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Motivation

System of N interacting particles described by

stochastic McKean differential equations

dXit = −κ

N

N∑
j 6=i

∇D(Xit − Xjt) dt +
√
2 dBit, i = 1, . . . ,N.

• Xit is the ith particle at time t ≥ 0,
• Xit ∈ U := [− L

2 ,
L
2 ]
d with periodic boundary, i.e. flat d-dim torus,

• D : U→ R (periodic) interaction potential, κ > 0 interaction strength,
• Bit independent Brownian motions
• Applications: Kuramoto model of synchronization D(x) = − cos( 2πxL ),
Hegselmann-Krause model for opinion formation,
biomechanics etc.
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Motivation

System of N interacting particles on network described by

stochastic McKean differential equations

dXit = −κ

N

N∑
j 6=i

Aij∇D(Xit − Xjt) dt +
√
2 dBit, i = 1, . . . ,N.

• Xit is the ith graph node at time t ≥ 0,
• Xit ∈ U := [− L

2 ,
L
2 ]
d with periodic boundary, i.e. flat d-dim torus,

• D : U→ R (periodic) interaction potential, κ > 0 interaction strength,
• Bit independent Brownian motions
• Aij ∈ {0, 1} describes graph edges.
• Applications: E.g. opinion formation on social networks.
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Overview

Goal:
Show exponential decay for McKean–Vlasov equations which describe interacting
particles on large network/graph structures in the mean-field limit.

Method:
Incorporate graph operators as graph limits in the Vlasov interaction term and
apply the entropy method to show decay.
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Outline

Part 1: Graph limit theory

• Dense graphs and graphons
• The problem of sparse graphs
• Graphops

Part 2: McKean–Vlasov equations on large networks

• Existence
• All-to-all coupling
• Global stability via entropy methods
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Part 1: Graph limit theory
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Graph limits

Graph GN = (VN, EN), Adjacency matrix AN := (Aij)i,j=1...,N
Question: How to formulate limN→∞ AN?
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Graph limits

GN = (VN, EN), Adjacency matrix AN := (Aij)i,j=1...,N.

Question: How to formulate limN→∞ AN?

• Dense graphs |EN| ≈ |VN|2:
Graphons, symm. and measurable W(·, ·) : [0, 1]2 → [0, 1]
[Borgs, Chayes et al. 2008, 2012] introduce cut-metric

• Intermediate graphs |VN| � |EN| � |VN|2:
Lp-graphons (e.g. power-law graphs) as rescaled graphon convergence
[Borgs, Chayes, et al. 2019]

• Sparse graphs |EN| ≤ |VN|:
• Bounded degree: measure-based graphings [Benjamini-Schramm, 2001]
• Bounded average degree
• ...
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Graph limits

Shortcomings of mentioned limit theories:

• Graphons, Lp-graphons, graphings require separate convergence theories.
• Many sparse and intermediate graphs not included

Solution: Graphops and action convergence – Unifying graph limit theory.
[Backhausz, Szegedy 2018]
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Graphops

Question: How can we compare two graphs GN11 and GN22 if N1 6= N2?

Solution: Describe each graph GN via “actions” of adjacency matrix AN:

• take an arbitrary column vector v ∈ RN, compute ANv.
• consider the matrix Mv := [v,ANv] ∈ RN×2.
• for fixed v, sample rows of Mv uniformly =⇒ generates prob. measure ρNv on
R2 (random matrix theory).

• Graph GN represented as family of measures
{ρNv : v ∈ RN} on R2.

For N→ ∞: Limit via convergence of probability measures. =⇒ Limiting
measure family represents operator.
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Graphops

Graphs as operators =⇒ rather general graph limit theory based on Borel
probability space (Ω,A, µ).

Definition
An operator A : L∞(Ω) → L1(Ω) is called a graphop if it is linear, bounded,
self-adjoint (w.r.t. (·, ·)L2(Ω)) and positivity preserving.

Example
Let Ω = [0, 1] and W : [0, 1]2 → R, Lp-graphon, p ∈ [1,∞].

(AWρ)(ξ) :=
∫
[0,1]W(ξ, ξ̃)ρ(ξ̃)dξ̃ satisfies ‖AW‖∞→1 ≤ ‖W‖Lp([0,1]2)

Example
Finite graph GN → adjacency matrix AN → step function graphon→ integral
operator.
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Graphops

Example
The spherical graphop:

AS : L2(S2, µ) → L2(S2, µ),

(ASρ)(ξ) :=
∫
ξ⊥

ρ dνξ(ξ̃),

• µ is the uniform probablity measure on S2

• ξ⊥ := {ξ̃ ∈ S2 | ξT ξ̃ = 0}.
• νξ is the uniform probability measure on the (1-dim)
submanifold ξ⊥.

Not a graphing (degree not bounded),
not yet a graphon (not dense enough)!

ξ

ξ⊥
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Analytical language of graphons and graphops well suited to be incorporated into
dynamical framework.

Graphons:

• “The mean field analysis for the Kuramoto model on graphs”
[Chiba, Medvedev 2019]

• “Consensus Formation in First-Order Graphon Models with Time-Varying
Topologies” [Bonnet, Duteil, Sigalotti]

Graphops:

• “Network dynamics on graphops” [Kuehn 2020]
• “Graphop mean-field limits for Kuramoto-type models” [Gkogkas, Kuehn 2022]
• “Vlasov equations on digraph measures” [Kuehn, Xu 2022]
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Part 2: Graphop McKean–Vlasov
equations
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Graphop McKean–Vlasov equation

dXit = −κ

N

N∑
j6=i

Aij∇xD(Xit − Xjt) dt +
√
2 dBit, i = 1, . . . ,N.

Mean-field formulation N→ ∞ of (SDE) formally leads to

graphop McKean–Vlasov equation

∂tρ = κdivx(ρV[A](ρ)) + ∆xρ, (MVE)

V[A](ρ)(t, x, ξ) :=
∫
U
∇xD(x − x̃)(Aρ)(t, x̃, ξ)dx̃.

• ρ(t, x, ξ) depends on time t, x ∈ U := [− L
2 ,

L
2 ]
d flat torus, ξ ∈ Ω with prob.

space (Ω,A, µ).
• A is a graphop acting on graph variable function.
• D ∈ W2,∞(U), e.g. D(x) = − cos(( 2πL )x).
• κ > 0 relative interaction strength.

Tobias Wöhrer, TUM 17



Existence of classical solutions

{
∂tρ = κdivx(ρV[A](ρ)) + ∆xρ, t≥0,
ρ(0) = ρ0.

Def.: ρ0 is admissible if, for a.e. ξ ∈ Ω, ρ0(·, ξ) ∈ H3+d(U) ∩ Pac(U) and for each
x ∈ U, ρ0(x, ·) ∈ L∞(Ω, µ).

Proposition
Let ρ0 be admissible and A a graphop. Then ρ(·, ·, ξ) is a unique classical solution
for a.e. ξ ∈ Ω and ρ(t, ·, ·) ∈ Pac(U× Ω). If (A1Ω)(ξ) ≤ C, then ρ(t, x, ·) ∈ L∞(Ω).

‖A‖p→q := sup
v∈L∞(Ω)

‖Av‖Lq(Ω)

‖v‖Lp(Ω)
, p,q ∈ [1,∞].

• ξ-regularity expected to be improvable→ Open Problem.
E.g. ‖A‖2→2 < ∞ =⇒ ρ(t, x, ·) ∈ L2(Ω), t > 0.

• Difficulty: No direct regularization effect in ξ variable.
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Entropy method

All-to-all coupling:
Aρ = ρ, ρ(t, x, ξ) ' ρ(t, x) and V[A](ρ) = ∇xD ? ρ.

Relative entropy functional with steady state ρ∞ := 1
Ld

H(ρ|ρ∞) :=

∫
U
ρ log(

ρ

ρ∞
) dx

• H(ρ∞|ρ∞) = 0
• Csiszár-Kullback-Pinsker inequality

‖ρ− ρ∞‖2L1(U) ≤ 2H(ρ|ρ∞). (CKP)

• log-Sobolev inequality

H(ρ|ρ∞) ≤ L2

4π2

∫
U
|∇x log(ρ)|2ρdx. (Sob)

Idea: ∂tH(ρ(t)|ρ∞) ≤ −αH(ρ(t)|ρ∞) for solutions of (MVE).
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All-to-all coupling

Proposition (Carrillo, Gvalani et al. 2020)
Let ρ0 ∈ H3+d(U) ∩ Pac(U) and H(ρ0|ρ∞) < ∞. If

0 < κ <
2π2

L2‖∆xD‖L∞(U)
,

then the solution ρ is exponentially converging to ρ∞ := 1
Ld with decay estimate

H(ρ(t)|ρ∞) ≤ e−αtH(ρ0|ρ∞), t ≥ 0,

where
α :=

4π2

L2
− 2κ‖∆xD‖L∞(U) > 0.
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All-to-all coupling

Proof.

d
dt
H(ρ(t)|ρ∞) =

∫
U

(
∆xρ+ κ∇x(ρ∇x(D ? ρ))

)
log(

ρ

ρ∞
) dx

+

∫
U
ρ
ρ∞
ρ

1
ρ∞

(
∆xρ+ κ∇x(ρ∇x(D ? ρ))

)
dx︸ ︷︷ ︸

=0

= −
∫
U
|∇xρ|2

1
ρ
dx − κ

∫
U
ρ∇x(D ? ρ)(

ρ∞
ρ

)∇x(
ρ

ρ∞
) dx

= −
∫
U
|∇x log(ρ)|2ρdx + κ

∫
U
ρ(∆xD ? ρ) dx.

First term: log-Sobolev inequality.
Second term: Replace both ρ by ρ− ρ∞ then Hölder and (CKP)

d
dt
H(ρ(t)|ρ∞) ≤ (−4π

2

L2
+ 2κ‖∆xD‖∞)H(ρ(t)|ρ∞).
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Entropy method for graphop case

Definition
For the probability space (Ω,A, µ) the relative entropy for heterogeneous
couplings is chosen as

Ĥ(ρ|ρ∞) :=

∫
Ω

∫
U
ρ log(

ρ

ρ∞
)dx dµ(ξ).

Definition
The numerical radius of a graphop ‖A‖2→2 < ∞ is given as

n(A) := sup{(Af , f )L2 | f ∈ L2(Ω), ‖f‖L2(Ω) = 1}.

It holds that n(A) ≤ ‖A‖2→2 ≤ 2n(A).
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Theorem (Kuehn, W. 2023)

Let ρ0 be admissible and satisfy Ĥ(ρ0|ρ∞) < ∞. Let the graphop A satisfy
n(A) < ∞. If

κ <
2π2

L2‖∆xD‖L∞(U)n(A)
,

then, the solution to (MVE) is exponentially converging to ρ∞ := 1
Ld with estimate

Ĥ(ρ(t)|ρ∞) ≤ e−α̂(A)tĤ(ρ0|ρ∞), t ≥ 0,

where
α̂(A) := 4π2

L2
− 2κ‖∆xD‖L∞(U)n(A) > 0.

Remark: If A has graphon kernel W with ‖W‖2 ≤ ∞. Then we can replace
n(A) = ‖W‖2.
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Proof.
As in all-to-all case:

d
dt
Ĥ(ρ|ρ∞) ≤ −4π

2

L2
Ĥ(ρ|ρ∞) + κ

∫
Ω

∫
U
ρ[∆xD ? (Aρ)] dx dµ(ξ).

Second term: A is a linear bounded operator acting solely on the network
variable ξ =⇒ ∆xD ? (Aρ) = A (∆xD ? ρ).

κ

∫
Ω

∫
U
ρ(∆xD ? (Aρ)) dx dµ(ξ)

≤ κ‖∆xD‖L∞(U)

∫
Ω
(A‖ρ− ρ∞‖L1(U)‖ρ− ρ∞‖L1(U) dµ(ξ)

≤ κ‖∆xD‖L∞(U)n(A)
∫
Ω
‖ρ− ρ∞‖2L1(U) dµ(ξ)

(CKP)
≤ 2κ‖∆xD‖L∞(U)n(A)Ĥ(ρ|ρ∞)

=⇒ d
dt
Ĥ(ρ(t)|ρ∞) ≤ −α̂(A)Ĥ(ρ(t)|ρ∞), t ≥ 0.

Remark: More general graphops ‖A‖p→p∗ < ∞ do not work with our method.
Ineq. cannot be closed!
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Example
Let AS be the spherical graphop. One
can show that ‖AS‖2→2 = 1 and hence
Theorem 7 yields decay of solutions of
(MVE) with explicit rate

α̂(AS) :=
4π2

L2
−2κ‖∆xD‖L∞(U) > 0, provided κ <

2π2

L2‖∆xD‖L∞(U)
.

ξ

ξ⊥
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Sakaguchi–Kuramoto model with frequency distribution

∂tρ = ∂x(−ωρ+ κρV[A,g](ρ)) + ∂xxρ, t ≥ 0,

ρ(0) = ρ0, V[A,g](ρ) :=
∫
R
(sin ∗Aρ) gdω.

• ρ(t, x, ξ, ω).
• Phase x ∈ T1 ' [−π, π], intrinsic frequency ω ∈ R.
• g is frequency density function determined via ρ0.
• Vlasov term also dependent on g.

Result of Theorem 7 extends to this equation for arbitrary ‖g‖L1(dw) = 1 using

H(ρ|ρ∞) :=

∫
R

∫
U
ρ log(

ρ

ρ∞
)dxgdω.

Decay rate independent of g (but not sharp).
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Conclusion

• Introduced graph limit theory of graphops and action convergence which is
able to deal with dense, intermediate and sparse graph structures in an
analytical framework.

• Incorporated graphops into McKean–Vlasov equations, including the
Sakaguchi–Kuramoto model, to express coupling for a wide range of graph
structures in the mean-field limit.

• Extended the entropy method to show global stability of chaotic steady
state for L2 graphops under weak coupling.
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Thank you for your attention.
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