Global stability for McKean–Vlasov equations on large networks

Tobias Wöhrer in collaboration with **Christian Kuehn** (TUM)

TU Munich Department of Mathematics Multiscale and Stochastic Dynamics

Supported by the Schrödinger Program of the Austrian Science Fund

Motivation

Motivation

System of N interacting particles described by

stochastic McKean differential equations

$$\mathrm{d}X_t^i = -\frac{\kappa}{N}\sum_{j\neq i}^N \nabla D(X_t^j - X_t^j) \,\mathrm{d}t + \sqrt{2}\,\mathrm{d}B_t^i, \quad i = 1,\ldots,N.$$

- X_t^i is the *i*th particle at time $t \ge 0$,
- $X_t^i \in U := [-\frac{L}{2}, \frac{L}{2}]^d$ with periodic boundary, i.e. flat *d*-dim torus,
- + $D: U \rightarrow \mathbb{R}$ (periodic) interaction potential, $\kappa > 0$ interaction strength,
- $\cdot B_t^i$ independent Brownian motions
- Applications: Kuramoto model of synchronization $D(x) = -\cos(\frac{2\pi x}{L})$, Hegselmann-Krause model for opinion formation, biomechanics etc.

System of N interacting particles on network described by

stochastic McKean differential equations

$$\mathrm{d}X_t^i = -\frac{\kappa}{N}\sum_{j\neq i}^N \mathbf{A}_{ij}\nabla D(X_t^i - X_t^j) \,\mathrm{d}t + \sqrt{2}\,\mathrm{d}B_t^i, \quad i = 1, \dots, N.$$

- X_t^i is the *i*th graph node at time $t \ge 0$,
- $X_t^i \in U := [-\frac{L}{2}, \frac{L}{2}]^d$ with periodic boundary, i.e. flat *d*-dim torus,
- + $D: U \rightarrow \mathbb{R}$ (periodic) interaction potential, $\kappa > 0$ interaction strength,
- $\cdot B_t^i$ independent Brownian motions
- $A_{ij} \in \{0, 1\}$ describes graph edges.
- Applications: E.g. opinion formation on social networks.

Overview

Goal:

Show exponential decay for *McKean–Vlasov equations* which describe interacting particles on large network/graph structures in the mean-field limit.

Method:

Incorporate graph operators as graph limits in the Vlasov interaction term and apply the entropy method to show decay.

Outline

Part 1: Graph limit theory

- Dense graphs and graphons
- The problem of sparse graphs
- Graphops

Part 2: McKean–Vlasov equations on large networks

- Existence
- All-to-all coupling
- Global stability via entropy methods

Part 1: Graph limit theory

Graph limits

Graph $\mathcal{G}^N = (\mathcal{V}^N, \mathcal{E}^N)$, Adjacency matrix $A^N := (A_{ij})_{i,j=1...,N}$ **Question:** How to formulate $\lim_{N\to\infty} A^N$?

Graph limits

 $\mathcal{G}^{N} = (\mathcal{V}^{N}, \mathcal{E}^{N})$, Adjacency matrix $A^{N} := (A^{ij})_{i,j=1...,N}$.

Question: How to formulate $\lim_{N\to\infty} A^N$?

- Dense graphs $|\mathcal{E}^N| \approx |\mathcal{V}^N|^2$: Graphons, symm. and measurable $W(\cdot, \cdot) : [0, 1]^2 \rightarrow [0, 1]$ [Borgs, Chayes et al. 2008, 2012] introduce cut-metric
- Intermediate graphs $|\mathcal{V}^N| \ll |\mathcal{E}^N| \ll |\mathcal{V}^N|^2$: L^p -graphons (e.g. power-law graphs) as rescaled graphon convergence [Borgs, Chayes, et al. 2019]
- Sparse graphs $|\mathcal{E}^N| \le |\mathcal{V}^N|$:
 - · Bounded degree: measure-based graphings [Benjamini-Schramm, 2001]
 - Bounded average degree

• ...

Shortcomings of mentioned limit theories:

- Graphons, *L^p*-graphons, graphings require separate convergence theories.
- Many sparse and intermediate graphs not included

Solution: Graphops and *action convergence* – Unifying graph limit theory. [Backhausz, Szegedy 2018] **Question:** How can we compare two graphs $\mathcal{G}_1^{N_1}$ and $\mathcal{G}_2^{N_2}$ if $N_1 \neq N_2$?

Solution: Describe each graph \mathcal{G}^N via "actions" of adjacency matrix A^N :

- take an arbitrary column vector $v \in \mathbb{R}^N$, compute $A^N v$.
- consider the matrix $M_v := [v, A^N v] \in \mathbb{R}^{N \times 2}$.
- for fixed v, sample rows of M_v uniformly \implies generates prob. measure ρ_v^N on \mathbb{R}^2 (random matrix theory).
- Graph \mathcal{G}^N represented as family of measures $\{\rho_v^N : v \in \mathbb{R}^N\}$ on \mathbb{R}^2 .

For $N \to \infty$: Limit via convergence of probability measures. \implies Limiting measure family represents operator.

Graphs as operators \implies rather general graph limit theory based on Borel probability space $(\Omega, \mathcal{A}, \mu)$.

Definition

An operator $A : L^{\infty}(\Omega) \to L^{1}(\Omega)$ is called a graphop if it is linear, bounded, self-adjoint (w.r.t. $(\cdot, \cdot)_{L^{2}(\Omega)}$) and positivity preserving.

Example

Let
$$\Omega = [0, 1]$$
 and $W : [0, 1]^2 \to \mathbb{R}$, L^p -graphon, $p \in [1, \infty]$.

 $(\mathsf{A}_W\rho)(\xi) := \int_{[0,1]} W(\xi,\tilde{\xi})\rho(\tilde{\xi}) \mathrm{d}\tilde{\xi} \text{ satisfies } \|\mathsf{A}_W\|_{\infty \to 1} \le \|W\|_{L^p([0,1]^2)}$

Example

Finite graph $\mathcal{G}^N \to adjacency \text{ matrix } A^N \to step \text{ function graphon } \to \text{ integral operator.}$

Graphops

Example The spherical graphop:

$$A_{\mathbb{S}} : L^{2}(\mathbb{S}^{2}, \mu) \to L^{2}(\mathbb{S}^{2}, \mu),$$
$$(A_{\mathbb{S}}\rho)(\xi) := \int_{\xi^{\perp}} \rho \, \mathrm{d}\nu_{\xi}(\tilde{\xi}),$$

- $\cdot \ \mu$ is the uniform probablity measure on \mathbb{S}^2
- $\cdot \ \xi^{\perp} := \{ \tilde{\xi} \in \mathbb{S}^2 \mid \xi^{\mathsf{T}} \tilde{\xi} = 0 \}.$
- ν_{ξ} is the uniform probability measure on the (1-dim) submanifold ξ^{\perp} .

Not a graphing (degree not bounded), not yet a graphon (not dense enough)!

Analytical language of graphons and graphops well suited to be incorporated into dynamical framework.

Graphons:

- "The mean field analysis for the **Kuramoto model** on graphs" [Chiba, Medvedev 2019]
- **"Consensus Formation** in First-Order Graphon Models with Time-Varying Topologies" [Bonnet, Duteil, Sigalotti]

Graphops:

- "Network dynamics on graphops" [Kuehn 2020]
- "Graphop mean-field limits for Kuramoto-type models" [Gkogkas, Kuehn 2022]
- "Vlasov equations on digraph measures" [Kuehn, Xu 2022]

Part 2: Graphop McKean–Vlasov equations

Graphop McKean-Vlasov equation

$$\mathrm{d}X_t^i = -\frac{\kappa}{N} \sum_{j \neq i}^N \mathbf{A}_{ij} \nabla_X D(X_t^i - X_t^j) \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}B_t^i, \quad i = 1, \dots, N.$$

Mean-field formulation $N \rightarrow \infty$ of (SDE) formally leads to

graphop McKean-Vlasov equation

$$\partial_{t}\rho = \kappa \operatorname{div}_{x}(\rho V[A](\rho)) + \Delta_{x}\rho, \qquad (\mathsf{MVE})$$
$$V[A](\rho)(t, x, \xi) := \int_{U} \nabla_{x} D(x - \tilde{x})(A\rho)(t, \tilde{x}, \xi) \mathrm{d}\tilde{x}.$$

- $\rho(t, x, \xi)$ depends on time $t, x \in U := \left[-\frac{L}{2}, \frac{L}{2}\right]^d$ flat torus, $\xi \in \Omega$ with prob. space $(\Omega, \mathcal{A}, \mu)$.
- A is a graphop acting on graph variable function.
- $D \in W^{2,\infty}(U)$, e.g. $D(x) = -\cos((\frac{2\pi}{L})x)$.
- + $\kappa > 0$ relative interaction strength.

Existence of classical solutions

$$\begin{split} \partial_t \rho &= \kappa \operatorname{div}_{\mathsf{X}}(\rho \mathsf{V}[\mathsf{A}](\rho)) + \Delta_{\mathsf{X}} \rho, \quad \mathsf{t} \ge \mathsf{0}, \\ \rho(\mathsf{0}) &= \rho_\mathsf{0}. \end{split}$$

Def.: ρ_0 is admissible if, for a.e. $\xi \in \Omega$, $\rho_0(\cdot, \xi) \in H^{3+d}(U) \cap \mathcal{P}_{ac}(U)$ and for each $x \in U$, $\rho_0(x, \cdot) \in L^{\infty}(\Omega, \mu)$.

Proposition

Let ρ_0 be admissible and A a graphop. Then $\rho(\cdot, \cdot, \xi)$ is a unique classical solution for a.e. $\xi \in \Omega$ and $\rho(t, \cdot, \cdot) \in \mathcal{P}_{ac}(U \times \Omega)$. If $(Al_{\Omega})(\xi) \leq C$, then $\rho(t, x, \cdot) \in L^{\infty}(\Omega)$.

$$|A||_{p \to q} := \sup_{\mathbf{v} \in L^{\infty}(\Omega)} \frac{||A\mathbf{v}||_{L^{q}(\Omega)}}{||\mathbf{v}||_{L^{p}(\Omega)}}, \quad p, q \in [1, \infty].$$

• ξ -regularity expected to be improvable \rightarrow Open Problem. E.g. $||A||_{2\rightarrow 2} < \infty \implies \rho(t, x, \cdot) \in L^2(\Omega), t > 0.$

• Difficulty: No direct regularization effect in ξ variable.

All-to-all coupling: $A\rho = \rho, \rho(t, x, \xi) \simeq \rho(t, x)$ and $V[A](\rho) = \nabla_x D \star \rho$.

Relative entropy functional with steady state $\rho_{\infty} := \frac{1}{L^d}$

$$H(
ho|
ho_{\infty}) := \int_{U}
ho \log(rac{
ho}{
ho_{\infty}}) \, \mathrm{d}x$$

• $H(\rho_{\infty}|\rho_{\infty})=0$

· Csiszár-Kullback-Pinsker inequality

$$\|\rho - \rho_{\infty}\|_{L^{1}(U)}^{2} \leq 2H(\rho|\rho_{\infty}). \tag{CKP}$$

log-Sobolev inequality

$$H(\rho|\rho_{\infty}) \leq \frac{L^2}{4\pi^2} \int_{U} |\nabla_{\mathsf{X}} \log(\rho)|^2 \rho \, \mathrm{d}\mathsf{x}.$$
 (Sob)

Idea: $\partial_t H(\rho(t)|\rho_\infty) \leq -\alpha H(\rho(t)|\rho_\infty)$ for solutions of (MVE).

Proposition (Carrillo, Gvalani et al. 2020)

Let $\rho_0 \in H^{3+d}(U) \cap \mathcal{P}_{ac}(U)$ and $H(\rho_0|\rho_\infty) < \infty$. If

$$0<\kappa<\frac{2\pi^2}{L^2\|\Delta_{\mathsf{X}}D\|_{L^\infty(U)}},$$

then the solution ρ is exponentially converging to $\rho_{\infty} := \frac{1}{I^d}$ with decay estimate

$$H(\rho(t)|\rho_{\infty}) \le e^{-\alpha t}H(\rho_{0}|\rho_{\infty}), \quad t \ge 0,$$

where

$$\alpha := \frac{4\pi^2}{L^2} - 2\kappa \|\Delta_{\mathsf{X}} D\|_{L^{\infty}(U)} > 0.$$

All-to-all coupling

Proof.

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} H(\rho(t)|\rho_{\infty}) &= \int_{U} \left(\Delta_{x}\rho + \kappa \nabla_{x}(\rho \nabla_{x}(D \star \rho)) \right) \log(\frac{\rho}{\rho_{\infty}}) \, \mathrm{d}x \\ &+ \underbrace{\int_{U} \rho \frac{\rho_{\infty}}{\rho} \frac{1}{\rho_{\infty}} \left(\Delta_{x}\rho + \kappa \nabla_{x}(\rho \nabla_{x}(D \star \rho)) \right) \, \mathrm{d}x}_{=0} \\ &= -\int_{U} |\nabla_{x}\rho|^{2} \frac{1}{\rho} \, \mathrm{d}x - \kappa \int_{U} \rho \nabla_{x}(D \star \rho)(\frac{\rho_{\infty}}{\rho}) \nabla_{x}(\frac{\rho}{\rho_{\infty}}) \, \mathrm{d}x \\ &= -\int_{U} |\nabla_{x}\log(\rho)|^{2} \rho \, \mathrm{d}x + \kappa \int_{U} \rho(\Delta_{x}D \star \rho) \, \mathrm{d}x. \end{aligned}$$

First term: log-Sobolev inequality.

Second term: Replace both ρ by $\rho - \rho_{\infty}$ then Hölder and (CKP)

$$\frac{d}{dt}H(\rho(t)|\rho_{\infty}) \leq (-\frac{4\pi^2}{L^2} + 2\kappa \|\Delta_{\mathsf{X}}D\|_{\infty})H(\rho(t)|\rho_{\infty}).$$

Entropy method for graphop case

Definition

For the probability space $(\Omega, \mathcal{A}, \mu)$ the **relative entropy** for heterogeneous couplings is chosen as

$$\hat{\mathcal{H}}(
ho|
ho_{\infty}) := \int_{\Omega} \int_{U}
ho \log(rac{
ho}{
ho_{\infty}}) \,\mathrm{d}x \;\mathrm{d}\mu(\xi).$$

Definition

The numerical radius of a graphop $||A||_{2\rightarrow 2} < \infty$ is given as

$$n(A) := \sup\{(Af, f)_{L^2} \mid f \in L^2(\Omega), \|f\|_{L^2(\Omega)} = 1\}.$$

It holds that $n(A) \leq ||A||_{2 \to 2} \leq 2n(A)$.

Theorem (Kuehn, W. 2023)

Let ρ_0 be admissible and satisfy $\hat{H}(\rho_0|\rho_\infty) < \infty$. Let the graphop A satisfy $n(A) < \infty$. If

$$\kappa < \frac{2\pi^2}{L^2 \|\Delta_{\mathsf{X}} D\|_{L^{\infty}(U)} n(\mathsf{A})}$$

then, the solution to (MVE) is exponentially converging to $\rho_{\infty} := \frac{1}{I^d}$ with estimate

$$\hat{H}(\rho(t)|\rho_{\infty}) \leq e^{-\hat{\alpha}(A)t}\hat{H}(\rho_{0}|\rho_{\infty}), \quad t \geq 0,$$

where

$$\hat{\alpha}(A) := \frac{4\pi^2}{L^2} - 2\kappa \|\Delta_{\mathsf{x}} D\|_{L^{\infty}(U)} n(A) > 0.$$

Remark: If A has graphon kernel W with $||W||_2 \le \infty$. Then we can replace $n(A) = ||W||_2$.

Proof. As in all-to-all case:

$$\frac{d}{dt}\hat{H}(\rho|\rho_{\infty}) \leq -\frac{4\pi^{2}}{L^{2}}\hat{H}(\rho|\rho_{\infty}) + \kappa \int_{\Omega} \int_{U} \rho[\Delta_{x}D \star (A\rho)] \, \mathrm{d}x \, \mathrm{d}\mu(\xi).$$

Second term: A is a linear bounded operator acting solely on the network variable $\xi \implies \Delta_x D \star (A\rho) = A (\Delta_x D \star \rho).$

$$\begin{split} \kappa \int_{\Omega} \int_{U} \rho(\Delta_{x} D \star (A\rho)) \, dx \, d\mu(\xi) \\ &\leq \kappa \|\Delta_{x} D\|_{L^{\infty}(U)} \int_{\Omega} (A\|\rho - \rho_{\infty}\|_{L^{1}(U)} \|\rho - \rho_{\infty}\|_{L^{1}(U)} \, d\mu(\xi) \\ &\leq \kappa \|\Delta_{x} D\|_{L^{\infty}(U)} n(A) \int_{\Omega} \|\rho - \rho_{\infty}\|_{L^{1}(U)}^{2} \, d\mu(\xi) \\ &\stackrel{(\mathsf{CKP})}{\leq} 2\kappa \|\Delta_{x} D\|_{L^{\infty}(U)} n(A) \hat{H}(\rho|\rho_{\infty}) \\ &\Longrightarrow \frac{d}{dt} \hat{H}(\rho(t)|\rho_{\infty}) \leq -\hat{\alpha}(A) \hat{H}(\rho(t)|\rho_{\infty}), \quad t \geq 0. \end{split}$$

Remark: More general graphops $||A||_{p \to p^*} < \infty$ do not work with our method. Ineq. cannot be closed!

Example

Let $A_{\mathbb{S}}$ be the **spherical graphop**. One can show that $||A_{\mathbb{S}}||_{2\to 2} = 1$ and hence Theorem 7 yields decay of solutions of (MVE) with explicit rate

$$\hat{\alpha}(A_{\mathbb{S}}) := \frac{4\pi^2}{L^2} - 2\kappa \|\Delta_x D\|_{L^{\infty}(U)} > 0, \quad \text{provided} \quad \kappa < \frac{2\pi^2}{L^2 \|\Delta_x D\|_{L^{\infty}(U)}}$$

Sakaguchi-Kuramoto model with frequency distribution

$$\partial_t \rho = \partial_x (-\omega \rho + \kappa \rho V[A, g](\rho)) + \partial_{xx} \rho, \quad t \ge 0,$$

$$\rho(0) = \rho_0, \qquad V[A, g](\rho) := \int_{\mathbb{R}} (\sin *A\rho) \ g d\omega.$$

- $\rho(t, x, \xi, \omega)$.
- Phase $x \in \mathbb{T}^1 \simeq [-\pi, \pi]$, intrinsic frequency $\omega \in \mathbb{R}$.
- *g* is frequency density function determined via ρ_0 .
- Vlasov term also dependent on g.

Result of Theorem 7 extends to this equation for arbitrary $||g||_{L^1(dw)} = 1$ using

$$\overline{H}(
ho|
ho_\infty) := \int_{\mathbb{R}} \int_U
ho \log(rac{
ho}{
ho_\infty}) \mathrm{d}xg \mathrm{d}\omega.$$

Decay rate independent of g (but not sharp).

Tobias Wöhrer, TUM

- Introduced **graph limit theory of graphops and action convergence** which is able to deal with dense, intermediate and sparse graph structures in an analytical framework.
- Incorporated graphops into McKean–Vlasov equations, including the Sakaguchi–Kuramoto model, to express coupling for a wide range of graph structures in the mean-field limit.
- Extended the entropy method to show global stability of chaotic steady state for *L*² graphops under weak coupling.

Thank you for your attention.

References:

- Long-time behaviour and phase transitions for the McKean-Vlasov equation on the torus Carrillo, J. A. and Gvalani, R. S. and Pavliotis, G. A. and Schlichting, A., Arch. Ration. Mech. Anal., (2020)
- The mean field analysis of the Kuramoto model on graphs I. The mean field equation and transition point formulas Chiba, H. and Medvedev, G., Discrete Contin. Dyn. Syst. (2019)
- Action convergence of operators and graphs Backhausz, A. and Szegedy, B., Canadian Journal of Mathematic, (2022).
- Graphop mean-field limits for Kuramoto-type models Gkogkas, M. and Kuehn, C., SIAM Journal on Applied Dynamical Systems (2022).