Entrywise preservers beyond Schoenberg

Alexander Belton

School of Engineering, Computing and Mathematics University of Plymouth, United Kingdom

alexander.belton@plymouth.ac.uk

Applied Matrix Positivity II workshop International Centre for Mathematical Sciences, Edinburgh 7th November 2024

Co-workers

- Dominique Guillot (U. Delaware)
- Apoorva Khare (Indian Institute of Science, Bangalore)
- Mihai Putinar (U. California Santa Barbara & U. Newcastle)

The quartet at the International Centre for Mathematical Sciences, Edinburgh, in August 2016

Notation

The set of $d \times d$ matrices with entries in a set $K \subset \mathbb{C}$ is denoted $M_d(K)$.

Matrix multiplication

The vector space $M_d(\mathbb{C})$ is an associative algebra for at least two different products. If $A=(a_{ij})_{i,j=1}^d$ and $B=(b_{ij})_{i,j=1}^d$ then

$$
(AB)_{ij} := \sum_{k=1}^{d} a_{ik} b_{kj} \quad \text{(standard)}
$$
\nand

\n
$$
(A \circ B)_{ij} := a_{ij} b_{ij} \quad \text{(Hadamard)}.
$$

Positive definiteness

Definition

A matrix $A \in M_d(\mathbb{C})$ is positive semidefinite if

$$
\mathbf{x}^* A \mathbf{x} = \sum_{i,j=1}^d \overline{x}_i a_{ij} x_j \ge 0 \quad \text{for all } \mathbf{x} \in \mathbb{C}^d.
$$

A matrix $A \in M_d(\mathbb{C})$ is positive definite if

$$
\mathbf{x}^* A \mathbf{x} = \sum_{i,j=1}^d \overline{x}_i a_{ij} x_j > 0 \quad \text{for all } \mathbf{x} \in \mathbb{C}^d \setminus \{0\}.
$$

Remark

The collection $M_d(\mathbb{C})_+$ of $d \times d$ positive semidefinite matrices with complex entries is a closed cone: stable under addition, positive homotheties and pointwise limits.

Symmetry

If $A\in M_d(K)_+$ then $A^{\mathcal T}\in M_d(K)_+$: note that $(CD)^{\mathcal T}=D^{\mathcal T}C^{\mathcal T}$ and so

$$
0 \leq \mathbf{x}^* A \mathbf{x} = (\mathbf{x}^* A \mathbf{x})^T = \mathbf{y}^* A^T \mathbf{y} \qquad \text{for all } \mathbf{y} = \overline{\mathbf{x}} \in \mathbb{C}^d.
$$

Hermitianity

If $A \in M_d(\mathbb{C})_+$ then $A = A^*$: note that $(\mathcal{C}D)^* = D^*C^*$ and so

$$
\mathbf{x}^* A \mathbf{x} = (\mathbf{x}^* A \mathbf{x})^* = \mathbf{x}^* A^* \mathbf{x} \quad (\mathbf{x} \in \mathbb{C}^d) \quad \Longrightarrow \quad A = A^* \quad \text{by polarisation:}
$$

look at

$$
(\mathbf{x}+\mathbf{y})^*A(\mathbf{x}+\mathbf{y})-(\mathbf{x}-\mathbf{y})A(\mathbf{x}-\mathbf{y})+\mathbf{i}(\mathbf{x}+i\mathbf{y})^*A(\mathbf{x}+i\mathbf{y})-\mathbf{i}(\mathbf{x}-i\mathbf{y})^*A(\mathbf{x}-i\mathbf{y}).
$$

Non-negative eigenvalues

If $A \in M_d(\mathbb{C})_+$ then $A = A^*$, so we can find a unitary matrix $U \in M_d(\mathbb{C})$ such that

$$
A = U^* \operatorname{diag}(\lambda_1, \ldots, \lambda_d) U.
$$

We must have that $\lambda_i = (U^*{\bf e}_i)^* A (U^*{\bf e}_i) \geq 0$ for all i , so $\sigma(A) \subseteq {\mathbb R}_+.$

Conversely, if $A \in M_d(\mathbb{C})$ is Hermitian and has non-negative eigenvalues then

$$
A=B^*B\in M_d(\mathbb{C})_+,
$$

where

$$
B=A^{1/2}=U^*\operatorname{diag}\left(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_d}\right)U.
$$

Theorem

Let $A \in M_d(\mathbb{C})$. The following are equivalent.

 $\mathsf{z}^* A \mathsf{z} \geqslant 0$ for all $\mathsf{z} \in \mathbb{C}^d$.

•
$$
A = A^*
$$
 and $\sigma(A) \subseteq \mathbb{R}_+$.

- $\mathcal{A} = U \operatorname{diag}(\lambda_1, \ldots, \lambda_d) U^*$, with $\boldsymbol{\lambda} \in \mathbb{R}_+^d$ and $U^* U = U U^* = I$.
- $\mathcal{A}=\sum_{i=1}^d\lambda_i\mathbf{v}_i\mathbf{v}_i^*$, where $\lambda_i\geqslant 0$ and $\mathbf{v}_i^*\mathbf{v}_j=\mathbbm{1}_{i=j}$ for all $i,$ $j.$
- $A = B^*B$, where $B \in M_n(\mathbb{C})$.

If these conditions hold, then A is positive semidefinite and we write $A \geqslant 0$.

The Schur product theorem

Theorem 1 (Schur, 1911)

If A, $B \ge 0$ then $A \circ B \ge 0$, where the Hadamard product is such that

$$
(A \circ B)_{ij} := a_{ij} b_{ij} \quad \text{for all } i, j.
$$

Proof 1.

Note that $A^{\mathcal{T}}$ is positive semidefinite whenever A is, and so

$$
\mathbf{z}^*(A \circ B)\mathbf{z} = \text{tr}(\text{diag}(\mathbf{z})^* B \text{ diag}(\mathbf{z}) A^T)
$$

=
$$
\text{tr}((A^T)^{1/2} \text{ diag}(\mathbf{z})^* B \text{ diag}(\mathbf{z})(A^T)^{1/2}).
$$

Proof 2.

Note that

$$
(uu^*)\circ (vv^*)=(u\circ v)(u\circ v)^*,
$$

so the rank-one case holds, and use linearity.

A question of Pólya and Szegö

Corollary 2

If $f(z) = \sum_{n=0}^{\infty} c_n z^n$, with $c_n \geq 0$ for all n, then

$$
f[A] := \sum_{n=0}^{\infty} c_n A^{\circ n} = \begin{pmatrix} f(a_{11}) & \cdots & f(a_{1d}) \\ \vdots & \ddots & \vdots \\ f(a_{d1}) & \cdots & f(a_{dd}) \end{pmatrix} \ge 0
$$

for any $A \in M_d(\mathbb{C})_+$ such that $f(a_{ii})$ is well defined for all i, j.

Observation

A function f with such a power-series expansion is said to be absolutely monotonic. Absolutely monotonic functions preserve positivity for square matrices of arbitrary size.

Question (Pólya–Szegö, 1925)

Are there any other functions with this property?

Theorem 3 (Schoenberg after Fréchet and Menger)

Let (X, ρ) be a metric space containing the points x_0, \ldots, x_n . These points can be isometrically embedded into Euclidean space \mathbb{R}^d but not into \mathbb{R}^{d-1} if and only if the matrix

$$
D[x_0,\ldots,x_n]:=[\rho(x_i,x_0)^2+\rho(x_0,x_j)^2-\rho(x_i,x_j)^2]_{i,j=1}^n
$$

is positive semidefinite with rank d.

Corollary 4

A separable metric space (X, ρ) can be isometrically embedded into the Hilbert space ℓ^2 if and only if, given any collection of points x_0, \ldots, x_n , where $n \geq 2$, the matrix $D[x_0, \ldots, x_n]$ is positive semidefinite.

Motivation – isometric spherical embeddings

Let the $d - 1$ -dimensional unit sphere

$$
\mathbb{S}^{d-1} = \{\mathbf{x} \in \mathbb{R}^d: \mathbf{x}^T\mathbf{x} = 1\}
$$

be equipped with the geodesic distance

$$
\angle(\mathbf{x}, \mathbf{y}) = \arccos \mathbf{x}^T \mathbf{y} \in [0, \pi].
$$

Theorem 5 (Schoenberg after Fréchet and Menger)

Let (X, ρ) be a metric space containing the points, x_1, \ldots, x_n . For any integer d \geqslant 2, these points may be isometrically embedded into \mathbb{S}^{d-1} equipped with the geodesic distance but not \mathbb{S}^{d-2} if and only

$$
\rho(x_i,x_j)\leq \pi\quad(1\leq i,j\leq n)
$$

and the matrix

$$
\left[\cos \rho(x_i, x_j)\right]_{i,j=1}^n
$$

is positive semidefinite of rank d.

Theorem 6 (Schoenberg, 1942)

- If $f : [-1,1] \rightarrow \mathbb{R}$ is
	- (i) continuous and
- (ii) such that $f[A] \ge 0$ for every $A \ge 0$ with entries in $[-1,1]$ and of any size,
- then f is absolutely monotonic:

$$
f(x) = \sum_{n=0}^{\infty} c_n x^n
$$
 for all $x \in [-1,1]$, where $c_n \ge 0$ for all n.

Theorem 7 (Rudin, 1959)

On $(-1, 1)$, the hypothesis of continuity is not required in Schoenberg's result.

Characterising entrywise positivity preservers in fixed dimension is a significant challenge.

The only complete characterisations known hold for dimensions 1 and 2.

Theorem 8 (Vasudeva, 1979)

Let $f:(0,\infty)\to\mathbb{R}$. Then $f[A]\geqslant 0$ for every matrix $A\in M_2\big((0,\infty)\big)_+$ if and only if the function f is

(i) non-negative,

(ii) non-decreasing and

(iii) multiplicatively midpoint convex, that is,

$$
f(\sqrt{xy})^2 \le f(x)f(y)
$$
 for all $x, y > 0$.

In particular, such a function f is continuous.

Theorem 9 (Horn, 1969)

If $f : (0, \infty) \to \mathbb{R}$ is continuous and such that $f[A] \geq 0$ for every $d \times d$ positive-semidefinite matrix A, where $d \geq 3$, then (i) f is $d - 3$ -times continuously differentiable and

(ii) $f^{(k)}(x) \geqslant 0$ for all $k = 0, \ldots, d - 3$ and all $x > 0$.

If, further, f is $d - 1$ -times differentiable, then

$$
f^{(k)}(x) \geq 0 \quad \text{for } k = 0, \ldots, d-1 \text{ and all } x > 0.
$$

Observation (Guillot–Khare–Rajaratnam)

To obtain Horn's result, it suffices to consider only matrices having the form $A = a\mathbf{1} + \mathbf{u}\mathbf{u}^T$, where $a > 0$ and $u_i \ge 0$ for all *i*.

Proposition 10 (B–G–K–P, 2016)

If $f : D(0, \rho) \to \mathbb{R}$ is analytic, where $\rho > 0$, and such that $f[A] \geq 0$ whenever $A \in M_d((0,\rho))_+$ has rank one then the first d non-zero Maclaurin coefficients of the function f are strictly positive.

Proof.

Suppose the first d non-zero Maclaurin coefficents are $c_{n_1},\,\ldots,\,c_{n_d}.$ Let $\boldsymbol{u}^{\mathcal{T}} = (u_1, \dots, u_d)$ have distinct entries and note that $(u_i^{\hat{n}_j})$ $i_j^{\prime\prime}$) is a generalised Vandermonde matrix, so invertible. Hence $\{{\bf u}^{\circ n_1},\ldots,{\bf u}^{\circ n_d}\}$ is linearly independent; let $\{{\sf v}_1,\ldots,{\sf v}_d\}\subseteq\mathbb{R}^d$ be such that ${\sf v}_i^{\mathcal{T}}{\sf u}^{\circ n_j}=\mathbb{1}_{i=j.}$ Then, for any i,

$$
0\leqslant \varepsilon^{-n_i}\mathbf{v}_i^{\mathsf{T}}f[\varepsilon\mathbf{u}\mathbf{u}^{\mathsf{T}}]\mathbf{v}_i=c_{n_i}+\sum_{j>n_i}c_j\varepsilon^{j-n_i}(\mathbf{v}_i^{\mathsf{T}}\mathbf{u}^{\circ j})^2\to c_{n_i} \text{ as } \varepsilon\to 0+.\quad \Box
$$

Theorem 11 (B–G–K–P, 2016)

Let $\rho>0$, $d\geqslant 1$, $\mathbf{c}=(c_0,\ldots,c_{d-1})^{\textstyle \mathcal{T}}\in\mathbb{R}^d$, $c'\in\mathbb{R}$, $m\geqslant 0$ and

$$
f(z) = \sum_{i=0}^{d-1} c_i z^i + c' z^m,
$$

The following are equivalent.

- (i) $f[A] \geqslant 0$ for every $A \in M_d(\overline{D}(0,\rho))_+$.
- (ii) Either $\mathbf{c}\in\mathbb{R}_+^d$ and $c'\in\mathbb{R}_+$, or $\mathbf{c}\in (0,\infty)^d$ and $c'\geqslant -\mathfrak{C}(\mathbf{c};m,\rho)^{-1}$, where

$$
\mathfrak{C}(\mathbf{c};m,\rho):=\sum_{j=0}^{d-1}\binom{m}{j}^2\binom{m-j-1}{d-j-1}^2\frac{\rho^{m-j}}{c_j}.
$$

(iii) $f[A] \geqslant 0$ for every $A \in M_d((0, \rho))_+$ with rank at most one.

Let

$$
f(x) = c_0 x^{n_0} + \cdots + c_{d-1} x^{n_{d-1}} + c' x^M,
$$

where the non-negative integers $n_0 < \cdots < n_{d-1} < M$ and the real $\text{coefficients } c_0, \ldots, c_{d-1} > 0 \text{ and } c' < 0.$

Let $t = -1/c'$ and consider

$$
p_t(x):=t\sum_{j=0}^{d-1}c_jx^{n_j}-x^M.
$$

What is the smallest t such that $\rho_t[-]$ preserves positivity on the cone $M_d((0,\infty))_+$?

A trick due to FitzGerald and Horn means that we can focus on the rank-one case.

Steps towards the proof of Theorem $11 -$ II

Proposition 12

Let $\mathbf{u} \in (0,\infty)^d$ have distinct coordinates. The following are equivalent.

- (i) The matrix $p_t[\mathbf{u}\mathbf{u}^\mathsf{T}]$ is positive semidefinite.
- (ii) The determinant det $p_t[\mathbf{u}^T\mathbf{u}] \geqslant 0$.

(iii) We have that

$$
t\geqslant \sum_{j=0}^{N-1}\frac{s_{\mathsf{n}_j}(\mathsf{u})^2}{c_js_{\mathsf{n}}(\mathsf{u})^2},
$$

where the Schur polynomial

$$
s_{n}(u) := \frac{\det u^{\circ n}}{\det u^{\circ n_{\min}}} = \frac{\det(u_i^{n_{j-1}})}{\det(u_i^{j-1})}
$$

and

$$
\mathbf{n}_j:=(n_0,\ldots,\widehat{n}_j,\ldots,n_{d-1},M).
$$

Steps towards the proof of Theorem [11](#page-15-0) – III

Proposition 13 (Khare and Tao, 2021)

Let $m = (m_0 < \cdots < m_{d-1})$ and $n = (n_0 < \cdots < n_{d-1})$ be d-tuples of non-negative integers with $m_i \leqslant n_i$ for $i = 0, \ldots, d-1$. The function

$$
f:(0,\infty)^d\to\mathbb{R};\,\,\mathbf{u}\mapsto\frac{s_{\mathbf{n}}(\mathbf{u})}{s_{\mathbf{m}}(\mathbf{u})}
$$

is non-decreasing in each coordinate.

Moreover, the Weyl dimension formula gives that

$$
s_{\mathbf{n}}\big((1,\ldots,1)^{\mathsf{T}}\big)=\prod_{0\leqslant i
$$

where $V(n)$ is a Vandermonde determinant.

Moment matrices

Let μ be a measure on $\mathbb R$ with moments of all orders, and let

$$
s_n = s_n(\mu) := \int_R x^n \mu(\mathrm{d} x) \qquad (n \geq 0).
$$

The Hankel matrix associated with μ is

$$
H_{\mu} := \begin{pmatrix} s_0 & s_1 & s_2 & \dots \\ s_1 & s_2 & s_3 & \dots \\ s_2 & s_3 & s_4 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = (s_{i+j})_{i,j=0}^{\infty}.
$$

Theorem 14 (Hamburger, 1920)

A sequence $(s_n)_{n\geq 0}$ is the moment sequence for a positive Borel measure on $\mathbb R$ if and only if the associated Hankel matrix is positive semidefinite.

Corollary 15

A map f preserves positivity when applied entrywise to Hankel matrices if and only if it maps moment sequences to themselves: given any positive Borel measure μ ,

$$
f(s_n(\mu))=s_n(\nu) \qquad (n\geqslant 0)
$$

for some positive Borel measure ν.

Theorem 16 (B–G–K–P, 2016)

Let $f : \mathbb{R} \to \mathbb{R}$. The following are equivalent.

- **1** The function f maps the set of moment sequences of measures supported on $[-1, 1]$ into itself.
- **•** $f[A] \geq 0$ whenever A is a positive-semidefinite Hankel matrix of any size.
- \bigcirc f[A] ≥ 0 whenever A is a positive-semidefinite matrix of any size.
- **4** The function f is absolutely monotonic:

$$
f(x) = \sum_{n=0}^{\infty} c_n x^n \quad \text{for all } x \in \mathbb{R},
$$

with $c_n \geqslant 0$ for all n.

Theorem 17 (B–G–K–P, 2016)

Let $f : \mathbb{R} \to \mathbb{R}$. Then f maps the set of moment sequences of measures supported on [0, 1] into itself if and only if f is absolutely monotonic on $(0, \infty)$ and $0 \leq f(0) \leq \lim_{\varepsilon \to 0+} f(\varepsilon)$.

Theorem 18 (B–G–K–P, 2016)

Let $f : \mathbb{R} \to \mathbb{R}$. Then f maps the set of moment sequences of measures supported on $[-1, 0]$ into the set of moment sequences of measures supported on $(-\infty, 0]$ if and only if there exists an absolutely monotonic entire function $F : \mathbb{C} \to \mathbb{C}$ such that

$$
f(x) = \begin{cases} F(x) & \text{if } 0 < x < \infty, \\ 0 & \text{if } x = 0, \\ -F(-x) & \text{if } -\infty < x < 0. \end{cases}
$$

Multi-variable preservers

A function $f : \mathbb{R}^m \to \mathbb{R}$ acts entrywise on m -tuples of matrices as follows: if $B^{(p)}=(b_{ij}^{(p)})$ is an $n\times n$ matrix for $p=1,\,\ldots,\,m$ then the $n\times n$ matrix $f[B^{(1)},\ldots,B^{(m)}]$ has (i,j) entry

$$
f[B^{(1)},\ldots,B^{(m)}]_{ij}=f(b_{ij}^{(1)},\ldots,b_{ij}^{(m)}) \qquad \text{for all } i,j \in [1:n].
$$

Theorem 19 (FitzGerald, Micchelli and Pinkus)

The function $f : \mathbb{R}^m \to \mathbb{R}$ acts entrywise to send m-tuples of positive semidefinite matrices with entries in I of arbitrary size to the set of positive semidefinite matrices if and only if f is represented on \mathbb{R}^m by a convergent power series with non-negative coefficients:

$$
f(\mathbf{x}) = \sum_{\alpha \in \mathbb{Z}_{+}^{m}} c_{\alpha} \mathbf{x}^{\alpha} \quad \text{for all } \mathbf{x} \in \mathbb{R}^{m}, \text{ where } c_{\alpha} \geqslant 0 \text{ for all } \alpha \in \mathbb{Z}_{+}^{m}.
$$

Matrices with negative eigenvalues

Some notation

Let $I \subseteq \mathbb{R}$ and set

 $\mathcal{S}^{(k)}_{n}(I) := \{A \in \mathcal{M}_{n}(I) : A = A^{T} \text{ has exactly } k \text{ negative eigenvalues}\}.$

We count eigenvalues with multiplicity.

The sets

$$
S_n^{(0)}(I), S_n^{(1)}(I), \ldots, S_n^{(n)}(I)
$$

form a partition the set of $n \times n$ real symmetric matrices with entries in I. We let

$$
\mathcal{S}^{(k)}(I) := \bigcup_{n=k}^{\infty} \mathcal{S}_n^{(k)}(I)
$$

be the set of real symmetric matrices of arbitrary size with entries in I and exactly k negative eigenvalues.

Theorem 20

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$, and let k be a non-negative integer. Given a function $f: I \to \mathbb{R}$, the following are equivalent.

- ¹ The entrywise transform f [−] preserves the inertia of all matrices in $\mathcal{S}^{(k)}(I).$
- **2** The function is a positive homothety: $f(x) \equiv cx$ for some constant $c > 0$.

Thus inertia preservers are very rigid; as soon as an entrywise map preservers inertia for matrices of arbitrary dimension, it preserves eigenvalues up to simultaneous scaling.

In fact, even more is true.

Negativity preservers – I

Theorem 21

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$, and let k be a positive integer. Given a function $f: I \to \mathbb{R}$, the following are equivalent.

- \textbf{D} The entrywise transform $f[-]$ sends $\mathcal{S}^{(k)}(I)$ to $\mathcal{S}^{(k)}(\mathbb{R}).$
- **2** The function f is a positive homothety, so that $f(x) \equiv cx$ for some $c > 0$, or, when $k = 1$, we can also have that $f(x) \equiv -c$ for some $c > 0$.

We can weaken the hypotheses by looking at

$$
\overline{\mathcal{S}_n^{(k)}}(I) := \bigcup_{j=0}^k \mathcal{S}_n^{(j)}(I),
$$

the set of $n \times n$ real symmetric matrices with at most k negative eigenvalues.

Alexander Belton (University of Plymouth) [Entrywise preservers](#page-0-0) ICMS Edinburgh, 07xi24 27 / 32

Theorem 22

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$, and let k and l be positive integers. Given a function $f: I \to \mathbb{R}$, the following are equivalent.

- \textbf{D} The entrywise transform $f[-]$ sends $\mathcal{S}^{(k)}_{n}(I)$ to $\mathcal{S}^{(l)}_{n}$ for all $n\geqslant k.$
- ? The entrywise transform $f[-]$ sends $\mathcal{S}^{(k)}_{n}(I)$ to $\mathcal{S}^{(l)}_{n}$ for all $n\geqslant k.$
- ³ Exactly one of the following occurs:
	- **1** the function f is constant, so that $f(x) \equiv d$ for some $d \in \mathbb{R}$;
	- **Q** it holds that $l \ge k$ and f is linear, with $f(x) \equiv f(0) + cx$, where $c > 0$ and also $f(0) \geq 0$ if $l = k$.

Theorem 22 (continued)

The entrywise transform f[-] sends $S_n^{(k)}(I)$ (and so $S_n^{(k)}(I)$) to $\mathcal{S}^{(0)}_n = \mathcal{S}^{(0)}_n$ for all $n \geqslant k$ if and only if $f(x) \equiv c$ for some $c \geqslant 0.$ Finally, the entrywise transform f $[-]$ sends $\mathcal{S}^{(0)}_{n}(I)$ to $\mathcal{S}^{(I)}_{n}$ for all $n\geqslant 1$ if and only if

$$
f(x) = \sum_{n=0}^{\infty} c_n x^n \quad \text{for all } x \in (-\rho, \rho), \text{ where } c_n \geq 0 \text{ for all } n \geq 1.
$$

Note that setting $k = l = 0$ in Theorem [22\(](#page-27-0)1) (the missing case) gives hypothesis (ii) of Schoenberg's theorem.

Multi-variable negativity preservers – I

In Theorem [22,](#page-27-0) the parameters k and l control the degree of negativity in the domain and the co-domain, respectively.

In the multi-variable setting, the domain parameter k becomes an m -tuple of non-negative integers $\mathbf{k} = (k_1, \ldots, k_m)$.

Given such a k , we may permute the entries so that any zero entries appear first: more formally, there exists $m_0 \in [0 : m]$ with

$$
k_p=0 \text{ for } p\in [1:m_0] \text{ and } k_p\geqslant 1 \text{ for } p\in [m_0+1:m].
$$

We say that k is admissible in this case and let $k_{\text{max}} := \max\{1, k_p : p \in [1 : m]\},$

$$
\mathcal{S}_n^{(k)}(I) := \mathcal{S}_n^{(k_1)}(I) \times \cdots \times \mathcal{S}_n^{(k_m)}(I)
$$

and

$$
\overline{\mathcal{S}_n^{(k)}}(I) := \overline{\mathcal{S}_n^{(k_1)}}(I) \times \cdots \times \overline{\mathcal{S}_n^{(k_m)}}(I).
$$

Multi-variable negativity preservers – II

Theorem 23

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$. Let m and n be non-negative integers, with $m\geqslant 1$ and let $\mathbf{k}\in\mathbb{Z}_{+}^{m}$ be an admissible tuple. Given any function $f: I^m \to \mathbb{R}$, the following are equivalent.

- The entrywise transform f $[-]$ sends $\mathcal{S}^{(\mathsf{k})}_{n}(I)$ to $\mathcal{S}^{(I)}_{n}$ for all $n\geqslant k_{\mathsf{max}}.$
- ? The map f $[-]$ sends $\mathcal{S}^{(\mathsf{k})}_n(I)$ to $\mathcal{S}^{(I)}_n$ for all $n\geqslant k_{\mathsf{max}}.$
- **3** There exists a function $F: (-\rho, \rho)^{m_0} \to \mathbb{R}$ and a non-negative constant c_p for each $p \in [m_0 + 1 : m]$ such that

 \bullet we have the representation

$$
f(\mathbf{x}) = F(x_1,\ldots,x_{m_0}) + \sum_{p=m_0+1}^m c_p x_p \quad \text{for all } \mathbf{x} \in I^m,
$$

 $\bullet\;\;$ the function $\mathsf{x}'\mapsto \mathsf{F}(\mathsf{x}')-\mathsf{F}(\mathsf{0})$ is absolutely monotone on $(0,\rho)^{m_0}$ and **3** it holds that $l \geqslant \mathbf{1}_{\mathsf{F}(\mathbf{0}) < 0} + \sum_{p: c_p > 0} k_p$.

The end!

Thank you for your attention

The quartet at the International Centre for Mathematical Sciences, Edinburgh, in November 2024

Alexander Belton (University of Plymouth) [Entrywise preservers](#page-0-0) ICMS Edinburgh, 07xi24 32 / 32