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Abstract. The dominant differential equation paradigm
for modeling the population dynamics of species interacting
in the framework of a food web retains at its core the basic
prey-predator and competition models formulated by Alfred J.
Lotka (1880–1945) and Vito Volterra (1860–1940) nearly nine
decades ago. This paradigm lacks a trophic-level-independent
formulation of population growth leading to ambiguities in
how to treat populations that are simultaneously both prey
and predator. Also, this paradigm does not fundamentally in-
clude inertial (i.e., change resisting) processes needed to ac-
count for the response of populations to fluctuating resource
environments. Here I present an approach that corrects both
these deficits and provides a unified framework for account-
ing for biomass transformation in food webs that include both
live and dead components of all species in the system. This
biomass transformation formulation (BTW) allows for a uni-
fied treatment of webs that include consumers of both live
and dead material—both carnivores and carcasivores, herbi-
vores and detritivores—and incorporates scavengers, parasites,
and other neglected food web consumption categories in a
coherent manner. I trace how BTW is an outgrowth of the
metaphysiological growth modeling paradigm and I provide
a general compact formulation of BTW in terms of a three-
variable differential equation formulation for each species in
the food web: viz., live biomass, dead biomass, and a food-
intake-related measure called deficit-stress. I then illustrate
the application of this new paradigm to provide insights into
two-species competition in variable environments and discuss
application of BTW to food webs that incorporate parasites
and pathogens.
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1. A very brief history. Population ecology is first and foremost
about how populations change over time and distribute themselves over
the landscape, and then about how they interact with other species over
space and time. Since the growth of organisms depends on the rates
at which they consume resources—whether live or dead organisms,
nutrients, photons or energy laden inorganic molecules—consumption
processes are at the core of modeling population biomass dynamics.

Consumer–resource interactions come in many guises, each with its
own historical modeling or quantitative narrative. Dominant narratives
originating almost a century ago include Lotka-Volterra prey-predators
systems and their elaborations (May [1973], Murdoch et al. [2003],
Turchin [2003]) and Thompson-Nicholson-Bailey host-parasite models
(Hassell [1978], Murdoch et al. [2003]). Simple plant-herbivore models
have, to a large extent, inherited the Lotka-Volterra mantle, though
more complex models that divide plants into various component parts,
such as stems, leaves, shoots, flowers, etc., fall inter alia under the more
complex discretized von Foester partial differential equation models
(Gutierrez [1996]). Technically microparasites (viruses, bacteria, and
protists) are also consumers of hosts, where the hosts themselves vary
in size from bacteria to redwoods and whales. Their dynamics, however,
have been modeled primarily from an epidemiological point of view
going back to the SIR approach pioneered by Kermack and McKendrick
in the 1920s (Anderson and May [1989], Hethcote [2000]). Over time,
however, the temporal dynamic models of single populations became
more elaborate with the approach of Leslie in structuring populations
into age classes using an iterated matrix equation (Leslie [1945]) and
of von Foerster in using a partial differential equation description (e.g.,
see Kot [2001]).

Over time, ecologists have come to recognize that of considerable im-
portance to an analysis of population change is the resource intake rate
of each individual (per capita consumer or per unit consumer biomass
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resource intake rate), particularly how this rate depends on the density
of both the resource and consumer populations. Thompson [1924] was
the first to consider this in the context of host–parasite interactions
when he argued that if z is the proportion of parasites per host (in
this particular case parasitoid wasps) then the actual number of times
a host is encountered by a parasite is given by a Poisson distribution.
This is equivalent to assuming that the expected proportion of hosts
escaping encounters is given by the exponential function e−az (Hassell
[1978]), where a is an attack intensity parameter that relates to the
number of eggs each parasitoid can produce in its life time. Similar ar-
guments were also made by Nicholson and Bailey [1935], except their
encounter rate was controlled by interpreting z as density of parasites
and a as a search intensity parameter. This idea became central to the
development of discrete- time host-natural-enemy models in the con-
text of arthropods attacking other arthropods, culminating in seminal
texts by Varley et al. [1973] and Hassell [1978], and generalized to in-
terpret z as function that at one limit represents “egg-limited” attack
rates and another limit represents “search-limited” attack rates (e.g.,
see Getz and Mills [1996], Mills and Getz [1996]).

A leap forward in characterizing consumption rate processes came in
the late 1950s with the experimental work of Holling [1959] that lead
to his conceptualization of three types of intake response-to-resource-
density functions. Specifically, Holling argued that response functions
must include a notion of consumer saturation from satiation or other
kinds of limitation (e.g., the time it takes to handle resources before
consuming them). He defined Type I, Type II, and Type III functions to
be those that rise respectively linearly, hyperbolically (hence asymptot-
ically without inflection), and logistically (hence asymptotically with
inflection) to saturation.

Holling response functions rapidly came to pervade resource-
consumer models, but led to intense controversy in the 1990s regarding
the mechanism of saturation—was it purely dependent on the den-
sity of resources or the ratio of consumers to resources (Abrams and
Ginzburg [2000]). As with all extremes, the answer lies somewhere in
the middle with the relative importance of the two approaches varying
with species, population densities, and other ecological factors (Getz
[2011]).
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The dominant paradigm today is to characterize population abun-
dance in terms of numerical and numerical-density measures. The
simplest growth models, most notably the logistic, allows abundance to
be equally well interpreted in terms of biomass or biomass density. This
proved particularly useful in the context of applying population models
to the management of biological resources, as developed by Clark in
the 1970s with his tour de force work on Mathematical Bioeconomics
(Clark [1971, 1973, 2010]). The numerical interpretation, however, is
embedded in Holling’s conceptualization of resource-consumer interac-
tions. Specifically he defined the “numerical response” (Holling [1959])
to be “the change in the density of predators, as a result of increase in
prey density.”

On the flip side of growth is the process of decline that occurs through
a population itself being a resource that is extracted by individual con-
sumers. Beyond losing biomass through extraction, a population also
loses biomass through senescence (a term used here in the broad sense
of representing losses from all sources of mortality other than direct
extraction, including the senescence of parts of a plant but not neces-
sarily the death of the whole plant itself). This extraction-senescence
dichotomy to mortality has received little attention. In the context of
population harvesting theory, a distinction is made between natural
and harvesting (or fishing) mortality; but this a different dichotomy
since the natural mortality includes predation and senescence, with
only the exploitation of a single consumer—humans—being a sepa-
rately identified source of population mortality. It may be claimed that
senescence is precisely the per-capita mortality rate term in the con-
sumer equation of the Lotka-Volterra model presented below. If the
senescence rate is impacted by the process of starvation, as it surely
must be, then senescence depends strongly on how well a population
is able to meet its own nutritional and metabolic needs. Thus there is
an important link between a population’s ability to grow through its
intake rate and its rate of senescence that will increase whenever this
intake rate is unable to meet basal metabolic needs. As will become
apparent in the presentation below, this link is more succinctly and
elegantly addressed through a biomass flow formulation than through
a demographic formulation of population change.

What can be regarded as the demographic approach to modeling
resource-consumers through its flowering period of 1980s and 1990s
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came to full bloom at the start of new millennium with the publica-
tion of Turchin’s Complex Population Dynamics [2003] and Murdoch,
Briggs, and Nisbet’s Consumer-Resource Dynamics [2003]. I will not
attempt here to review the considerable accomplishments of the de-
mographic approach to modeling resource-consumer interactions since
there has been at least another monograph’s worth of research to re-
port beyond the 2003 publication of the two mentioned above. Rather,
I will review and then synthesize my own work, much of it done in col-
laboration with Owen-Smith whose work on herbivore foraging theory
(Owen-Smith [2002a, b]) draws strongly on a biomass flow approach
that I refer to as the metaphysical approach to population modeling
(Getz [1991, 1993]). The genesis of my interest in this approach goes
back to the early 1980s when I published a paper on a resource per-
capita approach to modeling population dynamics (Getz [1984]).

In the next section, I will provide a brief review of the metaphys-
iological approach. This will be followed by a presentation of recent
developments using this approach. I will then review work that I have
undertaken with three collaborators to better understand short com-
ings in current approaches to modeling resource consumer interactions
and conclude with a discussion of future challenges and directions.

2. Extraction and incorporation functions. Text book intro-
ductions to modeling the temporal interaction dynamics of a con-
sumer population at density y feeding on a resource population at
density x , when not specifically addressing arthropod prey-predator or
host-parasite systems, invariably begins with a presentation of Lotka-
Volterra’s classic “prey-predator” model (different texts vary widely on
naming variables and parameters)

dx

dt
= rx − axy

dy

dt
= −my + κaxy,

(1)

where r > 0 is the intrinsic growth rate of the resource, a > 0 the
extraction rate per unit resource × consumer, m > 0 is the intrinsic
rate of decline of the consumer in the absence of resource, and κ ∈ (0,
1) is a biomass conversion (proportion) parameter. We note here that



6 W. M. GETZ

the rate at which consumers extract resources in the resource equation
and take in resources in the consumer equation both equal axy , with κ
accounting for losses associated with the inefficiency of the consumer’s
metabolism and the fact that not all resource mass is digestible. Thus,
κaxy is a biomass incorporation rate or, equivalently, growth rate. The
principle that resource extraction and consumer incorporation (growth)
rates are directly related is rarely explicitly stated and, sometimes even
violated, as discussed in some detail by Ginzburg [1998]. This princi-
ple can be extended by accounting as well for diversions in the sense
that not all extracted resource is ingested by consumers: some of the
extracted resources are left to rot (e.g., elephants killing trees they do
not consume—see Skarpe et al. [2004]) or to be consumed by scavengers
(Getz [2011]).

The Lotka-Volterra model is heralded for its historical importance,
but is severely limited in modern applications because of its many
shortcomings. Some of these limitations are easily fixed, such as
density-dependent exponential growth of the resource at a constant
rate r in the absence of consumers, the lack of satiation in per-capita
consumer extraction rate ax with increasing resource density x , and the
fact that consumers in the absence of resources decline exponentially
rather than starving rapidly to their deaths. The first two limitations
are generally overcome by replacing r with a logistic growth model
r(1 − x/K ), where K > 0 has the interpretation of an environmental
carrying capacity, and replacing ax with a saturating response function
h(x ). The third shortcoming is mostly ignored, but accounted for in the
metaphysiological approach (Getz [1991, 1993]) developed in the next
section. Returning to response functions, currently the most widely
used is Holling’s Type II response function, which, adapting Holling’s
original notation, has the form

Holling Type II: h(x) =
ax

b + x
,(2)

where a > 0 is the maximum extraction rate and b > 0 is the resource
density at which that the value of the function is half the maximum
rate. Note b is an inefficiency parameter in that as b → 0 (i.e., in-
efficiency is removed) the resource extraction rate is a irrespective of
the density of the resource x > 0. The parameter b is also called the
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half-saturation (satiation) parameter because at x = b, h(x) = ab
b+b =

a
2 . A Holling Type I is the ramp version of equation (2). A ramp that
passes through point a/2 at x = b has the equation

Holling Type I: h(x) =

⎧⎨
⎩

a

2b
x for 0 < x ≤ 2b

a for x > 2b.
(3)

Population modelers, in scaling Holing’s individual level functional
response up to a population level, simply multiplied h(x ) by the preda-
tor density y , as we see in the Lotka-Volterra model for the case
h(x ) = ax . Ecologists began to worry, however, that perhaps the per-
capita extraction function should reflect the fact that consumers may
directly interfere with one another as they went about their business
of extracting resources. Thus, as often happens in science, two papers
were published in the same year proposing the same remedy (Bedding-
ton [1975], DeAngelis et al. [1975]), which was to generalize h(x ) to
include y using a form equivalent to

Beddington-DeAngelis: h(x, y) =
ax

b(1 + y/c) + x
,(4)

where the constant c > 0, because of the way it appears in the equation,
has the natural interpretation of linearly scaling the half-maximum
rate parameter b according to the units with which the consumer den-
sity y is measured. Further this form suggests the natural extension
under the assumption that density should not cause h(x , y) to be
hyperbolic with the maximum effect when y is close to 0 (right panel,
Figure 1) (Getz [1996]), but should set in more gently, or in an inverse
logistic-like fashion (left panel, Figure 1), as is the case when γ > 1
in the more general form

h(x, y) =
ax

b (1 + (y/c)γ ) + x
.(5)

Currently many population ecologists still prefer the functional re-
sponse form h(x ) expressed in equation (2) over the more general form
h(x , y) expressed in equation (4), not least because equation (2) has
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FIGURE 1. The response function in equation (5) is depicted from the per-
spective of the x -h (left) and y-h (right) planes.

fewer parameters and, hence, is more amenable to fitting the model to
data and more tractable in dynamical systems analyses that involve
solving equations for the equilibria of the model and determining their
stability properties. In the early 1990s a fierce debate raged, as reviewed
by Abrams and Ginzburg [2000], over whether the resource-dependent
functional response h(x ) of equation (2) or the ratio-dependent func-
tional response (Maynard Smith and Slatkin [1973], Getz [1984])

h(x/y) =
a(x/y)

b + (x/y)
=

ax

by + x
(6)

is more fundamental to characterizing resource extraction. Since both
of these functional responses are special cases of the more general form
h(x , y) in equation (4), which was introduced over 35 years ago, the
argument appears in hindsight to be a storm in a tea cup and a ques-
tion ultimately of the time scales over which the extraction rates are
averaged (Getz and Schreiber [1999]).

3. The metaphysiological formulation. The thematic idea be-
hind the metaphysiological model developed two decades ago (Getz
[1991, 1993]) was to consider population change from a biomass flow
rather than a demographic change point of view. Thus, instead of
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thinking about population change in terms of birth and death rates,
change was considered from the point of view of a population that has
biomass flowing into and out of it. Within the population individuals
accumulate biomass by extracting resources and then converting these
resources into their own biomass and those of the individuals they pro-
duce. Individuals also lose biomass through extraction by other species
that treat them as a resource, through their metabolic expenditures
that lead to losses in the form of gases, water, and excretions, and also
from losses due to generalized senescence. The latter is an umbrella
for all death processes other than those relating to extraction by other
species (or to cannibalism which is self-extraction).

Over the last two decades the formulation of the metaphysiological
approach has been greatly improved using Owen-Smith’s [2002a, b] re-
finements of looking separately at the processes of growth, mortality,
considerations of explicitly differentiating between active and storage
tissue (Getz and Owen-Smith [1999]), generalizing storage to come un-
der the rubric of a population quality variable (Getz and Owen-Smith
[2011]), and most recently splitting biomass in each species into live
and dead material components (Getz [2011]). This latter presentation
of the metaphysiological formulation represents a culmination of these
improvements, as well as incorporation of ideas arising from efforts to
identify more explicitly various inconsistencies in the current ordinary
differential equation instantiation of the standard theory of temporal
population dynamics.

The general formulation of a system of n interacting popula-
tions requires that for each focal population (Figure 2), denoted by
i ∈ {1, 2, . . . , n}, we generate lists Rx

i and Rz
i of live and dead biomass

of all the populations that the ith population uses for resources and
lists Cx

i and Cz
i of all the populations that consume the live and dead

biomass of the ith population. Thus, in Figure 2, the live biomass com-
ponent of the focal population is simultaneously both a consumer and
a resource and the dead biomass component is a resource for other pop-
ulations in the food web. We use the processes indicated in Figure 2
to develop a general set of equations, under the convention that all the
processes included in Figure 2 are per-capita rates. Also for purposes
of symmetry and clarity, we introduce the functions (units are rates
per consumer × resource)
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FIGURE 2. The focal individual population, represented by three variables
x (live biomass, green), z (dead biomass, brown), and v (deficit-stress state,
red), is both a consumer of resources R (left black capsule) and resource for
the consumers C (right black capsule). Changes in the focal population’s tem-
poral state (x (t), z (t), v(t)) are due to the following process that form the
basis for the model presented in equation (7) below (subscripts omitted in
diagram): increases in live biomass depend on the converted intake or incorpo-
ration rate φ > 0 and the conversion efficiency proportion κ ∈ (0, 1); decreases
in live biomass depend on extraction rate hx > 0, senescence rate m > 0, basal
metabolic rate α > 0, and excretion rate ε > 0. Increases in dead biomass
depend on the live biomass senescence rate m > 0 and diversion of a propor-
tion (1 − θ) ∈ (0, 1) of the extracted biomass rate hx , implying φ = κθhx ;
decreases depend on the extraction rate hz > 0 and decay rate δ > 0 (i.e., the
natural breakdown by abiotic processes—a.k.a. weathering). Deficit stress is
accumulated at a rate ψ ≥ 0 but relaxes back to 0 over time as determined
by the accommodation function ω. The senescence rate m itself is influenced
(broken red arrow) by the size of the deficit stress v.

f =
h

x
and g =

h

z
,

which are per-capita rates with respect to both the density of applica-
ble consumers and the resources (see Getz [2011]). In formulating the
general equations, the functional arguments of population i -specific
processes, as well as interaction processes between populations i and
j—that is the arguments of the functions φi , fij , gij , κf

i , κg
i , θij , αi ,

mi , εi , j = 1, . . . , n (fii and gii are permitted to account for canni-
balism), where subscripts i and j index the populations involved—are
omitted for simplicity. Only the arguments of the accumulation and
accommodation functions ψi and ωi in the deficit-stress equation vi
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are included because they are needed to properly define the integral.
With this convention, though explicitly denoting the dependence of mi

on vi , the general equations can be written as

dxi

dt
=

⎛
⎜⎝φi − αi − εi − mi(vi) −

∑
j∈C

f
i

fij xj

⎞
⎟⎠ xi

dzi

dt
= mi(vi)xi +

∑
j∈yx

i

(1 − θij )fijxixj

−
⎛
⎝ ∑

j∈C
g
i

gij xj + δi

⎞
⎠ zi

vi(t) =
∫ t

−∞
ωi(t − s)ψi(Di(s), vi(s))ds,

(7)

for i = 1, 2, where

Di(s) = αi(s) + εi − φi(s) and

φi(t) =

⎛
⎝ ∑

j∈yx
i

κf
ij θij fij xj +

∑
j∈yz

i

κg
ij gij zj

⎞
⎠

∣∣∣∣∣∣
at time t

.

A somewhat less general form of this system of equations was re-
cently presented elsewhere (Getz [2011]) and referred to as a biomass
transformation web system (BTW), as an alternative to describing
the dynamics of food webs using extended Lotka-Volterra formulations
(Abrams [1988], Ackland and Gallagher [2004], Cressman and Garay
[2003], Moore et al. [2004], Stone and He [2007]). It is also worth not-
ing that, in cases where it is useful to aggregate species by functional
group, such as when a group of species form a tight ecological guild
(Root [2001]), then the state variables in the model indexed by i might
represent such a guild rather than an individual population. Of course,
this level of aggregation cannot be used to address the question of
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how different species in the same guild are able to coexist (Basset and
Angelis [2007], Geange and Stier [2010]).

4. Modeling issues resolved. A number of issues associated
with the application of differential equation models to population
ecology have been identified, including the need for the general
equations to:

(i) be independent of trophic level considerations (Getz [1991], Getz
et al. [2003])

(ii) satisfy the principle of extraction-conversion (incorporation) fi-
delity (Ginzburg [1998])

(iii) account for inertial or change resisting (e.g., storage) processes
(Ginzburg [1986])

(iv) account for heterogeneity in resources available to individual con-
sumers (Revilla et al. [2004]).

Principles 1 and 2 are at the core of the metaphysiological approach
developed two decades ago (Getz [1991, 1993]) and continue to hold in
the extension of the metaphysiological approach to BTW formulation
represented by equation (7). Except for the abiotic resource system that
underpins the first biological trophic level in any food web, it is clear
that equation (7) are independent of trophic level once the sets Rx

i ,
Ry

i , Cx
i , and Cy

i associated with the ith population have been identified.
Further, the resources and consumers themselves do not need to be at
trophic levels respectively below and above the ith population: this
resolves the problem that omnivory in food webs distorts its trophic
structure (Williams and Martinez [2004]).

Principle 3, as argued by Ginzburg and colleagues (Ginzburg [1986],
Akçakaya et al. [1988], Ginzburg et al. [2004]), is essential to explain
cycling in certain populations, with the primary driver of these cy-
cles being effects that persist from one generation to another—so-
called maternal effects (Inchausti and Ginzburg [1998, 2009]). Ma-
ternal effects occur over generational time scales, with the quality
of the mother impacting the longevity or fecundity of her offspring.
Slightly shorter term cohort effects, whereby conditions in the year
of birth year of a cohort of individuals influences their subsequent
survival and reproductive success also commonly occur (Lindström
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and Kokko [2002]). On shorter time scales still, individuals may store
fats (animals), carbohydrates (plants, see Chapin et al. [1990]), and
other kinds of tissue that they then use to dampen the effects of sea-
sonal fluctuations in the availability of the resources they need to sur-
vive and reproduce (Getz and Owen-Smith [1999], Kooi and Troost
[2006]).

Inertial effects can be incorporated in one of several ways, all of
which are mathematically equivalent to increasing the dimensions of
the model system of equations. One approach is to add a time delay
term to the model, as in the time-delayed logistic model (May [1973]).
Another is to make the population equations second order either by
including second order derivatives of population size with respect to
time, an approach favored by Ginzburg (i.e., essentially incorporat-
ing acceleration as central to the dynamical description—see Ginzburg
[1986], Ginzburg and Colyvan [2004]) or by including a second vari-
able: the first being a measure of abundance (population size) and
the second of quality (e.g., storage tissue as in Getz and Owen-Smith
[1999] or other measures of average quality as in Getz and Owen-Smith
[2011]).

BTW includes inertial effects in the ith population through the incor-
poration of the deficit-stress variable vi . This particular inertial effect
relates to the stress that organisms accumulate when they are not able
to meet basic metabolic needs because the converted intake rates φi are
less than the sum of the basal metabolic and excretion rates αi + εi :
i.e., Di > 0 in equation (7). This obviously only relates to starvation
time scales and, thus, not to the longer time scale cohort or maternal
effects that play out throughout the complete life history of individuals
affected by early experience or maternal condition. Inclusion of effects
at this longer time scale requires that a suitable acceleration term be
added to the abundance equation (Ginzburg and Colyvan [2004]) or
age or stage structure incorporated into models (Caswell [2001]).

Consider the situation where we assume that the deficit-stress accu-
mulation function ψi in equation (7) has a particularly simple ramp
function form that depends only on Di(t) and not on vi(t) itself: viz.,
ψi(t) = Di(t) whenever Di(t) ≥ 0 and ψi(t) = 0 otherwise. Also assume
that the relaxation function is simply exponential: that is, ωi(t) = e−wi t

where ωi > 0. In this case, applying the fundamental theorem of
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integral calculus to the third of equation (7) we obtain

dvi

dt
=

d

dt

(
e−wi t

∫ t

−∞
ewi s max{0,Di(s)}ds

)

= −wivi(t) + e−wi t
d

dt

∫ t

−∞
ewi s max{0,Di(s)}ds

= −wivi(t) + max{0,Di(t)}.

(8)

In this case, replacing the third equation in equation (7) with
equation (8) yields a system of three differential equation, where the
deficit-stress variable vi(t) adds an additional dimension to the descrip-
tion of how the variable xi changes over time, provided the right-hand
side of the first equation in equation (7) depends on vi . The key as-
sumption in the BTW formulation is that the senescence function mi

depends on vi , as indicated in Figure 2, thereby feeding in this extra
dimension and, hence, inertial component into the dynamics of the live
abundance variable xi .

5. Population growth, competition, and seasonal
environments. The model formulated above is sufficiently novel
that it provides a new framework for addressing questions as simple
as an exploiter-free homogenous population drawing resources from
a donor-controlled flux (e.g., photons or flow-through nutrients or
resource organisms). In this case, the equations for the abundance
dynamics of the consumer—that is of the live biomass variable
x (t)—under the assumptions used to derive equation (8) leads to
the following model, where y(t) is the underlying resource, m(v) is a
mortality rate that depends on the deficit-stress variable v, and the
term ε is incorporated in the metabolic loss rate α to obtain

dx

dt
=

(
φ(y(t), x) − α − m(v)

)
x

dv

dt
= −wv + max {0, α − φ(y(t), x)} .

(9)

This model provides an alternative to the two variable ordinary differ-
ential equation growth model recently derived by Getz and Owen-Smith
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[2011]. The difference is that in Getz and Owen-Smith [2011] the second
variable was cast as a quality index that had no specific interpretation,
and hence was more general but also more elusive in its application to
real system. Here the variable v(t) has a specific meaning as a measure
of the degree of starvation and, hence, suggests possible ways that it
can be measured.

In the BTW formulation, equation (9) represents the fundamental
growth model for any population not subject to extraction and is a
replacement for the logistic growth equation that underpins resource
population growth descriptions in Lotka-Volterra-type food webs. The
only thing that remains is to specify the resource input function y(t),
the parameters α and w, and the mortality function m(v). If y(t) is
constant then this system has an equilibrium (xy , vy) at:

φ(y, xy ) − α = m(vy ) and φ(y, xy ) − α = −wvy .(10)

Since m(v) > 0 and −wy < 0 for all y ≥ 0, the only possible so-
lution is vy = 0 and φ(y , xy) = α + m(0). In order for a nontrivial
equilibrium pair (xy > 0, 0) to exist, we note that φ(y , x ) must de-
pend on x otherwise x does not appear in equation (10). Thus Holling
Type I (equation (3)) and II functions (equation (2)) are excluded from
the model in favor of the more general Beddington-DeAngelis form
(equation (4)) (cf. Getz [1991, 1993]). This does not refute Holling’s
[1959] formulation, which was derived in the context of individuals
foraging for resources. Thus Holling’s functional response is a relation-
ship suitable for behavioral level analyses. When applying Holling’s
functional response relationships at a population level, scaling up
from individuals to populations requires the introduction of an in-
terference competition term (Abrams [1988], Amarasekare [2003]).
This observation has important implications for the debate that
raged through the 1990s regarding the relative merits of resource-
dependent versus ratio-dependent functional response expressions in
population growth models (for a review, see Abrams and Ginzburg
[2000]): the extraction function must at least be ratio-dependent or
have the more general Beddington-DeAngelis form which includes
both pure ratio-dependence and pure resource-dependence as special
cases.
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Assuming the existence of a nontrivial equilibrium pair (xy > 0, 0),
the Jacobian stability matrix at this equilibrium is

J =

⎛
⎜⎜⎝ xy

∂φ

∂x

∣∣∣∣
x=xy

+

=0︷ ︸︸ ︷
φ(y, xy ) − α − m(vy ) xy

dm

dv

∣∣∣∣
vy =0

0 − w

⎞
⎟⎟⎠.

Thus whenever the population exhibits negative density dependence
around the equilibrium (i.e., ∂φ

∂x |x=xy < 0) it follows that the eigenval-
ues of the Jacobian, which are −w and xy

∂φ
∂x |x=xy , are both real and

negative and hence the equilibrium is a stable node. Thus any oscilla-
tory behavior that arises from this growth equation would be due to
the resource input y(t) itself being oscillatory, the population x linked
in a negative feedback relationship to y (e.g., as in a prey-predator
interaction) or a consequence of trophic interactions with other species
in the system.

A possible form for m(v) (Getz [2011]) that has the phenomenological
property that mortality rates increase with stress (i.e., dm

dv > 0) is

m(v) =
m0

1 − v

vs

,(11)

where m0 is the background loss rate when the population is unstressed
and vs is the stress level at which the mortality rate becomes infinite:
i.e., individuals immediately die at this level of deficit stress because
of an extended period of severe starvation.

The growth model equation (9) provides no new insight into the
growth of populations in a constant environment: as with other growth
models the population will only grow if its intrinsic growth rate λ
= φ(y , 0) − α − m(v) > 0. The strength of the model lies in the
way it treats populations in fluctuating environments because of its
ability to address questions relating to the interplay of mortality and
deficit-stress levels as the resource environment fluctuates between lev-
els that support growth and levels that induce starvation. As a way
of illustrating the application of the model to such questions, we con-
sider two populations x 1 and x 2 in a fluctuating resource environment
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y(t) that compete across an implicitly structured resource spectrum
(e.g., the structure might relate to food particle size or spatial distribu-
tion) in a way that permits incomplete competition. If the parameters
c1 , c2 ∈ [0, 1] represent the degree to which intraspecific competition
per unit consumer scales for consumers one and two respectively rela-
tive to interspecific competition, then the competition model takes the
from (cf. how competition is dealt with in Lotka-Volterra type models
in Loeuille [2010])

dx1

dt
=

(
φ1(y(t), x1 + c1x2) − α1 − m1(v1)

)
x1

dv1

dt
= −w1v1 + max {0, α1 − φ1(y(t), x1 + c1x2)}

dx2

dt
=

(
φ2(y(t), x2 + c2x1) − α2 − m2(v2)

)
x2

dv2

dt
= −w2v2 + max {0, α2 − φ2(y(t), x2 + c2x1)} .

(12)

In Figure 3 solutions to this equation are illustrated for the
case where extraction has the Beddginton-DeAngelis form given in
equation (4) (with parameters indexed by i in the function h for the
case of φi = κihi

(
y(t), xi + cixj )

)
, i , j = 1, 2 with j �= i) mortality

is given by equation (11). Simulations of these equations demonstrate
that under complete competition (i.e., c1 = c2 = 1) almost identical
populations, apart from the fact that population one has at greater
background mortality rate (i.e., m01 > m02) but a faster deficit-stress
accommodation rate (i.e., w1 > w2) can still outcompete population
two provided the amplitude of the seasonal resource oscillations are
sufficiently large (cf. panels A and B in Figure 3). This and another
types of adaptive and life history trade-offs can be explored using equa-
tion (12) in an adaptive dynamics setting in the same way the Lotka-
Volterra type models have been used in the past to explore such evo-
lutionary questions (McGill and Brown [2007]).

6. Gatherers, miners, movement, and space. As already
mentioned, equation (7) may explicitly identify the resources that
consumers exploit to fuel their growth, but they average out spatial



18 W. M. GETZ

FIGURE 3. Numerical solutions x 1 (t) (black) and x 2 (t) (red) to equation (12)
for the case mi (v) = m 0 i

1− v i
v s i

and φi = a i y ( t )
b i ( 1 + (x i + c i x j ) / K )+ y ( t )

, i , j = 1, 2,

j �= i x are plotted over the time interval t ∈ [0, 1000] (units are months)
for parameter values κ1 = κ2 = 0.2, a1 = a2 = 3, a1 = a2 = 0.1, b1 = b2 =
300, c1 = c2 = 1, K = 10000, vs1 = vs2 = 1, μ0 1 = 0.11, μ0 1 = 0.10, w1 =
0.1, w2 = 0.06 and resource input function y(t) = 1000

(
0.5 + δ ∗ sin(2πt/12)

)
,

where A. δ = 0.4 and B. δ = 0.5.

structures relating to the patchiness of resources. Hence equation (7)
cannot explicitly address issues relating to the movement of individu-
als among patches and how patchiness and movement impact popula-
tion growth (Revilla and Wiegand [2008]). The simplest way to extend
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differential equation models, such as equation (7), is to assume
a metapopulation structure (Hanski [1991], Gyllenberg and Hanski
[1992]) with subpopulations occupying relatively large patches and
individuals moving among subpopulations as they perceive local re-
sources to be better in neighboring patches than their own patch. At
a finer spatial scale an individual-based patch occupancy modeling ap-
proach can be taken (Moilanen [1999], Ovaskainen and Hanski [2004]).

In the presence of fluctuating resources, however, we would expect
that species evolve to tolerate different deficit-stress levels before dying
from starvation, as well as being able to accommodate nonlethal stress
at different rates. In classifying consumer types (Figure 4) , an obvious
dichotomy arises between consumers that gather resources versus those
that mine resources. Gatherers need to be mobile, moving across the
landscape as they gather packets of resource to feed upon immediately
(e.g., carnivores killing prey, herbivores eating leaves) or sequester these
packets (squirrels or jays caching nuts) for future use. Miners may have
a dispersal phase but are otherwise sessile while they feed by tapping
into a resource pool that they have sequestered: e.g., aphids taping into
the phloem tissue of plants, ticks taping into the blood supply of hosts,
both fly larvae feeding parasitically on the flesh of live hosts, carrion
fly larvae feeding on the dead flesh of a carcass.

Organisms that are miners usually have distinct life stages devoted
to dispersal versus growth. Holometabolous insects—those that have
complete metamorphism from an egg through a voracious larval stage
(with 100 or even 1000-fold increases in biomass) to a nonfeeding pu-
pal transformation stage and onto an adult stage where most of the
growth in biomass growth is directed to reproduction—often have lar-
vae that are miners and adults that are dispersers. On the other hand,
many hemimetabolous insects (those that do not have a complete meta-
morphic cycle), such grasshoppers, crickets, cockroaches, and termites
forage throughout their life cycle; though others such as aphids and
scale insects have both mining and dispersal morphs. Also most verte-
brates are gathers, with some parasitic fish such as the hematophagous
toothpick (candiru) fish being notable exceptions.

Once the dispersal stage of a mining species has located a food
source, the feeding stage does not have to worry about starvation
unless the source itself is overpopulated with individual miners and
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FIGURE 4. Consumer can be categorized based on material eaten
(plant: green shades are live, brown shades are dead; animal: red shades are
live, purple shades are dead; or particulate: gray shades) and feeding strat-
egy (gatherer: lighter shade of each color; miner: darker shade of each color).
Since, as discussed in the text, miners (olophages) and gatherers (totivores)
are expected to experience very different types of fluctuations with regard to
resource availability, we should expect that they evolve very different trade-offs
between the way they tolerate, accumulate, and mitigate deficit stress. This
translates into trade-offs for population i in values of the parameters w, vs ,
and bi (the latter in the functions φi ) in equation (12), which can be explored
using the methods of adaptive dynamics (McGill and Brown [2007]) in resource
settings y(t) that have different temporal properties.

is used up before most of the miners complete their feeding stage.
Thus we expect miners to be selective in defending their resources
rather than be adapted to staving off starvation, as is the case in
polyembryonic parasitoids that have evolved a distinct defensive larval
morph to fend off individuals that are not members of their clonal
population (Cruz [1981]). On the other hand, we expect gatherers
to adapt in some way to survive lean periods. If we consider the



BIOMASS FLOW WEBS 21

deficit stress equation dv
dt = −wv + max{0, α − φ(y(t), x)} it follows

that individuals can reduce the senescence mortality rate m(v) =
m0/(vs − v) by: (i) storing energy rich biomass when external resources
are depauperate, which corresponds to a relatively large value for vs ;
(ii) rapidly mobilizing stored energy, which corresponds to relatively
large w; (iii) lowering their basal metabolism through hibernation or
aestivation, which corresponds to reducing the value of α; (iv) ensur-
ing that φ(y, x) = ay

b(1+x/c)+y remains close to a by being efficient at
finding resources (e.g., birds that can traverse large distances in search
of food), which corresponds to a relatively small value for b. Of course,
an energy cost is associated with movement so that an analysis of
the trade-off between investing in processes that facilitate movement
(Nathan et al. [2008]) and the gains from being able to move rapidly
and efficiently are needed.

7. Parasites and pathogens. Parasites are different from preda-
tors in that parasites are miners of host biomass, whether plant or
animal, while predators are generally carnivores or some specialist cat-
egory therein (e.g., insectivores, piscivores, etc.). However, the more
precise analogue of parasites in the context of a miner-gatherer di-
chotomy are croppers (Figure 4) and this is reinforced by the fact that
prey-predator and plant-herbivore interactions are often modeled by
the same Lotka-Volterrra type equations (Turchin [2003]).

Since miners exploit a resource pool, parasites are generally much
smaller than their hosts, as is the case of single-celled protozoans (e.g.,
coccidea or amoeba that cause dysentry) and multi-celled worms (e.g.,
various helminths and nematodes) that invade the gastrointestinal sys-
tems of vertebrates. Smaller yet are the bacterial parasites that grow
in the lungs, throat, bowels of vertebrates, arthropods, and other ani-
mals, many of which are pathogenic causing sore throats (streptococci),
pneumonia (pneumoccoci), tuberculosis (baccilli), and other debilitat-
ing and sometimes fatal diseases in their hosts. All of these parasites
can be incorporated in the BTW paradigm (see Getz [2011] for a BTW
model of anthrax in zebra and elephants), particularly those that colo-
nize their hosts with populations that grow to share a significant com-
ponent of the host’s total biomass. For example, trematode parasites
(flukes) in snails have been shown to account for up to 39% of their
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host’s body mass (Hechinger et al. [2009]), while in the case of tuber-
culosis colonies of the mycobacteria that cause the disease can grow
inter alia in the lungs, joints, and stomachs of their victims.

In the case of pathogenic parasites, the direct impact of biomass
extraction on the host population can be completely overshadowed
by the direct effects of the parasite on host mortality rate. In this
case, we might assume that the proportion p(t) of hosts infected with
the pathogen in a mean-field model can be made a function of the
biomass ratio of the parasite to the host populations at time t . In
this case, the mortality rate m of the host can be made an increasing
function of p(t) as well. For example, equation (11) can be replaced
with m(v, p) = (m0 + p(t)m1)/(1 − v (t)

vs
), where m0 is the background

mortality rate for an unstressed uninfected host and m0 + m1 is the
back ground mortality rate for a unstressed infected host. The effects of
stress are still taken care of by the term in the denominator, although
it is quite possible that the starvation point vs may also be reduced in
infected hosts.

In the case of viral infections, since the impact of pathogenic virus
on their hosts is overwhelmingly through the impact of the viral pop-
ulation on host mortality rates, with extraction in this case playing
a negligible role (Hethcote [2000]), BTW does not on its own lend
itself to modeling viral-host dynamics. In this case disease classes—
such as susceptible, exposed, infected, immune, etc.—need to be ex-
plicitly incorporated following methods developed in the context of the
Kermack and McKendrick disease modeling paradigm (May and
Anderson [1989], Hethcote [2000]).

At the parasite–predator interface are a class of organisms referred
to as parasitoids that are miners in their larval stage, gatherers in their
egg laying stage, and they are obligate killers of their hosts. Parasitoids
are species of insect generally belonging to one of several wasp families,
but also to some families of flies. Their hosts are other insects, and non-
insect arthropods, such as spiders. The dominant differential equation
paradigm for modeling host–parasitoid interactions has been to struc-
ture the parasitoid population into at least two stages, juvenile (i.e.,
larval) and adult (Nisbet and Gurney [1983], Murdoch et al. [2003]).
This paradigm has proven successful in exploring a number of different
host-parasitoid interaction issues, such as the effects of an invulnerable
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stage class (Murdoch et al. [1987]), and issues relating to sex ratio al-
location in the context of variable host size (Murdoch et al. [1992]).
Clearly such questions are best answered using a demographic model-
ing approach. On the other hand, BTW has been designed to answer
a different set of questions, such as the role parasitoids and parasite
may play in structuring food webs—a problem of some interest to food
web ecologist (Lafferty et al. [2008]), and the impact parasites might
have in increasing the vulnerability of host species to consumption by
predators (Hudson et al. [1992]).

8. Conclusion. Although equations (7) have been formulated to
model a population of individuals, the same set of equations can be ap-
plied to a subset of individuals or, even when applicable, to the change
in biomass of single individuals. In the context of a population model,
equations (7) imply homogeneity among individuals with respect to
various traits or states of individuals such as size or age. In general,
however, individuals vary with regard to a particular trait or state. Nu-
merous genres of population models have been developed that include
age either as a continuous variable, resulting in a partial differential
equation description of the population process of change (e.g., see Kot
[2001]) or that divide the population up into a number of discrete age
or stage classes, as in Leslie’s [1945] age-structured matrix models and
nonlinear versions of such models (e.g., Cross and Getz [2006], Wilmers
and Getz [2004]). However, assuming that each individual in the popu-
lation is exposed to a different set of environmental conditions by virtue
of its location on a heterogeneous landscape possess a whole new set of
problems in terms of implementing systems of differential equations as
mean field descriptions of the outcome of such variation (Ovaskainen
and Cornell [2006]). Yet such differences in exposure are a critical as-
pect of population ecology (Palmer et al. [1997], Floater [2001], Revilla
et al. [2004], Revilla and Wiegand [2008]).

Effective incorporation of spatial heterogeneity in ordinary differen-
tial equation models remains a challenging problem, but possible pro-
vided heterogeneity does not vary too rapidly over space (Ovaskainen
and Cornell [2006]). The easiest approach is to apply individual or
agent-based models in simulation frameworks, but this limits the ap-
plication of analytical approaches to obtain insights into the behaviour
of the system as a whole. The development of a coherent theory when



24 W. M. GETZ

access to resources varies among individuals remains an open prob-
lem. With increasing computing power, however, the trend in applying
numerical methods to study both specific and general dynamic food
webs is shifting from population-level formulations to individual-based
formulations. The value, however, of a top-down population modeling
approach remains in the context of mean-field analyses (Ovaskainen
and Cornell [2006]), particularly if models are designed to be elabo-
rated at subgroup and individual levels: in this case, a mean-field anal-
ysis provides a road map without which interpreting more complicated
individual-based simulation analyses becomes impossible. BTW has
these properties. The formulation, as we see in equations (7), has been
developed in terms of per-unit-biomass or per-capita process functions
with the mean-field description implemented in the abundance equa-
tion by simply multiplying these per capita rates by the abundance
itself. Further, the deficit-stress equation is based on formulating the
extent to which each individual (i.e., individuals on average in the
mean-field interpretation) fails to meet its basal metabolic needs. Of
course, at the individual level, although we can interpret the per-capita
intake rate φ either as an average rate or we calculate this rate from a
series of discrete feeding events that are then averaged over a suitable
time interval τ for which the average value of v is v̄, at the individ-
ual level the mortality process would have to be reinterpreted as a
probability of death pm (τ) = 1 − e−m (v̄ )τ rather than an average rate.
An individual level approach also allows us to account in finer detail
for heterogeneities arising from variable infection rates in webs that
include parasites.

As has been argued by Owen-Smith [2005, 2008, 2011], the metaphys-
iological approach is particularly amenable to a mean-field treatment
because population dynamics are smoother from a biomass than from a
demographic point of view (e.g., births correspond to changes in num-
ber but much less dramatically to changes in biomass). Changes in
biomass can follow changes in resource abundance without having to
invoke greater changes in numbers of individuals than actually occurs,
because individuals themselves can lose or gain weight: they get leaner
when resources are scarce and fatten when resources are abundant. The
development of the metaphysiological framework into the more elabo-
rate BTW formulation presented here provides additional power to the
mean-field approach in dealing with the inertial processes associated
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with starvation and storage. It does not, however, deal with the reali-
ties of heterogeneous resource exposure and how this leads to variation
in the stress-deficit state among individuals in the population. How
best to deal with this issue remains a challenge. But this challenge can
be met through individual-based models that follow metaphysiological
principles implemented at the individual level.
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