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Two matrix products

Notation

The set of d × d matrices with entries in a set K ⊆ C is denoted Md(K ).

Matrix multiplication

The vector space Md(C) is an associative algebra for at least two different
products.
If A = (aij)

d
i ,j=1 and B = (bij)

d
i ,j=1 then

(AB)ij :=
d∑

k=1

aikbkj (standard)

and (A ◦ B)ij := aijbij (Hadamard).
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Positive definiteness

Definition

A matrix A ∈ Md(C) is positive semidefinite if

x∗Ax =
d∑

i ,j=1

xiaijxj ≥ 0 for all x ∈ Cd .

A matrix A ∈ Md(C) is positive definite if

x∗Ax =
d∑

i ,j=1

xiaijxj > 0 for all x ∈ Cd \ {0}.

Remark

The collection Md(C)+ of d × d positive semidefinite matrices with
complex entries is a closed cone: stable under addition, positive
homotheties and pointwise limits.
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Some consequences – I

Symmetry

If A ∈ Md(K )+ then AT ∈ Md(K )+: note that (CD)T = DTCT and so

0 ≤ x∗Ax = (x∗Ax)T = y∗ATy for all y = x ∈ Cd .

Hermitianity

If A ∈ Md(C)+ then A = A∗: note that (CD)∗ = D∗C ∗ and so

x∗Ax = (x∗Ax)∗ = x∗A∗x (x ∈ Cd) =⇒ A = A∗ by polarisation:

look at

(x+ y)∗A(x+ y)− (x− y)A(x− y)

+ i(x+ iy)∗A(x+ iy)− i(x− iy)∗A(x− iy).
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Some consequences – II

Non-negative eigenvalues

If A ∈ Md(C)+ then A = A∗, so we can find a unitary matrix U ∈ Md(C)
such that

A = U∗ diag(λ1, . . . , λd)U.

We must have that λi = (U∗ei )
∗A(U∗ei ) ≥ 0 for all i , so σ(A) ⊆ R+.

Conversely, if A ∈ Md(C) is Hermitian and has non-negative eigenvalues
then

A = B∗B ∈ Md(C)+,

where
B = A1/2 = U∗ diag

(√
λ1, . . . ,

√
λd

)
U.
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Some consequences – III

Theorem

Let A ∈ Md(C). The following are equivalent.

z∗Az ⩾ 0 for all z ∈ Cd .

A = A∗ and σ(A) ⊆ R+.

A = U diag(λ1, . . . , λd)U
∗, with λ ∈ Rd

+ and U∗U = UU∗ = I .

A =
∑d

i=1 λiviv
∗
i , where λi ⩾ 0 and v∗i vj = 1i=j for all i , j .

A = B∗B, where B ∈ Mn(C).
If these conditions hold, then A is positive semidefinite and we write A ⩾ 0.
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The Schur product theorem

Theorem 1 (Schur, 1911)

If A, B ⩾ 0 then A ◦ B ⩾ 0, where the Hadamard product is such that

(A ◦ B)ij := aijbij for all i , j .

Proof 1.

Note that AT is positive semidefinite whenever A is, and so

z∗(A ◦ B)z = tr(diag(z)∗B diag(z)AT
)

= tr
(
(AT )1/2 diag(z)∗B diag(z)(AT )1/2

)
.

Proof 2.

Note that
(uu∗) ◦ (vv∗) = (u ◦ v)(u ◦ v)∗,

so the rank-one case holds, and use linearity.
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A question of Pólya and Szegö

Corollary 2

If f (z) =
∑∞

n=0 cnz
n, with cn ⩾ 0 for all n, then

f [A] :=
∞∑
n=0

cnA
◦n =

f (a11) · · · f (a1d)
...

. . .
...

f (ad1) . . . f (add)

 ⩾ 0

for any A ∈ Md(C)+ such that f (aij) is well defined for all i , j .

Observation

A function f with such a power-series expansion is said to be absolutely
monotonic. Absolutely monotonic functions preserve positivity for square
matrices of arbitrary size.

Question (Pólya–Szegö, 1925)

Are there any other functions with this property?
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Motivation – isometric embeddings of metric spaces

Theorem 3 (Schoenberg after Fréchet and Menger)

Let (X , ρ) be a metric space containing the points x0, . . . , xn. These
points can be isometrically embedded into Euclidean space Rd but not
into Rd−1 if and only if the matrix

D[x0, . . . , xn] :=
[
ρ(xi , x0)

2 + ρ(x0, xj)
2 − ρ(xi , xj)

2
]n
i ,j=1

is positive semidefinite with rank d.

Corollary 4

A separable metric space (X , ρ) can be isometrically embedded into the
Hilbert space ℓ2 if and only if, given any collection of points x0, . . . , xn,
where n ⩾ 2, the matrix D[x0, . . . , xn] is positive semidefinite.
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Motivation – isometric spherical embeddings

Let the d − 1-dimensional unit sphere

Sd−1 = {x ∈ Rd : xTx = 1}
be equipped with the geodesic distance

∠(x, y) = arccos xTy ∈ [0, π].

Theorem 5 (Schoenberg after Fréchet and Menger)

Let (X , ρ) be a metric space containing the points, x1, . . . , xn. For any
integer d ⩾ 2, these points may be isometrically embedded into Sd−1

equipped with the geodesic distance but not Sd−2 if and only

ρ(xi , xj) ⩽ π (1 ⩽ i , j ⩽ n)

and the matrix [
cos ρ(xi , xj)

]n
i ,j=1

is positive semidefinite of rank d.
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Schoenberg’s theorem

Theorem 6 (Schoenberg, 1942)

If f : [−1, 1] → R is

(i) continuous and

(ii) such that f [A] ⩾ 0 for every A ⩾ 0 with entries in [−1, 1] and of any
size,

then f is absolutely monotonic:

f (x) =
∞∑
n=0

cnx
n for all x ∈ [−1, 1], where cn ⩾ 0 for all n.

Theorem 7 (Rudin, 1959)

On (−1, 1), the hypothesis of continuity is not required in Schoenberg’s
result.
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Vasudeva’s theorem

Characterising entrywise positivity preservers in fixed dimension is a
significant challenge.

The only complete characterisations known hold for dimensions 1 and 2.

Theorem 8 (Vasudeva, 1979)

Let f : (0,∞) → R. Then f [A] ⩾ 0 for every matrix A ∈ M2

(
(0,∞)

)
+
if

and only if the function f is

(i) non-negative,

(ii) non-decreasing and

(iii) multiplicatively midpoint convex, that is,

f (
√
xy)2 ⩽ f (x)f (y) for all x , y > 0.

In particular, such a function f is continuous.
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Horn’s theorem

Theorem 9 (Horn, 1969)

If f : (0,∞) → R is continuous and such that f [A] ⩾ 0 for every d × d
positive-semidefinite matrix A, where d ⩾ 3, then

(i) f is d − 3-times continuously differentiable and

(ii) f (k)(x) ⩾ 0 for all k = 0, . . . , d − 3 and all x > 0.

If, further, f is d − 1-times differentiable, then

f (k)(x) ⩾ 0 for k = 0, . . . , d − 1 and all x > 0.

Observation (Guillot–Khare–Rajaratnam)

To obtain Horn’s result, it suffices to consider only matrices having the
form A = a1+ uuT , where a > 0 and ui ⩾ 0 for all i .
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Positivity of Maclaurin coefficients

Proposition 10 (B–G–K–P, 2016)

If f : D(0, ρ) → R is analytic, where ρ > 0, and such that f [A] ⩾ 0
whenever A ∈ Md

(
(0, ρ)

)
+
has rank one then the first d non-zero

Maclaurin coefficients of the function f are strictly positive.

Proof.

Suppose the first d non-zero Maclaurin coefficents are cn1 , . . . , cnd . Let
uT = (u1, . . . , ud) have distinct entries and note that (u

nj
i ) is a generalised

Vandermonde matrix, so invertible. Hence {u◦n1 , . . . ,u◦nd} is linearly
independent; let {v1, . . . , vd} ⊆ Rd be such that vTi u

◦nj = 1i=j . Then, for
any i ,

0 ⩽ ε−nivTi f [εuu
T ]vi = cni +

∑
j>ni

cjε
j−ni (vTi u

◦j)2 → cni as ε → 0 + .
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Positivity preservers in fixed dimension

Theorem 11 (B–G–K–P, 2016)

Let ρ > 0, d ⩾ 1, c = (c0, . . . , cd−1)
T ∈ Rd , c ′ ∈ R, m ⩾ 0 and

f (z) =
d−1∑
i=0

ciz
i + c ′zm,

The following are equivalent.

(i) f [A] ⩾ 0 for every A ∈ Md

(
D(0, ρ)

)
+
.

(ii) Either c ∈ Rd
+ and c ′ ∈ R+, or c ∈ (0,∞)d and c ′ ⩾ −C(c;m, ρ)−1,

where

C(c;m, ρ) :=
d−1∑
j=0

(
m

j

)2(m − j − 1

d − j − 1

)2 ρm−j

cj
.

(iii) f [A] ⩾ 0 for every A ∈ Md

(
(0, ρ)

)
+
with rank at most one.
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Steps towards the proof of Theorem 11 – I

Let
f (x) = c0x

n0 + · · ·+ cd−1x
nd−1 + c ′xM ,

where the non-negative integers n0 < · · · < nd−1 < M and the real
coefficients c0, . . . , cd−1 > 0 and c ′ < 0.

Let t = −1/c ′ and consider

pt(x) := t
d−1∑
j=0

cjx
nj − xM .

What is the smallest t such that pt [−] preserves positivity on the cone
Md

(
(0,∞)

)
+
?

A trick due to FitzGerald and Horn means that we can focus on the
rank-one case.
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Steps towards the proof of Theorem 11 – II

Proposition 12

Let u ∈ (0,∞)d have distinct coordinates. The following are equivalent.

(i) The matrix pt [uuT ] is positive semidefinite.

(ii) The determinant det pt [uTu] ⩾ 0.

(iii) We have that

t ⩾
N−1∑
j=0

snj (u)
2

cjsn(u)2
,

where the Schur polynomial

sn(u) :=
detu◦n

detu◦nmin
=

det(u
nj−1

i )

det(uj−1
i )

and
nj := (n0, . . . , n̂j , . . . , nd−1,M).
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Steps towards the proof of Theorem 11 – III

Proposition 13 (Khare and Tao, 2021)

Let m = (m0 < · · · < md−1) and n = (n0 < · · · < nd−1) be d-tuples of
non-negative integers with mi ⩽ ni for i = 0, . . . , d − 1. The function

f : (0,∞)d → R; u 7→ sn(u)

sm(u)

is non-decreasing in each coordinate.

Moreover, the Weyl dimension formula gives that

sn
(
(1, . . . , 1)T

)
=

∏
0⩽i<j⩽d−1

nj − ni
j − i

=
V (n)

V (nmin)
,

where V (n) is a Vandermonde determinant.
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Hankel matrices

Moment matrices

Let µ be a measure on R with moments of all orders, and let

sn = sn(µ) :=

∫
R
xnµ(dx) (n ⩾ 0).

The Hankel matrix associated with µ is

Hµ :=


s0 s1 s2 . . .

s1 s2 s3 . . .

s2 s3 s4 . . .

...
...

...
. . .

 = (si+j)
∞
i ,j=0.
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The Hamburger moment problem

Theorem 14 (Hamburger, 1920)

A sequence (sn)n⩾0 is the moment sequence for a positive Borel measure
on R if and only if the associated Hankel matrix is positive semidefinite.

Corollary 15

A map f preserves positivity when applied entrywise to Hankel matrices if
and only if it maps moment sequences to themselves: given any positive
Borel measure µ,

f
(
sn(µ)

)
= sn(ν) (n ⩾ 0)

for some positive Borel measure ν.
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Preserving positivity for Hankel matrices - I

Theorem 16 (B–G–K–P, 2016)

Let f : R → R. The following are equivalent.

1 The function f maps the set of moment sequences of measures
supported on [−1, 1] into itself.

2 f [A] ⩾ 0 whenever A is a positive-semidefinite Hankel matrix of any
size.

3 f [A] ⩾ 0 whenever A is a positive-semidefinite matrix of any size.

4 The function f is absolutely monotonic:

f (x) =
∞∑
n=0

cnx
n for all x ∈ R,

with cn ⩾ 0 for all n.

Alexander Belton (University of Plymouth) Entrywise preservers ICMS Edinburgh, 07xi24 22 / 32



Preserving positivity for Hankel matrices - II

Theorem 17 (B–G–K–P, 2016)

Let f : R → R. Then f maps the set of moment sequences of measures
supported on [0, 1] into itself if and only if f is absolutely monotonic
on (0,∞) and 0 ⩽ f (0) ⩽ limε→0+ f (ε).

Theorem 18 (B–G–K–P, 2016)

Let f : R → R. Then f maps the set of moment sequences of measures
supported on [−1, 0] into the set of moment sequences of measures
supported on (−∞, 0] if and only if there exists an absolutely monotonic
entire function F : C → C such that

f (x) =


F (x) if 0 < x < ∞,

0 if x = 0,

−F (−x) if −∞ < x < 0.
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Multi-variable preservers

A function f : Rm → R acts entrywise on m-tuples of matrices as follows:

if B(p) = (b
(p)
ij ) is an n× n matrix for p = 1, . . . , m then the n× n matrix

f [B(1), . . . ,B(m)] has (i , j) entry

f [B(1), . . . ,B(m)]ij = f (b
(1)
ij , . . . , b

(m)
ij ) for all i , j ∈ [1 : n].

Theorem 19 (FitzGerald, Micchelli and Pinkus)

The function f : Rm → R acts entrywise to send m-tuples of positive
semidefinite matrices with entries in I of arbitrary size to the set of
positive semidefinite matrices if and only if f is represented on Rm by a
convergent power series with non-negative coefficients:

f (x) =
∑
α∈Zm

+

cαx
α for all x ∈ Rm, where cα ⩾ 0 for all α ∈ Zm

+.

Alexander Belton (University of Plymouth) Entrywise preservers ICMS Edinburgh, 07xi24 24 / 32



Matrices with negative eigenvalues

Some notation

Let I ⊆ R and set

S(k)
n (I ) := {A ∈ Mn(I ) : A = AT has exactly k negative eigenvalues}.

We count eigenvalues with multiplicity.
The sets

S(0)
n (I ), S(1)

n (I ), . . . , S(n)
n (I )

form a partition the set of n × n real symmetric matrices with entries in I .
We let

S(k)(I ) :=
∞⋃
n=k

S(k)
n (I )

be the set of real symmetric matrices of arbitrary size with entries in I and
exactly k negative eigenvalues.
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Inertia preservers

Theorem 20

Let I := (−ρ, ρ), where 0 < ρ ⩽ ∞, and let k be a non-negative integer.
Given a function f : I → R, the following are equivalent.

1 The entrywise transform f [−] preserves the inertia of all matrices in
S(k)(I ).

2 The function is a positive homothety: f (x) ≡ cx for some constant
c > 0.

Thus inertia preservers are very rigid; as soon as an entrywise map
preservers inertia for matrices of arbitrary dimension, it preserves
eigenvalues up to simultaneous scaling.

In fact, even more is true.
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Negativity preservers – I

Theorem 21

Let I := (−ρ, ρ), where 0 < ρ ⩽ ∞, and let k be a positive integer. Given
a function f : I → R, the following are equivalent.

1 The entrywise transform f [−] sends S(k)(I ) to S(k)(R).
2 The function f is a positive homothety, so that f (x) ≡ cx for some

c > 0, or, when k = 1, we can also have that f (x) ≡ −c for some
c > 0.

We can weaken the hypotheses by looking at

S(k)
n (I ) :=

k⋃
j=0

S(j)
n (I ),

the set of n × n real symmetric matrices with at most k negative
eigenvalues.
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Negativity preservers – II

Theorem 22

Let I := (−ρ, ρ), where 0 < ρ ⩽ ∞, and let k and l be positive integers.
Given a function f : I → R, the following are equivalent.

1 The entrywise transform f [−] sends S(k)
n (I ) to S(l)

n for all n ⩾ k.

2 The entrywise transform f [−] sends S(k)
n (I ) to S(l)

n for all n ⩾ k.
3 Exactly one of the following occurs:

1 the function f is constant, so that f (x) ≡ d for some d ∈ R;
2 it holds that l ⩾ k and f is linear, with f (x) ≡ f (0) + cx, where c > 0

and also f (0) ⩾ 0 if l = k.
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Negativity preservers – III

Theorem 22 (continued)

The entrywise transform f [−] sends S(k)
n (I ) (and so S(k)

n (I )) to

S(0)
n = S(0)

n for all n ⩾ k if and only if f (x) ≡ c for some c ⩾ 0.

Finally, the entrywise transform f [−] sends S(0)
n (I ) to S(l)

n for all n ⩾ 1 if
and only if

f (x) =
∞∑
n=0

cnx
n for all x ∈ (−ρ, ρ), where cn ⩾ 0 for all n ⩾ 1.

Note that setting k = l = 0 in Theorem 22(1) (the missing case) gives
hypothesis (ii) of Schoenberg’s theorem.
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Multi-variable negativity preservers – I

In Theorem 22, the parameters k and l control the degree of negativity in
the domain and the co-domain, respectively.

In the multi-variable setting, the domain parameter k becomes an m-tuple
of non-negative integers k = (k1, . . . , km).

Given such a k, we may permute the entries so that any zero entries
appear first: more formally, there exists m0 ∈ [0 : m] with

kp = 0 for p ∈ [1 : m0] and kp ⩾ 1 for p ∈ [m0 + 1 : m].

We say that k is admissible in this case and let
kmax := max{1, kp : p ∈ [1 : m]},

S(k)
n (I ) := S(k1)

n (I )× · · · × S(km)
n (I )

and

S(k)
n (I ) := S(k1)

n (I )× · · · × S(km)
n (I ).
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Multi-variable negativity preservers – II

Theorem 23

Let I := (−ρ, ρ), where 0 < ρ ⩽ ∞. Let m and n be non-negative
integers, with m ⩾ 1 and let k ∈ Zm

+ be an admissible tuple. Given any
function f : Im → R, the following are equivalent.

1 The entrywise transform f [−] sends S(k)
n (I ) to S(l)

n for all n ⩾ kmax.

2 The map f [−] sends S(k)
n (I ) to S(l)

n for all n ⩾ kmax.
3 There exists a function F : (−ρ, ρ)m0 → R and a non-negative

constant cp for each p ∈ [m0 + 1 : m] such that
1 we have the representation

f (x) = F (x1, . . . , xm0) +
m∑

p=m0+1

cpxp for all x ∈ Im,

2 the function x′ 7→ F (x′)− F (0) is absolutely monotone on (0, ρ)m0 and
3 it holds that l ⩾ 1F (0)<0 +

∑
p:cp>0 kp.
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The end!

Thank you for your attention

The quartet at the International Centre for Mathematical Sciences,
Edinburgh, in November 2024
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