegel main

term

1

N3

∑
n≤N2

∑
m≤N

ΛSiegel
w1

(n)ΛSiegel
w2

(n + m2)ΛSiegel
w3

(n + 2m2).

and 7 error terms such as

1

N3

∑
n≤N2

∑
m≤N

ΛSiegel
w1

(n)E2(n + m2)ΛSiegel
w3

(n + 2m2).
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Proof sketch
We have

ΛSiegel
w3

(n) = Λw3(n)(1−χ(n)nβ−1) ≈
∏
p≤w

p

p − 1

∑
P+(d)≤w3

d≤w
(log log N)2

3

µ(d)1d|n(1−χ(n)nβ−1).

Hence, to handle the error term it suffices to show that

Sd :=
1

N3

∑
n≤N2

∑
m≤N

ΛSiegel
w1

(n)E2(n+m2)1d |n+2m2 ≪A (logN)−A/d .

By a generalised von Neumann theorem of Peluse,∣∣∣ 1

Nd+1

∑
n≤Nd ,m≤N

f1(n+P1(m)) · · · fk(n+Pk(m))
∣∣∣ ≪P1,...,Pk

∥fk∥ckUs [Nd ]
.

Hence,

Sd ≪ dOk (1)∥E2∥Us [N] ≪ w
Ok ((log logN)2)
3 exp(−(logw2)ck )

Done if w2 = w
(log logN)Bk
3 , w3 = exp((log logN)Bk ).

Similarly set w1 = w
(log logN)Bk
2 to ensure the other error terms are
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Proof sketch

We are left with the Siegel term

1

N3

∑
n≤N2

∑
m≤N

ΛSiegel
w1

(n)ΛSiegel
w2

(n + m2)ΛSiegel
w3

(n + 2m2).

Decompose ΛSiegel
wj (n) = Λwj (n) − Λwjχ(n)nβ−1. Get a main term

M =
1

N3

∑
n≤N2

∑
m≤N

Λw1(n)Λw2(n + m2)Λw3(n + 2m2).

and error terms such as

1

N3

∑
n≤N2

∑
m≤N

Λw1(n)χ(n)nβ−1Λw2(n + m2)Λw3(n + 2m2).

These can be evaluated using basic sieve theory, the main term M
gives (1 + O((logN)−A))

∏
p βp and the error term gives

something that is smaller by a factor of (logN)−A due to
cancellation in character sums.
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Multiple ergodic averages

Switching gears, let’s look at a (qualitatve) ergodic theory problem
that boils down to strong quantitative estimates for Gowers norms.

Throughout, let (X ,T , ν) be a measure-preserving system and
Pi ∈ Z[y ].

Conjecture (Furstenberg–Bergelson–Leibman)

lim
N→∞

1

N

∑
n≤N

f1(TP1(n)x) · · · fk(TPk (n)x)

exists for ν-almost every x ∈ X .

Known in the cases where k = 2 and either P1 or P2 has
degree ≤ 1 (Bourgain, Krause–Mirek–Tao).

L2-convergence is known (Host–Kra, Leibman)

15 / 24



Möbius ergodic averages

What about multiple ergodic averages with an arithmetic weight?

Theorem (T., 2024)

Let k ∈ N and P1, . . . ,Pk ∈ Z[y ]. Let (X ,T , ν) be a
measure-preserving system, and let fi ∈ L∞(X ). Then

lim
N→∞

1

N

∑
n≤N

µ(n)f1(TP1(n)x) · · · fk(TPk (n)x) = 0

for ν-almost every x ∈ X .

This gives an analogue of the Furstenberg–Bergelson–Leibman
conjecture for µ.

Taking k = 2, P1(y) = y ,P2(y) = 2y solves a problem of
Frantzikinakis.

Should be possible to also handle commuting transformations.

Get a polylogarithmic decay rate to 0.
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Prime ergodic averages

What about prime weights?

Theorem (Krause–Mousavi–Tao–T., 2024+)

Let P ∈ Z[y ] with degP > 1. Let (X ,T , ν) be a
measure-preserving system, and let f1, f2 ∈ L∞(X ). Then

lim
N→∞

1

π(N)

∑
p≤N

f1(T px)f2(TP(p)x)

exists for ν-almost every x ∈ X .

Handling the prime weight requires in particular handling the
constant weight 1, so we need to use additional tools (machinery
of Krause–Mirek–Tao).
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Lacunary subsequence trick

We sketch the proof of the Möbius result.

Let f1, . . . , fk ∈ L∞(X ) and

A(N, x) :=
1

N

∑
n≤N

µ(n)f1(TP1(n)x) · · · fk(TPk (n)x).

• We have the slow variation property

A((1 + ε)N, x) = A(N, x) + O(ε),

so it suffices to show that, for all ε > 0, limj→∞ A((1 + ε)j , x)
exists for almost every x . As a model case, consider showing that

lim
j→∞

A(2j , x) exists almost everywhere.
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Applying Borel–Cantelli

Let

A(N, x) :=
1

N

∑
n≤N

µ(n)f1(TP1(n)x) · · · fk(TPk (n)x).

As a model case, consider showing that

lim
j→∞

A(2j , x) exists almost everywhere.

• By Chebyshev’s inequality,

ν({x ∈ X : |A(2j , x)| ≥ ε}) ≤ ε−2

∫
X
|A(2j , x)|2 dν(x).

• If we show that∫
X
|A(N, x)|2 dν(x) ≪ (logN)−2,

then the existence of limj→∞ A(2j , x) follows from the
Borel–Cantelli lemma since

∑
j≥1 1/(log 2j)2 < ∞.

=⇒ Need strong quantitative bounds for the L2-averages.
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Reduction to additive combinatorics

Want to show that∫
X
|A(N, x)|2 dν(x) ≪ (logN)−2,

where A(N, x) = 1
N

∑
n≤N µ(n)f1(TP1(n)x) · · · fk(TPk (n)x).

• Equivalent to showing that for all ϕ with ∥ϕ∥L∞(X ) = 1,∫
X
ϕ(x)A(N, x) dν(x) ≪ (logN)−2.

• Since ν is measure-preserving, reduce to showing that∫
X

1

Nd+1

∑
m≤Nd

∑
n≤N

µ(n)ϕ(Tmx)f1(Tm+P1(n)x) · · · fk(Tm+Pk (n)x) dν(x)

≪ (logN)−2.

• It now suffices to give a good upper bound for

1

Nd+1

∑
m≤Nd

∑
n≤N

µ(n)g0(m)g1(m + P1(n)) · · · gk(m + Pk(n))

for any 1-bounded g0, g1, . . . , gk : Z → C.
20 / 24



Gowers norms

By van der Corput’s inequality and PET induction, can show that
for some s ∈ N, cs > 0, we have∣∣∣ 1

Nd+1

∑
m≤Nd

∑
n≤N

µ(n)g0(m)g1(m + P1(n)) · · · gk(m + Pk(n))
∣∣∣ ≪ ∥µ∥csUs [N].

Using the bound ∥µ∥Us [N] ≪A (logN)−A (Leng, 2024), the proof
can now be concluded.
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A second approach
We can use a weaker norm to avoid these deep Gowers norms
bounds in the case where the Pi have distinct degrees.
This turns out to be helpful for some applications.• For
f : [N] → C, let

∥f ∥us [N] := sup
P∈R[y ]

degP≤s−1

∣∣∣ 1

N

∑
n≤N

f (n)e(P(n))
∣∣∣.

• The us [N] norm is weaker than the Us [N] norm for s > 2; for
s = 2 they are equivalent up to polynomial losses.
• us [N] norm much easier to bound than Us [N] norm: work of
Vinogradov (1930s) =⇒ ∥µ∥us [N] ≪A (logN)−A.

Proposition (T., 2024)

Let P1, . . . ,Pk ∈ Z[y ] have distinct degrees. Let
θ, g0, . . . , gk : Z → C be 1-bounded. Then∣∣∣ 1

Nd+1

∑
m≤Nd

∑
n≤N

θ(n)g0(m)g1(m + P1(n)) · · · gk(m + Pk(n))
∣∣∣ ≪ ∥θ∥ck

uk+1[N]
.
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A generalised von Neumann theorem

Proposition (T., 2024)

Let P1, . . . ,Pk ∈ Z[y ] have distinct degrees. Let θ, g0, . . . , gk : Z → C be
1-bounded. Then∣∣∣ 1

Nd+1

∑
m≤Nd

∑
n≤N

θ(n)g0(m)g1(m + P1(n)) · · · gk(m + Pk(n))
∣∣∣ ≪ ∥θ∥ck

uk+1[N]
.

Peluse’s inverse theorem: when θ = 1, the LHS can be bounded in terms
of the average of g1 over short intervals (and arithmetic progressions).

Proof sketch:
• Induction on k. For k = 1, use classical Fourier analysis.
• Use van der Corput in m to eliminate θ.
• Apply Peluse’s theorem to conclude that ∆hg1 is locally constant for
many h, so g1 is locally linear (in short intervals, g1 is a linear phase).
• Apply van der Corput again to conclude that g1 must be a major arc
linear phase in short intervals.
• There are not too many major arc phases, so by pigeonholing can
assume that g1 is equal to a global major arc phase e(αn). Now apply
induction.
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The prime case

For proving the almost everywhere convergence of

lim
N→∞

1

π(N)

∑
p≤N

f1(T px)f2(TP(p)x),

there are three main ingredients:

A version of Peluse’s inverse theorem over the primes,

An Lp-improving estimate for primes evaluated at polynomials,

A major/minor arc analysis (in the spirit of
Krause–Mirek–Tao).

Thank you!
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