Entrywise preservers beyond Schoenberg

Alexander Belton

School of Engineering, Computing and Mathematics University of Plymouth, United Kingdom

alexander.belton@plymouth.ac.uk

Applied Matrix Positivity II workshop International Centre for Mathematical Sciences, Edinburgh 7th November 2024

Co-workers

- Dominique Guillot (U. Delaware)
- Apoorva Khare (Indian Institute of Science, Bangalore)
- Mihai Putinar (U. California Santa Barbara & U. Newcastle)

The quartet at the International Centre for Mathematical Sciences, Edinburgh, in August 2016

Notation

The set of $d \times d$ matrices with entries in a set $K \subseteq \mathbb{C}$ is denoted $M_d(K)$.

Matrix multiplication

The vector space $M_d(\mathbb{C})$ is an associative algebra for at least two different products. If $A = (a_{ij})_{i,j=1}^d$ and $B = (b_{ij})_{i,j=1}^d$ then

$$(AB)_{ij} := \sum_{k=1}^{d} a_{ik} b_{kj}$$
 (standard)
and $(A \circ B)_{ij} := a_{ij} b_{ij}$ (Hadamard).

Positive definiteness

Definition

A matrix $A \in M_d(\mathbb{C})$ is positive semidefinite if

$$\mathbf{x}^* A \mathbf{x} = \sum_{i,j=1}^d \overline{x_i} a_{ij} x_j \ge 0$$
 for all $\mathbf{x} \in \mathbb{C}^d$.

A matrix $A \in M_d(\mathbb{C})$ is positive definite if

$$\mathbf{x}^*A\mathbf{x} = \sum_{i,j=1}^d \overline{x_i}a_{ij}x_j > 0$$
 for all $\mathbf{x} \in \mathbb{C}^d \setminus \{\mathbf{0}\}.$

Remark

The collection $M_d(\mathbb{C})_+$ of $d \times d$ positive semidefinite matrices with complex entries is a *closed cone*: stable under addition, positive homotheties and pointwise limits.

Alexander Belton (University of Plymouth)

Entrywise preservers

Symmetry

If $A \in M_d(K)_+$ then $A^T \in M_d(K)_+$: note that $(CD)^T = D^T C^T$ and so

$$0 \leq \mathbf{x}^* A \mathbf{x} = (\mathbf{x}^* A \mathbf{x})^T = \mathbf{y}^* A^T \mathbf{y} \qquad \text{for all } \mathbf{y} = \overline{\mathbf{x}} \in \mathbb{C}^d.$$

Hermitianity

If $A\in M_d(\mathbb{C})_+$ then $A=A^*$: note that $(\mathit{CD})^*=D^*\mathit{C}^*$ and so

$$\mathbf{x}^* A \mathbf{x} = (\mathbf{x}^* A \mathbf{x})^* = \mathbf{x}^* A^* \mathbf{x} \quad (\mathbf{x} \in \mathbb{C}^d) \implies A = A^* \text{ by polarisation:}$$

look at

$$(\mathbf{x} + \mathbf{y})^* A(\mathbf{x} + \mathbf{y}) - (\mathbf{x} - \mathbf{y}) A(\mathbf{x} - \mathbf{y})$$

+ $i(\mathbf{x} + i\mathbf{y})^* A(\mathbf{x} + i\mathbf{y}) - i(\mathbf{x} - i\mathbf{y})^* A(\mathbf{x} - i\mathbf{y}).$

Non-negative eigenvalues

If $A \in M_d(\mathbb{C})_+$ then $A = A^*$, so we can find a unitary matrix $U \in M_d(\mathbb{C})$ such that

$$A = U^* \operatorname{diag}(\lambda_1, \ldots, \lambda_d) U.$$

We must have that $\lambda_i = (U^* \mathbf{e}_i)^* A(U^* \mathbf{e}_i) \ge 0$ for all *i*, so $\sigma(A) \subseteq \mathbb{R}_+$.

Conversely, if $A \in M_d(\mathbb{C})$ is Hermitian and has non-negative eigenvalues then

$$A = B^*B \in M_d(\mathbb{C})_+,$$

where

$$B = A^{1/2} = U^* \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_d}) U.$$

Theorem

Let $A \in M_d(\mathbb{C})$. The following are equivalent.

• $\mathbf{z}^* A \mathbf{z} \ge 0$ for all $\mathbf{z} \in \mathbb{C}^d$.

•
$${\sf A}={\sf A}^*$$
 and $\sigma({\sf A})\subseteq \mathbb{R}_+$.

- $A = U \operatorname{diag}(\lambda_1, \dots, \lambda_d) U^*$, with $\lambda \in \mathbb{R}^d_+$ and $U^*U = UU^* = I$.
- $A = \sum_{i=1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^*$, where $\lambda_i \ge 0$ and $\mathbf{v}_i^* \mathbf{v}_j = \mathbb{1}_{i=j}$ for all i, j.
- $A = B^*B$, where $B \in M_n(\mathbb{C})$.

If these conditions hold, then A is positive semidefinite and we write $A \ge 0$.

7/32

The Schur product theorem

Theorem 1 (Schur, 1911)

If A, $B \ge 0$ then $A \circ B \ge 0$, where the Hadamard product is such that

$$(A \circ B)_{ij} := a_{ij}b_{ij}$$
 for all i, j .

Proof 1.

Note that A^{T} is positive semidefinite whenever A is, and so

$$\mathbf{z}^*(A \circ B)\mathbf{z} = \operatorname{tr}(\operatorname{diag}(\mathbf{z})^* B \operatorname{diag}(\mathbf{z}) A^T)$$
$$= \operatorname{tr}((A^T)^{1/2} \operatorname{diag}(\mathbf{z})^* B \operatorname{diag}(\mathbf{z}) (A^T)^{1/2}).$$

Proof 2.

Note that

$$(\mathbf{u}\mathbf{u}^*)\circ(\mathbf{v}\mathbf{v}^*)=(\mathbf{u}\circ\mathbf{v})(\mathbf{u}\circ\mathbf{v})^*,$$

so the rank-one case holds, and use linearity.

A question of Pólya and Szegö

Corollary 2

If $f(z) = \sum_{n=0}^{\infty} c_n z^n$, with $c_n \ge 0$ for all n, then

$$f[A] := \sum_{n=0}^{\infty} c_n A^{\circ n} = \begin{pmatrix} f(a_{11}) & \cdots & f(a_{1d}) \\ \vdots & \ddots & \vdots \\ f(a_{d1}) & \cdots & f(a_{dd}) \end{pmatrix} \ge 0$$

for any $A \in M_d(\mathbb{C})_+$ such that $f(a_{ij})$ is well defined for all i, j.

Observation

A function f with such a power-series expansion is said to be *absolutely monotonic*. Absolutely monotonic functions preserve positivity for square matrices of arbitrary size.

Question (Pólya–Szegö, 1925)

Are there any other functions with this property?

Theorem 3 (Schoenberg after Fréchet and Menger)

Let (X, ρ) be a metric space containing the points x_0, \ldots, x_n . These points can be isometrically embedded into Euclidean space \mathbb{R}^d but not into \mathbb{R}^{d-1} if and only if the matrix

$$D[x_0,...,x_n] := \left[\rho(x_i,x_0)^2 + \rho(x_0,x_j)^2 - \rho(x_i,x_j)^2\right]_{i,j=1}^n$$

is positive semidefinite with rank d.

Corollary 4

A separable metric space (X, ρ) can be isometrically embedded into the Hilbert space ℓ^2 if and only if, given any collection of points x_0, \ldots, x_n , where $n \ge 2$, the matrix $D[x_0, \ldots, x_n]$ is positive semidefinite.

Motivation - isometric spherical embeddings

Let the d-1-dimensional unit sphere

$$\mathbb{S}^{d-1} = \{\mathbf{x} \in \mathbb{R}^d : \mathbf{x}^T \mathbf{x} = 1\}$$

be equipped with the geodesic distance

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \mathbf{x}^T \mathbf{y} \in [0, \pi].$$

Theorem 5 (Schoenberg after Fréchet and Menger)

Let (X, ρ) be a metric space containing the points, x_1, \ldots, x_n . For any integer $d \ge 2$, these points may be isometrically embedded into \mathbb{S}^{d-1} equipped with the geodesic distance but not \mathbb{S}^{d-2} if and only

$$\rho(x_i, x_j) \leqslant \pi \quad (1 \leqslant i, j \leqslant n)$$

and the matrix

$$\left[\cos\rho(x_i,x_j)\right]_{i,j=1}^n$$

is positive semidefinite of rank d.

Theorem 6 (Schoenberg, 1942)

- If $f: [-1,1] \to \mathbb{R}$ is
 - (i) continuous and
- (ii) such that $f[A] \ge 0$ for every $A \ge 0$ with entries in [-1, 1] and of any size,
- then f is absolutely monotonic:

$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 for all $x \in [-1,1]$, where $c_n \ge 0$ for all n .

Theorem 7 (Rudin, 1959)

On (-1,1), the hypothesis of continuity is not required in Schoenberg's result.

Characterising entrywise positivity preservers in fixed dimension is a significant challenge.

The only complete characterisations known hold for dimensions 1 and 2.

Theorem 8 (Vasudeva, 1979)

Let $f:(0,\infty) \to \mathbb{R}$. Then $f[A] \ge 0$ for every matrix $A \in M_2((0,\infty))_+$ if and only if the function f is

(i) non-negative,

(ii) non-decreasing and

(iii) multiplicatively midpoint convex, that is,

$$f(\sqrt{xy})^2 \leqslant f(x)f(y)$$
 for all $x, y > 0$.

In particular, such a function f is continuous.

Theorem 9 (Horn, 1969)

If $f : (0, \infty) \to \mathbb{R}$ is continuous and such that $f[A] \ge 0$ for every $d \times d$ positive-semidefinite matrix A, where $d \ge 3$, then

(i) f is d - 3-times continuously differentiable and

(ii)
$$f^{(k)}(x) \ge 0$$
 for all $k = 0, ..., d - 3$ and all $x > 0$.

If, further, f is d - 1-times differentiable, then

$$f^{(k)}(x) \ge 0$$
 for $k = 0, ..., d-1$ and all $x > 0$.

Observation (Guillot–Khare–Rajaratnam)

To obtain Horn's result, it suffices to consider only matrices having the form $A = a\mathbf{1} + \mathbf{u}\mathbf{u}^{T}$, where a > 0 and $u_i \ge 0$ for all *i*.

Proposition 10 (B-G-K-P, 2016)

If $f : D(0, \rho) \to \mathbb{R}$ is analytic, where $\rho > 0$, and such that $f[A] \ge 0$ whenever $A \in M_d((0, \rho))_+$ has rank one then the first d non-zero Maclaurin coefficients of the function f are strictly positive.

Proof.

Suppose the first *d* non-zero Maclaurin coefficents are c_{n_1}, \ldots, c_{n_d} . Let $\mathbf{u}^T = (u_1, \ldots, u_d)$ have distinct entries and note that $(u_i^{n_j})$ is a generalised Vandermonde matrix, so invertible. Hence $\{\mathbf{u}^{\circ n_1}, \ldots, \mathbf{u}^{\circ n_d}\}$ is linearly independent; let $\{\mathbf{v}_1, \ldots, \mathbf{v}_d\} \subseteq \mathbb{R}^d$ be such that $\mathbf{v}_i^T \mathbf{u}^{\circ n_j} = \mathbb{1}_{i=j}$. Then, for any *i*,

$$0 \leqslant \varepsilon^{-n_i} \mathbf{v}_i^T f[\varepsilon \mathbf{u} \mathbf{u}^T] \mathbf{v}_i = c_{n_i} + \sum_{j > n_i} c_j \varepsilon^{j-n_i} (\mathbf{v}_i^T \mathbf{u}^{\circ j})^2 \to c_{n_i} \text{ as } \varepsilon \to 0 + . \quad \Box$$

Theorem 11 (B–G–K–P, 2016)

Let $\rho > 0$, $d \geqslant 1$, $\mathbf{c} = (c_0, \dots, c_{d-1})^T \in \mathbb{R}^d$, $c' \in \mathbb{R}$, $m \geqslant 0$ and

$$f(z) = \sum_{i=0}^{d-1} c_i z^i + c' z^m,$$

The following are equivalent.

- (i) $f[A] \ge 0$ for every $A \in M_d(\overline{D}(0,\rho))_+$.
- (ii) Either $\mathbf{c} \in \mathbb{R}^d_+$ and $c' \in \mathbb{R}_+$, or $\mathbf{c} \in (0,\infty)^d$ and $c' \ge -\mathfrak{C}(\mathbf{c}; m, \rho)^{-1}$, where

$$\mathfrak{C}(\mathbf{c};m,\rho) := \sum_{j=0}^{d-1} \binom{m}{j}^2 \binom{m-j-1}{d-j-1}^2 \frac{\rho^{m-j}}{c_j}$$

(iii) $f[A] \ge 0$ for every $A \in M_d((0,\rho))_+$ with rank at most one.

Let

$$f(x) = c_0 x^{n_0} + \cdots + c_{d-1} x^{n_{d-1}} + c' x^M$$

where the non-negative integers $n_0 < \cdots < n_{d-1} < M$ and the real coefficients $c_0, \ldots, c_{d-1} > 0$ and c' < 0.

Let t = -1/c' and consider

$$p_t(x) := t \sum_{j=0}^{d-1} c_j x^{n_j} - x^M.$$

What is the smallest t such that $p_t[-]$ preserves positivity on the cone $M_d((0,\infty))_+$?

A trick due to FitzGerald and Horn means that we can focus on the rank-one case.

Steps towards the proof of Theorem 11 – II

Proposition 12

Let $\mathbf{u} \in (0,\infty)^d$ have distinct coordinates. The following are equivalent.

- (i) The matrix $p_t[\mathbf{u}\mathbf{u}^T]$ is positive semidefinite.
- (ii) The determinant det $p_t[\mathbf{u}^T\mathbf{u}] \ge 0$.

(iii) We have that

$$t \geqslant \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j}(\mathbf{u})^2}{c_j s_{\mathbf{n}}(\mathbf{u})^2},$$

where the Schur polynomial

$$s_{\mathbf{n}}(\mathbf{u}) := rac{\det \mathbf{u}^{\circ \mathbf{n}}}{\det \mathbf{u}^{\circ \mathbf{n}_{\min}}} = rac{\det(u_i^{n_{j-1}})}{\det(u_i^{j-1})}$$

and

$$\mathbf{n}_j := (n_0, \ldots, \widehat{n_j}, \ldots, n_{d-1}, M).$$

Steps towards the proof of Theorem 11 - III

Proposition 13 (Khare and Tao, 2021)

Let $\mathbf{m} = (m_0 < \cdots < m_{d-1})$ and $\mathbf{n} = (n_0 < \cdots < n_{d-1})$ be d-tuples of non-negative integers with $m_i \leq n_i$ for $i = 0, \ldots, d-1$. The function

$$f:(0,\infty)^d o \mathbb{R}; \ \mathbf{u} \mapsto rac{s_{\mathbf{n}}(\mathbf{u})}{s_{\mathbf{m}}(\mathbf{u})}$$

is non-decreasing in each coordinate.

Moreover, the Weyl dimension formula gives that

$$s_{\mathbf{n}}((1,\ldots,1)^T) = \prod_{0 \leq i < j \leq d-1} \frac{n_j - n_i}{j-i} = \frac{V(\mathbf{n})}{V(\mathbf{n}_{\min})},$$

where $V(\mathbf{n})$ is a Vandermonde determinant.

Moment matrices

Let μ be a measure on ${\mathbb R}$ with moments of all orders, and let

$$s_n = s_n(\mu) := \int_R x^n \mu(\mathrm{d} x) \qquad (n \ge 0).$$

The Hankel matrix associated with μ is

$$H_{\mu} := \begin{pmatrix} s_0 & s_1 & s_2 & \dots \\ s_1 & s_2 & s_3 & \dots \\ s_2 & s_3 & s_4 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = (s_{i+j})_{i,j=0}^{\infty}.$$

Theorem 14 (Hamburger, 1920)

A sequence $(s_n)_{n \ge 0}$ is the moment sequence for a positive Borel measure on \mathbb{R} if and only if the associated Hankel matrix is positive semidefinite.

Corollary 15

A map f preserves positivity when applied entrywise to Hankel matrices if and only if it maps moment sequences to themselves: given any positive Borel measure μ ,

$$f(s_n(\mu)) = s_n(\nu) \qquad (n \ge 0)$$

for some positive Borel measure ν .

Theorem 16 (B–G–K–P, 2016)

Let $f : \mathbb{R} \to \mathbb{R}$. The following are equivalent.

- The function f maps the set of moment sequences of measures supported on [−1, 1] into itself.
- *f*[*A*] ≥ 0 whenever *A* is a positive-semidefinite Hankel matrix of any size.
- **(3)** $f[A] \ge 0$ whenever A is a positive-semidefinite matrix of any size.
- The function f is absolutely monotonic:

$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 for all $x \in \mathbb{R}$,

with $c_n \ge 0$ for all n.

Theorem 17 (B–G–K–P, 2016)

Let $f : \mathbb{R} \to \mathbb{R}$. Then f maps the set of moment sequences of measures supported on [0,1] into itself if and only if f is absolutely monotonic on $(0,\infty)$ and $0 \leq f(0) \leq \lim_{\varepsilon \to 0+} f(\varepsilon)$.

Theorem 18 (B–G–K–P, 2016)

Let $f : \mathbb{R} \to \mathbb{R}$. Then f maps the set of moment sequences of measures supported on [-1,0] into the set of moment sequences of measures supported on $(-\infty,0]$ if and only if there exists an absolutely monotonic entire function $F : \mathbb{C} \to \mathbb{C}$ such that

$$f(x) = \begin{cases} F(x) & \text{if } 0 < x < \infty, \\ 0 & \text{if } x = 0, \\ -F(-x) & \text{if } -\infty < x < 0. \end{cases}$$

Multi-variable preservers

A function $f : \mathbb{R}^m \to \mathbb{R}$ acts entrywise on *m*-tuples of matrices as follows: if $B^{(p)} = (b_{ij}^{(p)})$ is an $n \times n$ matrix for p = 1, ..., m then the $n \times n$ matrix $f[B^{(1)}, \ldots, B^{(m)}]$ has (i, j) entry

$$f[B^{(1)}, \dots, B^{(m)}]_{ij} = f(b^{(1)}_{ij}, \dots, b^{(m)}_{ij})$$
 for all $i, j \in [1:n]$.

Theorem 19 (FitzGerald, Micchelli and Pinkus)

The function $f : \mathbb{R}^m \to \mathbb{R}$ acts entrywise to send m-tuples of positive semidefinite matrices with entries in I of arbitrary size to the set of positive semidefinite matrices if and only if f is represented on \mathbb{R}^m by a convergent power series with non-negative coefficients:

$$f(\mathbf{x}) = \sum_{\boldsymbol{\alpha} \in \mathbb{Z}_+^m} c_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}} \qquad \text{for all } \mathbf{x} \in \mathbb{R}^m, \text{ where } c_{\boldsymbol{\alpha}} \ge 0 \text{ for all } \boldsymbol{\alpha} \in \mathbb{Z}_+^m.$$

Matrices with negative eigenvalues

Some notation

Let $I \subseteq \mathbb{R}$ and set

 $\mathcal{S}_n^{(k)}(I) := \{A \in M_n(I) : A = A^T \text{ has exactly } k \text{ negative eigenvalues} \}.$

We count eigenvalues with multiplicity.

The sets

$$\mathcal{S}_n^{(0)}(I), \quad \mathcal{S}_n^{(1)}(I), \quad \dots, \quad \mathcal{S}_n^{(n)}(I)$$

form a partition the set of $n \times n$ real symmetric matrices with entries in *I*. We let

$$S^{(k)}(I) := \bigcup_{n=k}^{\infty} S_n^{(k)}(I)$$

be the set of real symmetric matrices of arbitrary size with entries in I and exactly k negative eigenvalues.

Theorem 20

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$, and let k be a non-negative integer. Given a function $f : I \to \mathbb{R}$, the following are equivalent.

- The entrywise transform f[-] preserves the inertia of all matrices in S^(k)(I).
- The function is a positive homothety: f(x) ≡ cx for some constant c > 0.

Thus inertia preservers are very rigid; as soon as an entrywise map preservers inertia for matrices of arbitrary dimension, it preserves eigenvalues up to simultaneous scaling.

In fact, even more is true.

Negativity preservers – I

Theorem 21

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$, and let k be a positive integer. Given a function $f : I \to \mathbb{R}$, the following are equivalent.

- The entrywise transform f[-] sends $S^{(k)}(I)$ to $S^{(k)}(\mathbb{R})$.
- The function f is a positive homothety, so that f(x) ≡ cx for some c > 0, or, when k = 1, we can also have that f(x) ≡ -c for some c > 0.

We can weaken the hypotheses by looking at

$$\overline{\mathcal{S}_n^{(k)}}(I) := \bigcup_{j=0}^k \mathcal{S}_n^{(j)}(I),$$

the set of $n \times n$ real symmetric matrices with at most k negative eigenvalues.

Theorem 22

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$, and let k and I be positive integers. Given a function $f : I \to \mathbb{R}$, the following are equivalent.

- The entrywise transform f[-] sends $S_n^{(k)}(I)$ to $S_n^{(l)}$ for all $n \ge k$.
- **2** The entrywise transform f[-] sends $S_n^{(k)}(I)$ to $S_n^{(l)}$ for all $n \ge k$.
- Sector State St
 - the function f is constant, so that $f(x) \equiv d$ for some $d \in \mathbb{R}$;
 - ② it holds that l ≥ k and f is linear, with f(x) ≡ f(0) + cx, where c > 0and also f(0) ≥ 0 if l = k.

Theorem 22 (continued)

The entrywise transform f[-] sends $\overline{\mathcal{S}_n^{(k)}}(I)$ (and so $\mathcal{S}_n^{(k)}(I)$) to $\overline{\mathcal{S}_n^{(0)}} = \mathcal{S}_n^{(0)}$ for all $n \ge k$ if and only if $f(x) \equiv c$ for some $c \ge 0$. Finally, the entrywise transform f[-] sends $\mathcal{S}_n^{(0)}(I)$ to $\overline{\mathcal{S}_n^{(I)}}$ for all $n \ge 1$ if and only if

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \quad \text{for all } x \in (-\rho, \rho), \text{ where } c_n \ge 0 \text{ for all } n \ge 1.$$

Note that setting k = l = 0 in Theorem 22(1) (the missing case) gives hypothesis (ii) of Schoenberg's theorem.

Multi-variable negativity preservers - I

In Theorem 22, the parameters k and l control the degree of negativity in the domain and the co-domain, respectively.

In the multi-variable setting, the domain parameter k becomes an m-tuple of non-negative integers $\mathbf{k} = (k_1, \ldots, k_m)$.

Given such a **k**, we may permute the entries so that any zero entries appear first: more formally, there exists $m_0 \in [0 : m]$ with

$$k_p=0 \text{ for } p\in [1:m_0] \text{ and } k_p \ge 1 \text{ for } p\in [m_0+1:m].$$

We say that **k** is *admissible* in this case and let $k_{max} := \max\{1, k_p : p \in [1 : m]\},$

$$\mathcal{S}_n^{(\mathbf{k})}(I) := \mathcal{S}_n^{(k_1)}(I) \times \cdots \times \mathcal{S}_n^{(k_m)}(I)$$

and

$$\overline{\mathcal{S}_n^{(\mathbf{k})}}(I) := \overline{\mathcal{S}_n^{(k_1)}}(I) \times \cdots \times \overline{\mathcal{S}_n^{(k_m)}}(I).$$

Multi-variable negativity preservers - II

Theorem 23

Let $I := (-\rho, \rho)$, where $0 < \rho \leq \infty$. Let m and n be non-negative integers, with $m \ge 1$ and let $\mathbf{k} \in \mathbb{Z}^m_+$ be an admissible tuple. Given any function $f : I^m \to \mathbb{R}$, the following are equivalent.

- The entrywise transform f[-] sends $S_n^{(k)}(I)$ to $S_n^{(I)}$ for all $n \ge k_{\max}$.
- **2** The map f[-] sends $S_n^{(k)}(I)$ to $\overline{S_n^{(I)}}$ for all $n \ge k_{\max}$.
- So There exists a function $F : (-\rho, \rho)^{m_0} \to \mathbb{R}$ and a non-negative constant c_p for each $p \in [m_0 + 1 : m]$ such that

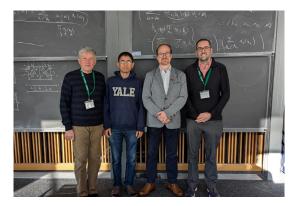
• we have the representation

$$f(\mathbf{x}) = F(x_1, \ldots, x_{m_0}) + \sum_{p=m_0+1}^m c_p x_p \quad \text{for all } \mathbf{x} \in I^m,$$

2 the function $\mathbf{x}' \mapsto F(\mathbf{x}') - F(\mathbf{0})$ is absolutely monotone on $(0, \rho)^{m_0}$ and **3** it holds that $l \ge \mathbf{1}_{F(\mathbf{0}) < 0} + \sum_{p:c_p > 0} k_p$.

The end!

Thank you for your attention



The quartet at the International Centre for Mathematical Sciences, Edinburgh, in November 2024

Alexander Belton (University of Plymouth)

Entrywise preservers