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Positive and Non-negative matrices

Let A ∈ Mn(R) be an n × n matrix with the real entries.
A is positive if all its entries are positive, aij > 0,
A is non-negative, if all aij ≥ 0.

Combinatorial matrix theory is an efficient approach to investigate
non-negative matrices. Here

matrix properties −→ graph theory constructions



Graphs

Directed graph (or digraph) G = (V ,E ). Loops are permitted
but multiple edges are not. Order of G is the number of
vertices in it.

u → v walk in a digraph G . The length of a walk is the
number of edges in it. The notation u

k−→ v is used to
indicate that there is a u → v walk of length k .
A closed walk is a u → v walk where u = v .
A cycle is a closed u → v walk with distinct vertices except for
u = v .
The length of a shortest cycle in G is called the girth of G .
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Correspondence between matrices and digraphs

Let A = (aij) ∈ Mn(B). A corresponds to a digraph G = G (A) of
order n as follows. The vertex set is the set V = {1, . . . , n}. There
is an edge (i , j) from i to j iff aij 6= 0. A is adjacency matrix of G .

1 2

34

A =


0 1 1 0
0 0 1 0
0 1 1 1
1 0 0 0

 G (A)←→
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Definition
Non-negative A ∈ Mn, A ≥ 0, n ≥ 2, is called decomposable if ∃
permutation matrix P ∈ Mn such that

A = P

(
B 0
C D

)
Pt ,

where B,D are square matrices and C is possibly a rectangular
matrix. If A is not decomposable, then it is called indecomposable.

Definition
G is strongly connected iff for any u, v ∈ V (G ) there is an oriented
path from u to v .



Theorem
Let A ∈ Mn, A ≥ 0. TFAE

A is indecomposable,
G (A) is strongly connected,
(I + A)n−1 > 0,
∀ i , j , i 6= j , ∃ k : (i , j)-th element of Ak is positive.

Example

1

2

3

A =

0 0 1
1 0 0
0 1 0


(I + A)2 =

(
1 1 1
1 1 1
1 1 1

)
.



Primitive digraphs

Definition
A digraph G is primitive if for some positive integer t for all
vertices u, v it is true that u t−→ v .

If G is primitive, the exponent of G is the smallest such t.

Definition

A ∈ Mn, A ≥ 0, is primitive if ∃ k ∈ Z>0 : Ak > 0.
If A ∈ Mn is primitive, then the exponent of A is the smallest
such k .

Then Ak+1 = Ak · A > 0.
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Theorem
Let G be an digraph. THAE

G is primitive,
G is strongly connected and the GCD of all cycle lengths in G
is 1,
A(G ) is primitive.

Corollary

Let G be a primitive digraph. Then exp(G ) = exp(A(G )).



Example

1

2

3

A =
(

0 0 1
1 0 0
0 1 0

)
is indecomposable and is

not primitive: A2 =
(

0 1 0
0 0 1
1 0 0

)
, A3 = I , A4 = A, etc.

1

2

3

A =
(

1 0 1
1 0 0
0 1 0

)
is primitive: A4 =

(
1 1 1
1 1 1
1 1 1

)



The Wielandt matrix is

Wn =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

1 0 0 0 · · · 1
1 0 0 0 · · · 0



Theorem (Wielandt)

Let A ∈ Mn, A ≥ 0. Then exp(A) ≤ exp(Wn) = (n − 1)2 + 1.



Classical example

n − 1

Wnn − 2

n
1

2

3

Wn is called a Wielandt digraph. It is the digraph with the maximal
possible exponent, (n − 1)2 + 1.



Akelbek and Kirkland, 2009

Definition
The scrambling index of a digraph G is the smallest positive integer
k such that for every pair u, v ∈ V (G ), exists w ∈ V (G ) such that
u

k−→ w and v
k−→ w in G .

The scrambling index of G is denoted by k(G ). If such w does not
exist, let k(G ) = 0.

k(Wn) =

⌈
(n − 1)2 + 1

2

⌉
< (n − 1)2 + 1 = exp(Wn)



How to compute the scrambling index?

Simple structure of digraph

1 2

3

4

5

6

7

What is the value of k(G )?
G

2
1−→ 1, but 4

2−→ 1, and there is no other way =⇒
k(G ) = 0



How to compute the scrambling index?

Simple structure of digraph

1 2

3

4

5

6

7

What is the value of k(G )?
G

2
1−→ 1, but 4

2−→ 1, and there is no other way

=⇒
k(G ) = 0



How to compute the scrambling index?

Simple structure of digraph

1 2

3

4

5

6

7

What is the value of k(G )?
G

2
1−→ 1, but 4

2−→ 1, and there is no other way =⇒
k(G ) = 0



Applications
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Applications: Markov chains

Let P = (pij) be a primitive stochastic matrix (thus, ρ(P) = 1).

The goal is to get some upper bounds for the modulus of the
second largest eigenvalue of P .
Coefficient of ergodicity (Dobrushin or delta coefficient):

τ(P) =
1

2
max
i ,j

n∑
l=1

|pil − pjl |

Theorem (Akelbek, Kirkland)

Let P = (pij) be an n × n primitive stochastic matrix with
k(P) = k and suppose that λ is a non-unit eigenvalue of P . Then
τ(Pk) < 1 and |λ| ≤ (τ(Pk))1/k .
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Application: Memoryless communication system

A memoryless communication system is represented by a
digraph G , |G | = n.

Suppose that at time t = 0 each of two different vertices of G
(in general, 2 may be replaced with an arbitrary λ ∈ Z,
2 6 λ 6 n) ’knows’ 1 bit of inf. and these bits are distinct.
At time t = 1 each vi having some information in it passes all
the information bits to each of its outputs and simultaneously
it may receive some information. Then ∀ vi forgets the passed
information and has only the received information or nothing.
The system continues in this way.
For some digraphs after certain time there exists a vertex that
knows both bits of the information, independently on the
choice of the initial two vertices. When and what digraphs?
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How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and k(G ) 6= 0.

1 2

34

What is the value of k(G )? G

G is strongly connected (it has a Hamilton cycle
1→ 2→ 3→ 4),
G is not primitive (it has cycles of lengths only 2 and 4)

=⇒ k(G ) = 0.
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How to compute the scrambling index?

Theorem (Chen, Liu)

Let G be symmetric, i.e. for any vertices u and v , (u, v) is an edge
iff (v , u) is an edge, and G be primitive. Then k(G ) =

⌈
exp(G)

2

⌉
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Scrambling index in terms of the matrix theory

Definition (Seneta)

Matrix A ∈ Mn(B) is named scrambling matrix if no two rows of it
are orthogonal. Equivalently, if any two rows have at least one
non-zero element in coincident position.

Definition (Akelbek, Kirkland)

The scrambling index of a matrix A ∈ Mn(B) is the smallest
positive integer k such that Ak is the scrambling matrix.

The scrambling index of A is denoted by k(A). If such k does not
exist, let k(A) = 0.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph. Then k(G ) = k(A(G )).



Scrambling index in terms of the matrix theory

Definition (Seneta)

Matrix A ∈ Mn(B) is named scrambling matrix if no two rows of it
are orthogonal. Equivalently, if any two rows have at least one
non-zero element in coincident position.

Definition (Akelbek, Kirkland)

The scrambling index of a matrix A ∈ Mn(B) is the smallest
positive integer k such that Ak is the scrambling matrix.

The scrambling index of A is denoted by k(A). If such k does not
exist, let k(A) = 0.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph. Then k(G ) = k(A(G )).



How to calculate the scrambling index?

1

23

What is the value of k(A)?

G (A)

A =

0 1 0
1 0 1
1 0 0

, A2 =

1 0 1
1 1 0
0 1 0

, A3 =

1 1 0
1 1 1
1 0 1


=⇒ k(A) = 3
u = 2, v = 3. Then w = 3 and the shortest paths are
2→ 1→ 2→ 3 and 3→ 1→ 2→ 3.
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Some known bounds for the scrambling index

Theorem (Huang, Liu)

Let G de a primitive digraph of order n ≥ 2 with d loops. Then

k(G ) ≤ n −
⌈
d

2

⌉
.



Denote

K (n, s) = n − s +



(
s − 1

2

)
n, when s is odd,(

n − 1

2

)
s, when s is even.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph with n vertices and girth s. Then
k(G ) ≤ K (n, s).



Some known bounds for the scrambling index

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph of order n ≥ 3. Then

k(G ) ≤

⌈
(n − 1)2 + 1

2

⌉
.

Equality holds iff G ∼= Wn.



Actually, we do not need to require primitivity...

G :

1 2 3 4

G is not primitive.
G is not strongly connected.
k(G ) = 3 6= 0.
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Characterization of digraphs with k(G ) 6= 0

Theorem (GM, 2019)

For an arbitrary digraph G the following conditions are equivalent:
1 k(G ) 6= 0.
2 There exists a primitive subgraph G ′ of G s.t. ∀ v ∈ V (G ) ∃

w ∈ V (G ′) for which ∃ a directed walk from v to w in G .



(G1→G2)-partition

Definition

Let G be a directed graph. G has a (G1→G2)-partition if G1 and
G2 are non-empty subgraphs of the digraph G such that:
1. V (G ) = V (G1) t V (G2);
2. for each directed edge e = (v1, v2) ∈ E (G ), either e ∈ E (G1),

or e ∈ E (G2), or v1 ∈ V (G1), v2 ∈ V (G2).



Illustration

For a not strongly connected digraph G let us consider a
(G1→G2)-partition:

G1 G2

G

Remark
Geometrically this means that V (G ) is partitioned into two
non-intersecting components V (G1) and V (G2) that are connected
only by edges from G1 to G2.



New upper bounds

Let G is not strongly connected digraph of order n with k(G ) 6= 0
and G1, G2 be its (G1→G2)-partition.

Theorem (GM, 2019)

Let s be a girth of G2. Then

k(G ) 6 1 + K (n − 1, s).

Here,

K (n, s) = n − s +



(
s − 1

2

)
n, when s is odd,(

n − 1

2

)
s, when s is even.



New upper bounds

Let G is not strongly connected digraph of order n with k(G ) 6= 0
and G1, G2 be its (G1→G2)-partition.

Theorem (GM, 2019)

Assume that |G2| = b 6 n − 1. Then

k(G ) 6 n − b +

⌈
(b − 1)2 + 1

2

⌉
.



Sharpness of the upper bound

Let n ≥ 3, b ≤ n − 1. Define a digraph Hn,b:

b−1

b−2

b 1

2

3

. . . . . .n−1

n b+1

b+2

. . . . . .

Hn,b

If b > 1, then k(Hn,b) = n − b +
⌈
(b−1)2+1

2

⌉
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Assume that |G2| = b 6 n − 1. Then
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2

⌉
.

If 4 6 n < 2b, then equality holds if and only if G ∼= Hn,b.



Corollaries

Theorem (GM, 2019)

Let G be an arbitrary digraph of order n > 3. Then

k(G ) 6

⌈
(n − 1)2 + 1

2

⌉
.

The equality holds if and only if G ∼= Wn.

Theorem (GM, 2019)

Let G be a not strongly connected digraph of order n > 3. Then

k(G ) 6 1 +

⌈
(n − 2)2 + 1

2

⌉
.

When n > 4, the equality holds if and only if G ∼= Hn,n−1.
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Chain rank

Definition
Recall that rows i and j of the matrix A are intersecting if they
have positive elements in a certain common column.

The scrambling matrix is such that all its rows are intersecting.

Definition
We say that indices i and j are in solidarity relation in the matrix A
(A-solidarity relation), if there exists a sequence of indices
i = i1, i2, . . . , is = j such that rows with the indices ik , ik+1 are
intersecting for k = 1, . . . , s − 1.

Definition
The matrix is chainable if all its rows are in the same solidarity
class.

A-solidarity relation is indeed an equivalence relation on n. The
number of equivalence classes by this relation is called chain rank of
A and is denoted by crk (A).



Chainable matrices

Definition
A is called a chainable matrix, if one of the following equivalent
conditions is satisfied:
1. crk (A) = 1.

2. A = (aik) is a chainable matrix iff ∀ couple of its positive entries
aik , apq ∃ a sequence of positive entries ai1k1 , ai2k2 , . . . , ainkn
satisfying following conditions:
a) i1 = i , k1 = k ,
b) in = p, kn = q,
c) ∀ l ∈ {1, 2, ..., n − 1} it is true that il = il+1 or kl = kl+1.

Consider every entry as a square of a chessboard, where the rook is
allowed to stay only on positive entries. Matrix is chainable if the
rook can reach any positive entry from any other positive entry.



Theorem
A is a scrambling matrix =⇒ A is a chainable matrix.

Reminder: A is a scrambling matrix, iff ∀ i , p ∃ q: aiq 6= 0&apq 6= 0.

But the converse does not hold:

Examples

M1 =


1 0 0 1
0 1 0 1
1 0 1 0
0 1 1 0

 is chainable, since

row 1 intersect row 3, row 3 intersect row 4, row 4 intersect row 2,
but is not a scrambling matrix, since row 1 does not intersect row 4.



Properties of the chain rank
P is the set of non-negative matrices without zero rows&columns

Theorem (Al’pin, Bashkin, 2020)

For any A ∈ P it holds that 1 ≤ crk (A) ≤ n and

crk (At) = crk (A)

If A,B ∈ P and the product AB exists then

crk (AB) ≤ min{crk (A), crk (B)},

crk (AAt) = crk (A) = crk (AtA)

Theorem (Guterman, Shafeev, 2024)

crk (ABC ) ≤ crk (AB) + crk (BC )− crk (B)



Properties of the chain rank

Corollary
∀ A,B ∈ P such that the product AB exists

crk (A) + crk (B)− n ≤ crk (AB) ≤ min{crk (A), crk (B)}

Corollary
∀ square A ∈ P

crk (Ak)− crk (Ak+1) ≤ crk (Ak−1)− crk (Ak)



Potentially chainable and primitive matrices

Definition
If a certain power of a matrix A is a chainable matrix then A is
called potentially chainable matrix.

The notion of potentially chainable matrix is an analog of the
notion of a primitive matrix. There a certain degree is a positive
matrix, and here it is a chainable matrix.



If A is primitive
=⇒
6⇐=

A is potentially chainable.

Theorem
Let A be indecomposable. Then A is primitive iff A is potentially
chainable.

However, there are potentially chainable decomposable matrices.

Example

M2 =

1 0 0
1 0 0
0 1 1

 ,M2
2 =

1 0 0
1 0 0
1 1 1

. M2 is potentially chainable,

since M2
2 is chainable.



Perron – Frobenius Theory

Theorem
Any primitive matrix A ∈ Mn has a positive eigenvalue ρ which
is a simple root of χA(x).
∀ λ, λ 6= ρ being eigenvalue of A ⇒ |λ| < |ρ|.
Maximal eigenvalue corresponds to the eigenvector z with all
positive coordinates.

ρ is called Perron–Frobenius eigenvalue of A.

If A is not primitive but indecomposable, the following
generalization is true:



Frobenius Normal Form

Theorem (Frobenius)

Let A ∈ Mn be indecomposable. Then either A is primitive or by
the permutation similarity A can be reduced to the block form

PAPT =


0 A12 0 . . . 0
0 0 A23 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . Ah−1,h

Ah1 0 0 . . . 0


where all the blocks are primitive matrices.
In this case Perron–Frobenius eigenvalues of all blocks are different
but have the same absolute value.

Definition
h is the imprimitivity index of A.



Further generalizations

[Protasov and Voynov, 2012]: matrix semigroups.

Definition 1
Matrix semigroup S is called indecomposable if for any indices i
and j there exists A ∈ S such that aij > 0.

To compare: A is indecomposable, if ∀ i , j , i 6= j , ∃ k : (i , j)-th
element of Ak is positive.



If ∃ indecomposable A ∈ S , then S is an indecomposable
semigroup.

∃ indecomposable semigroups without indecomposable matrices!

Example
Let S∞, be a semigroup generated by

A1 =

1 1 1
0 0 0
0 0 0

 ,A2 =

0 0 0
1 0 0
0 0 0

 ,A3 =

0 0 0
0 0 0
1 0 0

 .

A1 + A2A1 + A3A1 > 0 ⇒ S1 indecomposable.



Definition 2
Matrix semigroup S is called primitive if ∃ a positive A ∈ S.

To compare: A is primitive, if ∃ k : Ak is positive.

In particular, A is a primitive matrix iff 〈A〉 is a primitive semigroup.



Imprimitivity index
Let v ∈ Rn, v ≥ 0. supp (v) is the set of positive coordinates of v .

Definition
S ⊆ Mn is a semigroup. Imprimitivity index of a semigroup γ(S) is
the biggest γ ∈ N, s.t. ∃ ei1 , . . . , eiγ ∈ Rn: ∀ A ∈ S
supp (Aei1), . . . , supp (Aeiγ ) are pairwise non-intersecting.

Lemma. If A ∈ Mn is indecomposable matrix, then h(A) = γ(〈A〉).

Example (Illustrating example)

B =
(

0 1 1
1 0 0
1 0 0

)
∈ Mn is indecomp., h(B) = 2 = h(B2) = γ(〈B〉),

indeed, B2 =
(

2 0 0
0 1 1
0 1 1

)
.

Example (For decomposable matrices the equality does not hold.)

Let A =
(

1 0 0
1 0 0
0 1 1

)
. Then supp (Ae1) = {1, 2}, supp (Ae2) = {3} =

supp (Ae3). Hence h(A) = 2. But h(A2) = 1, since A is decomp.



Protasov–Voynov Theorem, 2012

Definition
α = (α1, . . . , αt) is a certain partition of the set n. Matrix A ∈ Pn
is acting on α as a permutation if, for any set αi ∃ a unique set αj ,
such that αiA = αj , i.e., all vectors of the standard basis with the
numbers from αi are mapped by A to the linear combinations of
the vectors with the indices from αj .

Theorem
Let S ⊆ Mn be a matrix semigroup satisfying:
1. matrices in S are without zero rows or columns,
2. S is irreducible semigroup.
Then TFAE:

1 S does not contain a positive matrix,
2 imprimitivity index γ(S) > 1.
3 There exists a partition n =

⊔m
k=1 αk , m ≥ 2, on which all

matrices from S act like permutations.



Protasov–Voynov Theorem, 2012

Corollary (1)

If one of the conditions of the Theorem hold then:
1 ∃ a partition of the set n onto m = γ(S) sets, on which

matrices from S act like permutations.
2 All matrices from S can be reduced by one permutation

similarity to the block-monomial form with γ(S) blocks.
3 The semigroup S contains a matrix with strictly positive

blocks.



Applications

Corollary (2)

Let A = {A1, . . . ,Am} be a family of matrices of size n. Then
there exists an algorithm which requires O(2mn3) operations and
determines if there exists a product of matrices in A, which is
positive.

To do this it is necessary to determine the partition α from
Protasov–Voynov Theorem. Then a positive product does exist iff
m = γ(S) = 1.



Definition

Indices i , j ∈ n are intersecting in the semigroup S ⊆ Pn, if ∃
A ∈ S: rows i , j are intersecting in A.

Definition

Indices i , j are in solidarity relation in the semigroup S ⊆ Pn, if
there exists a sequence of indices i = i1, i2, . . . , is = j , such that
neighbor indices (ik , ik+1) are intersecting in S,
i.e., ∀ k = 1, . . . , s − 1 ∃ Ak ∈ S such that (ik , ik+1) are
intersecting in Ak .

Reminder: indices i and j are in solidarity relation in the matrix A,
if ∃ a sequence of indices i = i1, i2, . . . , is = j such that rows with
the indices (ik , ik+1) are intersecting for k = 1, . . . , s − 1.



Lemma
Solidarity relation in S is an equivalence relation on n.

Lemma
Let A ∈ Pn. Then i , j ∈ n are in solidarity relation in 〈A〉 iff i , j are
in solidarity relation in An−1.



Chainable properties of semigroups

Definition

Insolidarity index of S ⊆ Pn is the number of S-solidarity classes,
denote i(S).

Theorem (Al’pin, Guterman, Shafeev, 2024)

Let S ⊆ Pn is a semigroup, i(S) = r . Then
1. If r = 1, then ∃ a potentially chainable matrix in S.
2. If r ≥ 2, then ∀ A ∈ S acts on solidarity classes as permutation.
I.e., ∃ a permutation P such that ∀ A ∈ S the matrix PAPt is
block-monomial with r blocks and ∃ X ∈ S such that all non-zero
blocks of PXPT are potentially chainable.



Generalization of Frobenius Theorem

Corollary (Al’pin, Guterman, Shafeev, 2024)

Let A ∈ Pn.
1. If i(A) = 1, then A is potentially chainable, i.e., Ak are chainable
∀ k ≥ n − 1.
2. If r = i(A) ≥ 2, then ∃ a permutation P such that PAPt is
block-monomial with r blocks and ∀ k ≥ n − 1 all non-zero blocks
of Ak are chainable.
3. If S ⊆ Pn is an indecomposable semigroup, then the partition to
solidarity classes coincide with the partition to equivalence classes
under intersection relation.



Remarks

In Theorem we show, what is possible to save from
Protasov-Voynov theorem if we change the condition of
indecomposability to a not so strong condition of the absence
of zero rows and columns.
Corollary is a generalization of Frobenius theorem. But
absence of indecomposability leads to change of primitive
blocks with potentially chainable blocks.



Maps preserving scrambling index

Definition
We say that T is a map preserving the scrambling index, if for
all A ∈ Mn(B) we have that k(T (A)) = k(A).
We say that T is a map preserving the non-zero scrambling
index, if for all A ∈ Mn(B), for which k(A) 6= 0, we have that
k(T (A)) = k(A).
We say that T is a map preserving the scrambling indeх on
the set of primitive matrices if ∀ primitive A ∈ Mn(B) we have
that k(T (A)) = k(A).



Theorem (Frobenius, 1896)

T : Mn(C)→ Mn(C) — linear, bijective,

det(T (A)) = detA ∀A ∈ Mn(C)

⇓

∃P,Q ∈ GLn(C), det(PQ) = 1 :

T (A) = PAQ ∀A ∈ Mn(C)

or
T (A) = PAtQ ∀A ∈ Mn(C)



Definition
T : Mmn(F)→ Mmn(F) is standard iff
∃P ∈ GLm(F), Q ∈ GLn(F):

T (A) = PAQ ∀A ∈ Mm,n(F)

or m = n and

T (A) = PAtQ ∀A ∈ Mm,n(F)



Let X ∈ Mm,n(C). Then Cr (X ) ∈ M(mr ),(
n
r)

(C) consists from
r -minors of X ordered lexicographically by rows and columns.

Theorem
[Schur, 1925] Let T : MmnC)→ Mmn(C) be bijective and linear,
r , 2 ≤ r ≤ min{m, n}, be given. ∃ bijective linear
S : M(mr ),(

n
r)

(C)→ M(mr ),(
n
r)

(C) s.t.

Cr (T (X )) = S(Cr (X )) ∀ ∈ Mm,n(C)

iff T is standard.



Theorem (Dieudonné, 1949)

Ωn(F) is the set of singular matrices
T : Mn(F)→ Mn(F) — linear, bijective, T (Ωn(F)) ⊆ Ωn(F)

⇓

∃P,Q ∈ GLn(F)

T (A) = PAQ ∀A ∈ Mn(F)

or
T (A) = PAtQ ∀A ∈ Mn(F)



E.B. Dynkin, Maximal subgroups of classical groups // The
Proceedings of the Moscow Mathematical Society, 1 (1952) 39-166.

Stn(F) ⊆ Fix(S) ⊆ GLn2(F)



The quantity of Linear Preservers for a given matrix invariant is a
measure of its complexity. Indeed, to compute the invariant for a
given matrix, we reduce it to a certain good form, where
computations are easy.

det(A) =
∑
σ∈Sn

(−1)na1σ(1) · · · anσ(n)

• Computations of det require ∼ O(n3) operations
per (A) =

∑
σ∈Sn

a1σ(1) · · · anσ(n)

• Computations of per require
∼ (n − 1) · (2n − 1) multiplicative operations (Raiser formula).



The explanation

There are just few linear preservers of permanent in comparison
with the determinant. Indeed,

Theorem (Marcus, May)

Linear transformation T is permanent preserver iff
T (A) = P1D1AD2P2 ∀A ∈ Mn(F), or
T (A) = P1D1A

tD2P2 ∀A ∈ Mn(F)
where Di are invertible diagonal matrices, i = 1, 2, det(D1D2) = 1
Pi are permutation matrices, i = 1, 2



• Group theory

Question Is it possible that two non-isomorphic finite groups have
the same group determinant?

Theorem (E. Formanek, D. Sibley)

A group determinant determines the group up to an automorphism

Proof is based on an extension of Dieudonne singularity preserver
theorem to the direct products of matrix algebras.



Preserve Problems

ρ : Mn(R)→ S is a certain matrix invariant
T : Mn(R)→ Mn(R)

ρ(T (A)) = ρ(A) ∀A ∈ Mn(R)

T =?

PPρ T

R



Let F be a field
∅ 6= S ⊆ Mn(F) T (S) ⊆ S

ρ : Mn(F)→ F ∀A ∈ Mn(F) ρ(T (A)) = ρ(A)

∼: Mn(F)2 → {0, 1} A ∼ B ⇒ T (A) ∼ T (B)
∀A,B ∈ Mn(F)

P – property in Mn(F) A ∈ P ⇒ T (A) ∈ P
T =?

The standard solution in linear case
There are P,Q ∈ GLn(F):

T (X ) = PXQ ∀X ∈ Mn(F)

or
T (X ) = PXQ ∀X t ∈ Mn(F)



Basic methods to investigate PPs
1. Matrix theory
2. Theory of classical groups
3. Projective geometry
4. Algebraic geometry
5. Differential geometry
6. Dualisations
7. Tensor calculus
8. Functional identities
9. Model theory



Maps preserving scrambling index

Theorem
Let n ≥ 3 and T : Mn(B)→ Mn(B) be an arbitrary mapping. Then
T is a bijective additive operator which preserves non-zero
scrambling index

m

∃ permutation matrix P such that T (A) = PTAP, ∀A ∈ Mn(B).

For A ∈ Mn(B) let us use the notation:

Aid =
∑

k : A(k,k)=1

Ekk ; Aod =
∑

i 6=j : A(i ,j)=1

Eij .



Maps preserving scrambling index

Theorem
Let n ≥ 3 and T : Mn(B)→ Mn(B) be an arbitrary mapping. Then
T is a bijective additive operator which preserves non-zero
scrambling index

m

∃ permutation matrix P such that T (A) = PTAP, ∀A ∈ Mn(B).

For A ∈ Mn(B) let us use the notation:

Aid =
∑

k : A(k,k)=1

Ekk ; Aod =
∑

i 6=j : A(i ,j)=1

Eij .



Maps preserving distinct values of the scrambling index

Theorem

Let n > 3 and T : Mn(B)→ Mn(B) be an additive bijective map.
• T preserves k = 1 iff ∃ permutation matrices P,Q s.t.

T (A) = PAQ.

• T preserves k = 0 iff ∃ a permutation matrix P , s.t.

T (A) = PTAP.

• T preserves k = max iff ∃ permutation matrices P,Q s.t.

T (A) = PTAod P + QTAid Q for all A ∈ Mn(B)

T (A) = PTAT
od P + QTAid Q for all A ∈ Mn(B)



Maps preserving scrambling index

Theorem
Let n > 3 and T : Mn(B)→ Mn(B) be the additive map preserves
the scrambling index. Then T is a bijection.



Steps of the proof

1. Let A,B ∈ Mn. If A is primitive, then A + B is primitive.
2. Let A,B ∈ Mn. If k(A) 6= 0, then k(A + B) 6= 0 and
k(A + B) 6 k(A).

3. Some notations: Cn = En,1 +
n−1∑
i=1

Ei ,i+1 is the adjacency matrix

of the elementary cycle (12 . . . n). Then Wn = Cn + En−1,1 is the
Wielandt matrix.
W = {A ∈ Mn(B) | ∃ P ∈ Pn : PTAP = Wn} − Wielandt like
C = {A ∈ Mn(B) | ∃ P ∈ Pn : PTAP = Cn} − cycles
E = {Eij ∈ Mn(B) | 1 6 i , j 6 n} − cells
D = {Eii ∈ Mn(B) | 1 6 i 6 n} − diagonal cells
N = E \ D = {Eij ∈ E | i 6= j} − off-diagonal cells
4. By 2. A ∈ W ⇒ T (A) ∈ W.



Steps of the proof

5. T is bijective on W.
6. Let n > 4, Eij ∈ N . Then there exist two distinct matrices
W1,W2 ∈ W such that W1 ◦W2 = Eij , i.e. W1 and W2 have a
unique non-zero entry in the position (i , j).
7. For any pair Eij ,Ekl ∈ N , Eij 6= Ekl , there exists a matrix
W ∈ W such that W > Eij , W � Ekl . 8. Let A ∈ Mn. Then
T (A) = O iff A = 0. 9. T (N ) ⊆ N , and moreover, T (N ) = N .
10. For any digraph G the edge number
|E (G )| = |E (G (T (A(G ))))|.
11. G does not have loops iff G (T (A(G ))) does not have loops.
12. T (C) = C
13. T (D) ⊆ D, and moreover, T (D) = D.
Hence T is bijective!



Application to minimal synchronizing automaton



Application to minimal synchronizing automaton

Definition
A word w is called a synchronizing (reset) word of a deterministic
finite automaton DFA if w brings all states of the automaton to
some specific state.

abbbabbba



Conjecture (Černý, 1964)

The shortest synchronizing word for any n-state complete DFA has
length ≤ (n − 1)2.

Theorem (Černý, 1964)

There are DFAs with minimal synchronizing words of length exactly
(n − 1)2.

Theorem

All known bounds are of order n3.

Graphs of large exponent and/or scrambling index lead to examples
of slowly synchronizing automata.



Thank you!


