COMBINATORIAL INDICES AND MATRIX POSITIVITY

Alexander E. Guterman

Bar-Ilan University, Israel

Applied Matrix Positivity II November 4-8, Edinburgh

The talk is based on a series of works with Yu.A. Alpin, A.M. Maksaev, E.R. Shafeev

Let $A \in M_n(\mathbb{R})$ be an $n \times n$ matrix with the real entries. A is positive if all its entries are positive, $a_{ij} > 0$, A is non-negative, if all $a_{ii} \geq 0$.

Combinatorial matrix theory is an efficient approach to investigate non-negative matrices. Here

matrix properties \longrightarrow graph theory constructions

• Directed graph (or digraph) $G = (V, E)$. Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.

- Directed graph (or digraph) $G = (V, E)$. Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- $\bullet u \rightarrow v$ walk in a digraph G. The length of a walk is the number of edges in it. The notation $u\stackrel{k}{\longrightarrow}v$ is used to indicate that there is a $u \rightarrow v$ walk of length k.
- Directed graph (or digraph) $G = (V, E)$. Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- $\bullet u \rightarrow v$ walk in a digraph G. The length of a walk is the number of edges in it. The notation $u\stackrel{k}{\longrightarrow}v$ is used to indicate that there is a $u \rightarrow v$ walk of length k.
- A closed walk is a $u \rightarrow v$ walk where $u = v$.
- Directed graph (or digraph) $G = (V, E)$. Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- $\bullet u \rightarrow v$ walk in a digraph G. The length of a walk is the number of edges in it. The notation $u\stackrel{k}{\longrightarrow}v$ is used to indicate that there is a $u \rightarrow v$ walk of length k.
- A closed walk is a $u \rightarrow v$ walk where $u = v$.
- A cycle is a closed $u \rightarrow v$ walk with distinct vertices except for $u = v$.
- \bullet The length of a shortest cycle in G is called the girth of G.

Let $A = (a_{ii}) \in M_n(B)$. A corresponds to a digraph $G = G(A)$ of order *n* as follows. The vertex set is the set $V = \{1, \ldots, n\}$. There is an edge (i, j) from i to j iff $a_{ii} \neq 0$. A is adjacency matrix of G.

Let $A = (a_{ii}) \in M_n(B)$. A corresponds to a digraph $G = G(A)$ of order *n* as follows. The vertex set is the set $V = \{1, \ldots, n\}$. There is an edge (i, j) from i to j iff $a_{ij} \neq 0$. A is adjacency matrix of G.

Non-negative $A \in M_n$, $A \geq 0$, $n \geq 2$, is called decomposable if \exists permutation matrix $P \in M_n$ such that

$$
A = P \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} P^t,
$$

where B, D are square matrices and C is possibly a rectangular matrix. If \overline{A} is not decomposable, then it is called indecomposable.

Definition

G is strongly connected iff for any $u, v \in V(G)$ there is an oriented path from *to* $*v*$ *.*

Theorem

Let $A \in M_n$, $A > 0$. TFAE

- \bullet A is indecomposable,
- $G(A)$ is strongly connected,
- $(1 + A)^{n-1} > 0$,
- ∀ i,j, i \neq j, \exists k: (i,j)-th element of A^{k} is positive.

Example

1

3

$A =$ $\sqrt{ }$ \mathbf{I} 0 0 1 1 0 0 0 1 0 \setminus $\overline{}$

$$
(I + A)^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.
$$

2

 \bullet A digraph G is primitive if for some positive integer t for all vertices u,v it is true that $u\stackrel{t}{\longrightarrow}v.$

- \bullet A digraph G is primitive if for some positive integer t for all vertices u,v it is true that $u\stackrel{t}{\longrightarrow}v.$
- If G is primitive, the exponent of G is the smallest such t.

- \bullet A digraph G is primitive if for some positive integer t for all vertices u,v it is true that $u\stackrel{t}{\longrightarrow}v.$
- \bullet If G is primitive, the exponent of G is the smallest such t.

Definition

- $A \in M_n$, $A \geq 0$, is primitive if $\exists k \in \mathbb{Z}_{>0}$: $A^k > 0$.
- If $A \in M_n$ is primitive, then the exponent of A is the smallest such k .

- \bullet A digraph G is primitive if for some positive integer t for all vertices u,v it is true that $u\stackrel{t}{\longrightarrow}v.$
- \bullet If G is primitive, the exponent of G is the smallest such t.

Definition

- $A \in M_n$, $A \geq 0$, is primitive if $\exists k \in \mathbb{Z}_{>0}$: $A^k > 0$.
- If $A \in M_n$ is primitive, then the exponent of A is the smallest such k

Then $A^{k+1} = A^k \cdot A > 0$.

Theorem

- Let G be an digraph. THAE
	- \bullet \bullet is primitive,
	- G is strongly connected and the GCD of all cycle lengths in G $is₁$,
	- \bullet A(G) is primitive.

Corollary

Let G be a primitive digraph. Then $exp(G) = exp(A(G))$.

Example

\n
$$
\begin{pmatrix}\n 1 \\
2 \\
3\n \end{pmatrix}\n A =\n \begin{pmatrix}\n 0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0\n \end{pmatrix}\n \text{ is indecomposable and is}
$$
\n

\n\n 3 not primitive: \n $A^2 =\n \begin{pmatrix}\n 0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0\n \end{pmatrix}\n ,\n \quad\n A^3 = I,\n \quad\n A^4 = A,\n \quad \text{etc.}$ \n

\n\n 1\n

\n\n 2\n

\n\n $A =\n \begin{pmatrix}\n 1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0\n \end{pmatrix}\n \text{ is primitive: } \n A^4 =\n \begin{pmatrix}\n 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1\n \end{pmatrix}$ \n

\n\n 3\n

The Wielandt matrix is

$$
W_n = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}
$$

Theorem (Wielandt)

Let *A* ∈ *M*_n, *A* ≥ 0. Then exp(*A*) ≤ exp(*W*_n) = $(n - 1)^2 + 1$.

Classical example

 W_n is called a Wielandt digraph. It is the digraph with the maximal possible exponent, $(n-1)^2 + 1$.

The scrambling index of a digraph G is the smallest positive integer k such that for every pair u, $v \in V(G)$, exists $w \in V(G)$ such that $u \stackrel{k}{\longrightarrow} w$ and $v \stackrel{k}{\longrightarrow} w$ in G.

The scrambling index of G is denoted by $k(G)$. If such w does not exist, let $k(G) = 0$.

$$
k(W_n) = \left\lceil \frac{(n-1)^2 + 1}{2} \right\rceil < (n-1)^2 + 1 = \exp(W_n)
$$

What is the value of $k(G)$?

Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$).

Let $P = (p_{ii})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Coefficient of ergodicity (Dobrushin or delta coefficient):

$$
\tau(P) = \frac{1}{2} \max_{i,j} \sum_{j=1}^{n} |p_{ij} - p_{ji}|
$$

Let $P = (p_{ii})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Coefficient of ergodicity (Dobrushin or delta coefficient):

$$
\tau(P) = \frac{1}{2} \max_{i,j} \sum_{j=1}^{n} |p_{ij} - p_{ji}|
$$

Theorem (Akelbek, Kirkland)

Let $P = (p_{ii})$ be an $n \times n$ primitive stochastic matrix with $k(P) = k$ and suppose that λ is a non-unit eigenvalue of P. Then $\tau(P^k) < 1$ and $|\lambda| \leq (\tau(P^k))^{1/k}$.

A memoryless communication system is represented by a digraph G , $|G| = n$.

- A memoryless communication system is represented by a digraph G , $|G| = n$.
- Suppose that at time $t = 0$ each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \leq \lambda \leq n$) 'knows' 1 bit of inf. and these bits are distinct.

- A memoryless communication system is represented by a digraph G , $|G| = n$.
- Suppose that at time $t = 0$ each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \leq \lambda \leq n$) 'knows' 1 bit of inf. and these bits are distinct.
- At time $t = 1$ each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then \forall v_i forgets the passed information and has only the received information or nothing.

- A memoryless communication system is represented by a digraph G , $|G| = n$.
- Suppose that at time $t = 0$ each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \leq \lambda \leq n$) 'knows' 1 bit of inf. and these bits are distinct.
- At time $t = 1$ each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then \forall v_i forgets the passed information and has only the received information or nothing.
- The system continues in this way.

- A memoryless communication system is represented by a digraph G , $|G| = n$.
- Suppose that at time $t = 0$ each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \leq \lambda \leq n$) 'knows' 1 bit of inf. and these bits are distinct.
- At time $t = 1$ each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then \forall v_i forgets the passed information and has only the received information or nothing.
- The system continues in this way.
- For some digraphs after certain time there exists a vertex that knows both bits of the information, independently on the choice of the initial two vertices. When and what digraphs?
How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of $k(G)$? $\qquad \qquad$ | $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$

How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of $k(G)$? $\qquad \qquad \vert \qquad \vert \qquad \vert \qquad G$

- \bullet G is strongly connected (it has a Hamilton cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$),
- \bullet G is not primitive (it has cycles of lengths only 2 and 4)

How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of $k(G)$? $\qquad \qquad \vert \qquad \vert \qquad \vert \qquad G$

 \bullet G is strongly connected (it has a Hamilton cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$),

 \bullet G is not primitive (it has cycles of lengths only 2 and 4) $k(G) = 0.$

Theorem (Chen, Liu)

Let G be symmetric, i.e. for any vertices u and v , (u, v) is an edge iff (v, u) is an edge, and G be primitive. Then $k(G) = \lceil \frac{exp(G)}{2} \rceil$ $\frac{p(G)}{2}$.

Theorem (Chen, Liu)

Let G be symmetric, i.e. for any vertices u and v , (u, v) is an edge iff (v, u) is an edge, and G be primitive. Then $k(G) = \lceil \frac{exp(G)}{2} \rceil$ $\frac{p(G)}{2}$.

 $exp(G) = 4$

Theorem (Chen, Liu)

Let G be symmetric, i.e. for any vertices u and v , (u, v) is an edge iff (v, u) is an edge, and G be primitive. Then $k(G) = \lceil \frac{exp(G)}{2} \rceil$ $\frac{p(G)}{2}$.

1 $\overline{2}$ 3 4 5 What is the value of $k(G)?$ $()$

 $\exp(G) = 4$ \implies $k(G) = 2$

Definition (Seneta)

Matrix $A \in M_n(B)$ is named scrambling matrix if no two rows of it are orthogonal. Equivalently, if any two rows have at least one non-zero element in coincident position.

Definition (Seneta)

Matrix $A \in M_n(\mathbf{B})$ is named scrambling matrix if no two rows of it are orthogonal. Equivalently, if any two rows have at least one non-zero element in coincident position.

Definition (Akelbek, Kirkland)

The scrambling index of a matrix $A \in M_n(B)$ is the smallest positive integer k such that A^k is the scrambling matrix.

The scrambling index of A is denoted by $k(A)$. If such k does not exist, let $k(A) = 0$.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph. Then $k(G) = k(A(G))$.

What is the value of $k(A)$?

 $G(A)$

What is the value of $k(A)$?

 $G(A)$

What is the value of $k(A)$?

 $A =$ $\sqrt{ }$ \mathbf{I} 0 1 0 1 0 1 1 0 0 \setminus \int , $A^2 =$ $\sqrt{ }$ \mathbf{I} 1 0 1 1 1 0 0 1 0 \setminus \int , $A^3 =$ $\sqrt{ }$ \mathbf{I} 1 1 0 1 1 1 1 0 1 \setminus \mathbf{I} \implies k(A) = 3

 $G(A)$

What is the value of $k(A)$?

 $A =$ $\sqrt{ }$ \mathbf{I} 0 1 0 1 0 1 1 0 0 \setminus \int , $A^2 =$ $\sqrt{ }$ \mathbf{I} 1 0 1 1 1 0 0 1 0 \setminus \int , $A^3 =$ $\sqrt{ }$ \mathbf{I} 1 1 0 1 1 1 1 0 1 \setminus \mathbf{I} \implies k(A) = 3 $u = 2$, $v = 3$. Then $w = 3$ and the shortest paths are $2 \rightarrow 1 \rightarrow 2 \rightarrow 3$ and $3 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

Some known bounds for the scrambling index

Theorem (Huang, Liu)

Let G de a primitive digraph of order $n \geq 2$ with d loops. Then

$$
k(G)\leq n-\left\lceil\frac{d}{2}\right\rceil.
$$

Denote

$$
K(n,s) = n - s + \begin{cases} \left(\frac{s-1}{2}\right)n, & \text{when } s \text{ is odd,} \\ \left(\frac{n-1}{2}\right)s, & \text{when } s \text{ is even.} \end{cases}
$$

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph with n vertices and girth s . Then $k(G) \leq K(n,s)$.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph of order $n \geq 3$. Then

$$
k(G) \leq \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.
$$

Equality holds iff $G \cong W_n$.

G: $1 \rightarrow (2 \rightarrow 3 \rightarrow 4)$

 \bullet G is not primitive.

 \bullet G is not primitive.

G:

 \circ G is not strongly connected.

- \bullet G is not primitive.
- \circ G is not strongly connected.
- $k(G) = 3 \neq 0$.

G:

Theorem (GM, 2019)

For an arbitrary digraph G the following conditions are equivalent:

- \bullet k(G) \neq 0.
- **2** There exists a primitive subgraph G' of G s.t. \forall $v \in V(G)$ \exists $w \in V(G')$ for which \exists a directed walk from v to w in G.

Definition

Let G be a directed graph. G has a $(G_1 \rightarrow G_2)$ -partition if G_1 and $G₂$ are non-empty subgraphs of the digraph G such that:

1. $V(G) = V(G_1) \sqcup V(G_2)$;

2. for each directed edge $e = (v_1, v_2) \in E(G)$, either $e \in E(G_1)$, or $e \in E(G_2)$, or $v_1 \in V(G_1)$, $v_2 \in V(G_2)$.

Illustration

For a not strongly connected digraph G let us consider a $(G_1 \rightarrow G_2)$ -partition:

Remark

Geometrically this means that $V(G)$ is partitioned into two non-intersecting components $V(G_1)$ and $V(G_2)$ that are connected only by edges from G_1 to G_2 .

New upper bounds

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Let s be a girth of G_2 . Then

 $k(G) \leq 1 + K(n-1, s).$

Here,

$$
K(n,s) = n - s + \begin{cases} \left(\frac{s-1}{2}\right)n, & \text{when } s \text{ is odd,} \\ \left(\frac{n-1}{2}\right)s, & \text{when } s \text{ is even.} \end{cases}
$$

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Assume that $|G_2| = b \leq n - 1$. Then

$$
k(G) \leqslant n - b + \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil.
$$

Sharpness of the upper bound

Let $n \geq 3$, $b \leq n-1$. Define a digraph $\mathcal{H}_{n,b}$:

Sharpness of the upper bound

Let $n \geq 3$, $b \leq n-1$. Define a digraph $\mathcal{H}_{n,b}$:

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Assume that $|G_2| = b \leq n - 1$. Then

$$
k(G) \leqslant n - b + \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil.
$$

If 4 \leq n < 2b, then equality holds if and only if $G \cong \mathcal{H}_{n,b}$.

Theorem (GM, 2019)

Let G be an arbitrary digraph of order $n \geqslant 3$. Then

$$
k(G) \leqslant \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.
$$

The equality holds if and only if $G \cong W_n$.

Theorem (GM, 2019)

Let G be an arbitrary digraph of order $n \geqslant 3$. Then

$$
k(G) \leqslant \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.
$$

The equality holds if and only if $G \cong W_n$.

Theorem (GM, 2019)

Let G be a not strongly connected digraph of order $n \geqslant 3$. Then

$$
k(G) \leqslant 1 + \left\lceil \frac{(n-2)^2 + 1}{2} \right\rceil.
$$

When $n \geq 4$, the equality holds if and only if $G \cong \mathcal{H}_{n,n-1}$.

Chain rank

Definition

Recall that rows i and j of the matrix A are intersecting if they have positive elements in a certain common column.

The scrambling matrix is such that all its rows are intersecting.

Definition

We say that indices i and j are in solidarity relation in the matrix A $(A$ -solidarity relation), if there exists a sequence of indices $i = i_1, i_2, \ldots, i_s = j$ such that rows with the indices i_k, i_{k+1} are intersecting for $k = 1, \ldots, s - 1$.

Definition

The matrix is chainable if all its rows are in the same solidarity class.

A-solidarity relation is indeed an equivalence relation on n . The number of equivalence classes by this relation is called chain rank of A and is denoted by $crk(A)$.

Definition

A is called a chainable matrix, if one of the following equivalent conditions is satisfied:

1. $crk(A) = 1$.

2. $A = (a_{ik})$ is a chainable matrix iff \forall couple of its positive entries $a_{ik}, a_{pq} \exists$ a sequence of positive entries $a_{i_1k_1}, a_{i_2k_2}, \ldots, a_{i_nk_n}$ satisfying following conditions: a) $i_1 = i, k_1 = k$ b) $i_n = p, k_n = q$, c) $\forall l \in \{1, 2, ..., n-1\}$ it is true that $i_l = i_{l+1}$ or $k_l = k_{l+1}$.

Consider every entry as a square of a chessboard, where the rook is allowed to stay only on positive entries. Matrix is chainable if the rook can reach any positive entry from any other positive entry.

Theorem

A is a scrambling matrix \implies A is a chainable matrix.

Reminder: A is a scrambling matrix, iff \forall *i*, $p \exists q: a_{ia} \neq 0$ & $a_{ba} \neq 0$.

But the converse does not hold:

Properties of the chain rank

 $\mathbb P$ is the set of non-negative matrices without zero rows & columns

Theorem (Al'pin, Bashkin, 2020)

For any $A \in \mathbb{P}$ it holds that $1 \leq \text{crk}(A) \leq n$ and

 $\operatorname{crk}(A^t) = \operatorname{crk}(A)$

If $A, B \in \mathbb{P}$ and the product AB exists then

 $crk(AB) \le \min\{crk(A), crk(B)\},$

 $\operatorname{crk}(AA^t) = \operatorname{crk}(A) = \operatorname{crk}(A^tA)$

Theorem (Guterman, Shafeev, 2024)

 $\operatorname{crk}(ABC) \leq \operatorname{crk}(AB) + \operatorname{crk}(BC) - \operatorname{crk}(B)$

Corollary

$\forall A, B \in \mathbb{P}$ such that the product AB exists

$$
\operatorname{crk}(A)+\operatorname{crk}(B)-n\leq\operatorname{crk}(AB)\leq\min\{\operatorname{crk}(A),\operatorname{crk}(B)\}
$$

Corollary

 \forall square $A \in \mathbb{P}$

$$
{\rm crk}\,(A^k)-{\rm crk}\,(A^{k+1})\leq {\rm crk}\,(A^{k-1})-{\rm crk}\,(A^k)
$$

Potentially chainable and primitive matrices

Definition

If a certain power of a matrix \vec{A} is a chainable matrix then \vec{A} is called potentially chainable matrix.

The notion of potentially chainable matrix is an analog of the notion of a primitive matrix. There a certain degree is a positive matrix, and here it is a chainable matrix.

Theorem

Let A be indecomposable. Then A is primitive iff A is potentially chainable.

However, there are potentially chainable decomposable matrices.

Example
\n
$$
M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}, M_2^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.
$$
\n
$$
M_2 \text{ is potentially chainable, since } M_2^2 \text{ is chainable.}
$$
Theorem

- Any primitive matrix $A \in M_n$ has a positive eigenvalue ρ which is a simple root of $\chi_A(x)$.
- $\bullet \forall \lambda, \lambda \neq \rho$ being eigenvalue of $A \Rightarrow |\lambda| < |\rho|$.
- Maximal eigenvalue corresponds to the eigenvector z with all positive coordinates.
- ρ is called Perron–Frobenius eigenvalue of A.

If \overline{A} is not primitive but indecomposable, the following generalization is true:

Theorem (Frobenius)

Let $A \in M_n$ be indecomposable. Then either A is primitive or by the permutation similarity \overline{A} can be reduced to the block form

$$
PAPT = \begin{pmatrix} 0 & A_{12} & 0 & \dots & 0 \\ 0 & 0 & A_{23} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & A_{h-1,h} \\ A_{h1} & 0 & 0 & \dots & 0 \end{pmatrix}
$$

where all the blocks are primitive matrices. In this case Perron–Frobenius eigenvalues of all blocks are different but have the same absolute value.

Definition

h is the imprimitivity index of A.

[Protasov and Voynov, 2012]: matrix semigroups.

Definition 1

Matrix semigroup S is called indecomposable if for any indices *i* and *j* there exists $A \in S$ such that $a_{ii} > 0$.

To compare: A is indecomposable, if $\forall i, j, i \neq j$, $\exists k: (i, j)$ -th element of A^k is positive.

If \exists indecomposable $A \in S$, then S is an indecomposable semigroup.

∃ indecomposable semigroups without indecomposable matrices!

Definition 2

Matrix semigroup S is called primitive if \exists a positive $A \in S$.

To compare: A is primitive, if \exists k : A^{k} is positive.

In particular, A is a primitive matrix iff $\langle A \rangle$ is a primitive semigroup.

Imprimitivity index

Let $v \in \mathbb{R}^n$, $v \ge 0$. supp (v) is the set of positive coordinates of v.

Definition

 $S \subseteq M_n$ is a semigroup. Imprimitivity index of a semigroup $\gamma(S)$ is the biggest $\gamma \in \mathbb{N}$, s.t. $\exists e_{i_1}, \ldots, e_{i_{\gamma}} \in \mathbb{R}^n: \forall A \in \mathcal{S}$ $\mathrm{supp}\left(Ae_{i_1}\right),\ldots,\mathrm{supp}\left(Ae_{i_\gamma}\right)$ are pairwise non-intersecting.

Lemma. If $A \in M_n$ is indecomposable matrix, then $h(A) = \gamma(\langle A \rangle)$.

Example (Illustrating example)

 $B=\left(\begin{smallmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{smallmatrix}\right)$ $\Big) \in M_n$ is indecomp., $h(B) = 2 = h(B^2) = \gamma(\langle B \rangle)$, indeed, $B^2 = \left(\begin{smallmatrix} 2 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{smallmatrix} \right)$.

Example (For decomposable matrices the equality does not hold.)

Let $A=\left(\begin{smallmatrix} 1&0&0\ 1&0&0\ 0&1&1 \end{smallmatrix}\right)$). Then ${\rm supp} \, (Ae_1) = \{1,2\}, \, {\rm supp} \, (Ae_2) = \{3\} = \emptyset$ $\mathrm{supp}\left(Ae_3\right)$. Hence $h(A)=2$. But $h(A^2)=1$, since A is decomp.

Protasov–Voynov Theorem, 2012

Definition

 $\alpha = (\alpha_1, \ldots, \alpha_t)$ is a certain partition of the set **n**. Matrix $A \in \mathbb{P}_n$ is acting on α as a permutation if, for any set α_i \exists a unique set $\alpha_j,$ such that $\alpha_i A = \alpha_j$, i.e., all vectors of the standard basis with the numbers from α_i are mapped by A to the linear combinations of the vectors with the indices from $\alpha_j.$

Theorem

- Let $S \subseteq M_n$ be a matrix semigroup satisfying:
- 1. matrices in S are without zero rows or columns.
- 2. S is irreducible semigroup.

Then TFAE:

- \bullet S does not contain a positive matrix,
- **3** imprimitivity index $\gamma(S) > 1$.
	- **3** There exists a partition $\mathbf{n} = \bigsqcup_{k=1}^m \alpha_k, \ m \geq 2$, on which all matrices from S act like permutations.

Corollary (1)

If one of the conditions of the Theorem hold then:

- \bullet \exists a partition of the set **n** onto $m = \gamma(S)$ sets, on which matrices from S act like permutations.
- \bullet All matrices from S can be reduced by one permutation similarity to the block-monomial form with $\gamma(S)$ blocks.
- \bullet The semigroup S contains a matrix with strictly positive blocks.

Corollary (2)

Let $\mathcal{A} = \{A_1, \ldots, A_m\}$ be a family of matrices of size n. Then there exists an algorithm which requires $O(2mn^3)$ operations and determines if there exists a product of matrices in A , which is positive.

To do this it is necessary to determine the partition α from Protasov–Voynov Theorem. Then a positive product does exist iff $m = \gamma(\mathcal{S}) = 1.$

Definition

Indices *i*, *j* \in **n** are intersecting in the semigroup $S \subseteq \mathbb{P}_n$, if \exists $A \in \mathcal{S}$: rows *i, j* are intersecting in A.

Definition

Indices *i, j* are in solidarity relation in the semigroup $S \subseteq \mathbb{P}_n$, if there exists a sequence of indices $i = i_1, i_2, \ldots, i_s = j$, such that neighbor indices (i_k, i_{k+1}) are intersecting in S, i.e., $\forall k = 1, \ldots, s - 1 \exists A_k \in S$ such that (i_k, i_{k+1}) are intersecting in A_k .

Reminder: indices *i* and *j* are in solidarity relation in the matrix A , if ∃ a sequence of indices $i = i_1, i_2, \ldots, i_s = j$ such that rows with the indices (i_k, i_{k+1}) are intersecting for $k = 1, \ldots, s - 1$.

Lemma

Solidarity relation in S is an equivalence relation on n .

Lemma

Let $A \in \mathbb{P}_n$. Then $i, j \in n$ are in solidarity relation in $\langle A \rangle$ iff i, j are in solidarity relation in A^{n-1} .

Definition

Insolidarity index of $S \subseteq \mathbb{P}_n$ is the number of S-solidarity classes, denote $i(\mathcal{S})$.

Theorem (Al'pin, Guterman, Shafeev, 2024)

Let $S \subseteq \mathbb{P}_n$ is a semigroup, $i(S) = r$. Then 1. If $r = 1$, then \exists a potentially chainable matrix in S. 2. If $r \geq 2$, then $\forall A \in S$ acts on solidarity classes as permutation. I.e., \exists a permutation P such that $\forall A \in S$ the matrix PAP^t is block-monomial with r blocks and $\exists X \in S$ such that all non-zero blocks of PXP^{T} are potentially chainable.

Corollary (Al'pin, Guterman, Shafeev, 2024)

Let $A \in \mathbb{P}_n$.

- 1. If $i(A) = 1$, then A is potentially chainable, i.e., A^k are chainable $\forall k > n-1$.
- 2. If $r = i(A) \ge 2$, then \exists a permutation P such that PAP^t is block-monomial with r blocks and $\forall k > n - 1$ all non-zero blocks of A^k are chainable.

3. If $S \subseteq \mathbb{P}_n$ is an indecomposable semigroup, then the partition to solidarity classes coincide with the partition to equivalence classes under intersection relation.

- In Theorem we show, what is possible to save from Protasov-Voynov theorem if we change the condition of indecomposability to a not so strong condition of the absence of zero rows and columns.
- Corollary is a generalization of Frobenius theorem. But absence of indecomposability leads to change of primitive blocks with potentially chainable blocks.

Definition

- We say that \overline{T} is a map preserving the scrambling index, if for all $A \in M_n(B)$ we have that $k(T(A)) = k(A)$.
- We say that T is a map preserving the non-zero scrambling index, if for all $A \in M_n(\mathbf{B})$, for which $k(A) \neq 0$, we have that $k(T(A)) = k(A)$.
- We say that T is a map preserving the scrambling index on the set of primitive matrices if \forall primitive $A \in M_n(\mathbf{B})$ we have that $k(T(A)) = k(A)$.

Theorem (Frobenius, 1896)

 $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ — linear, bijective,

 $det(T(A)) = det A$ $\forall A \in M_n(\mathbb{C})$

⇓

 $\exists P, Q \in GL_n(\mathbb{C}), \det(PQ) = 1$:

 $T(A) = PAQ \quad \forall A \in M_n(\mathbb{C})$

or

 $T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{C})$

Definition

 $T: M_{mn}(\mathbb{F}) \to M_{mn}(\mathbb{F})$ is standard iff $\exists P \in GL_m(\mathbb{F}), Q \in GL_n(\mathbb{F})$:

 $T(A) = PAQ \quad \forall A \in M_{m,n}(\mathbb{F})$

or $m = n$ and

 $T(A) = PA^{t}Q \quad \forall A \in M_{m,n}(\mathbb{F})$

Let $X\in M_{m,n}(\mathbb{C})$. Then $\mathcal{C}_r(X)\in M_{\binom{m}{r},\binom{n}{r}}(\mathbb{C})$ consists from r -minors of X ordered lexicographically by rows and columns.

Theorem

[Schur, 1925] Let $T: M_{mn}(\mathbb{C}) \to M_{mn}(\mathbb{C})$ be bijective and linear, r, $2 \le r \le \min\{m, n\}$, be given. \exists bijective linear $S: M_{\binom{m}{r},\binom{n}{r}}(\mathbb{C}) \to M_{\binom{m}{r},\binom{n}{r}}(\mathbb{C})$ s.t. $C_r(T(X)) = S(C_r(X)) \quad \forall \in M_{m,n}(\mathbb{C})$

iff T is standard.

Theorem (Dieudonné, 1949)

 $\Omega_n(\mathbb{F})$ is the set of singular matrices $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ — linear, bijective, $T(\Omega_n(\mathbb{F})) \subseteq \Omega_n(\mathbb{F})$

 $\exists P,Q\in GL_n(\mathbb{F})$

⇓

 $T(A) = PAQ \quad \forall A \in M_n(\mathbb{F})$

or

 $T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{F})$

E.B. Dynkin, Maximal subgroups of classical groups // The Proceedings of the Moscow Mathematical Society, 1 (1952) 39-166.

 $St_n(\mathbb{F}) \subseteq Fix(S) \subseteq GL_{n^2}(\mathbb{F})$

The quantity of Linear Preservers for a given matrix invariant is a measure of its complexity. Indeed, to compute the invariant for a given matrix, we reduce it to a certain good form, where computations are easy.

$$
\det(A)=\sum_{\sigma\in S_n}(-1)^n a_{1\sigma(1)}\cdots a_{n\sigma(n)}
$$

● Computations of det require $\sim O(n^3)$ operations $\mathrm{per}\,(A) = \sum$ $\sigma{\in}{\mathcal S}_n$ $a_{1\sigma(1)} \cdots a_{n\sigma(n)}$

• Computations of per require

 \sim $(n-1) \cdot (2^n - 1)$ multiplicative operations (Raiser formula).

There are just few linear preservers of permanent in comparison with the determinant. Indeed,

Theorem (Marcus, May)

Linear transformation \overline{T} is permanent preserver iff $T(A) = P_1D_1AD_2P_2$ $\forall A \in M_n(\mathbb{F})$, or $T(A) = P_1 D_1 A^t D_2 P_2 \quad \forall A \in M_n(\mathbb{F})$ where D_i are invertible diagonal matrices, $i = 1, 2$, det $(D_1D_2) = 1$ P_i are permutation matrices, $i = 1, 2$

Question Is it possible that two non-isomorphic finite groups have the same group determinant?

Theorem (E. Formanek, D. Sibley)

A group determinant determines the group up to an automorphism

Proof is based on an extension of Dieudonne singularity preserver theorem to the direct products of matrix algebras.

 $\rho: M_n(R) \to S$ is a certain matrix invariant $T: M_n(R) \to M_n(R)$

 $\rho(T(A)) = \rho(A) \quad \forall A \in M_n(R)$

 $T = ?$

Let
$$
\mathbb{F}
$$
 be a field
\n $\emptyset \neq S \subseteq M_n(\mathbb{F})$
\n $\rho: M_n(\mathbb{F}) \to \mathbb{F} \ \forall A \in M_n(\mathbb{F})$
\n $\sim: M_n(\mathbb{F})^2 \to \{0, 1\}$
\n $\mathbb{F} \ \forall A \in M_n(\mathbb{F})$
\n $\mathbb{F} \ \rightarrow \Gamma(A) \ \forall A, B \in M_n(\mathbb{F})$
\n $\mathbb{F} \ \rightarrow \text{property in } M_n(\mathbb{F})$
\n $\mathbb{F} \ \rightarrow \text{Property in } M_n(\mathbb{F})$
\n $\mathbb{F} \ \rightarrow \text{Figure: The standard solution in linear case}$
\nThere are $P, Q \in GL_n(\mathbb{F})$:

 $T(X) = PXQ \quad \forall X \in M_n(\mathbb{F})$

or

$$
T(X) = PXQ \quad \forall X^t \in M_n(\mathbb{F})
$$

Basic methods to investigate PPs

- 1. Matrix theory
- 2. Theory of classical groups
- 3. Projective geometry
- 4. Algebraic geometry
- 5. Differential geometry
- 6. Dualisations
- 7. Tensor calculus
- 8. Functional identities
- 9. Model theory

Theorem

Let $n \geq 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an arbitrary mapping. Then T is a bijective additive operator which preserves non-zero scrambling index

 $\textcolor{black}{\textcolor{black}{\textbf{1}}}$

\exists permutation matrix P such that $\mathcal{T}(A)=P^\mathcal{T}\! A\, P$, $\forall A\in M_n(\mathsf{B})$.

Theorem

Let $n \geq 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an arbitrary mapping. Then T is a bijective additive operator which preserves non-zero scrambling index

 $\textcolor{black}{\textcolor{black}{\textbf{1}}}$

 \exists permutation matrix P such that $\mathcal{T}(A)=P^\mathcal{T}\! A\, P$, $\forall A\in M_n(\mathsf{B})$.

For $A \in M_n(\mathbf{B})$ let us use the notation:

$$
A_{id} = \sum_{k \, : \, A(k,k)=1} E_{kk}; \quad A_{od} = \sum_{i \neq j \, : \, A(i,j)=1} E_{ij}.
$$

Maps preserving distinct values of the scrambling index

Theorem

Let $n \geqslant 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an additive bijective map. • T preserves $k = 1$ iff \exists permutation matrices P, Q s.t.

 $T(A) = PAQ$.

• T preserves $k = 0$ iff \exists a permutation matrix P, s.t.

 $T(A) = P^{T}AP$.

• T preserves $k = \max$ iff \exists permutation matrices P, Q s.t.

 $T(A) = P^TA_{od} P + Q^TA_{id} Q$ for all $A \in M_n(**B**)$

 $T(A) = P^TA_{od}^T P + Q^TA_{id} Q$ for all $A \in M_n(**B**)$

Theorem

Let $n \geqslant 3$ and T: $M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be the additive map preserves the scrambling index. Then \overline{T} is a bijection.

1. Let $A, B \in M_n$. If A is primitive, then $A + B$ is primitive. 2. Let $A, B \in M_n$. If $k(A) \neq 0$, then $k(A + B) \neq 0$ and $k(A + B) \leq k(A)$.

3. Some notations: $\mathcal{C}_n = \mathcal{E}_{n,1} + \sum^{n-1} \mathcal{E}_{i,i+1}$ is the adjacency matrix of the elementary cycle $(12\ldots n)$. Then $\mathcal{W}_n=\mathcal{C}_n+\mathcal{E}_{n-1,1}$ is the Wielandt matrix.

 $\mathcal{W} = \{A \in M_n(\mathbf{B}) \, | \, \exists \, \, P \in \mathcal{P}_n \colon P^\mathsf{T} A \, P = W_n \} - \text{ \emph{Wielandt like}}$ $\mathcal{C} = \{A \in M_n(\mathbf{B}) \, | \, \exists \, P \in \mathcal{P}_n \colon P^\mathsf{T} A \, P = \mathcal{C}_n \} - \text{ cycles}$ $\mathcal{E} = \{E_{ii} \in M_n(\mathbf{B}) \mid 1 \leq i, j \leq n\}$ – cells $D = \{E_{ii} \in M_n(\mathbf{B}) \mid 1 \leq i \leq n\}$ – diagonal cells $\mathcal{N} = \mathcal{E} \setminus \mathcal{D} = \{E_{ii} \in \mathcal{E} \mid i \neq j\}$ – off-diagonal cells 4. By 2. $A \in \mathcal{W} \Rightarrow \mathcal{T}(A) \in \mathcal{W}$.

5. T is bijective on W .

6. Let $n \geq 4$, $E_{ii} \in \mathcal{N}$. Then there exist two distinct matrices $W_1, W_2 \in W$ such that $W_1 \circ W_2 = E_{ii}$, i.e. W_1 and W_2 have a unique non-zero entry in the position (i, j) .

7. For any pair E_{ii} , $E_{kl} \in \mathcal{N}$, $E_{ii} \neq E_{kl}$, there exists a matrix $W \in \mathcal{W}$ such that $W \geqslant E_{ii}$, $W \not\geqslant E_{kl}$. 8. Let $A \in M_n$. Then $T(A) = O$ iff $A = 0.9$. $T(N) \subseteq N$, and moreover, $T(N) = N$. 10. For any digraph G the edge number $|E(G)| = |E(G(T(A(G))))|$. 11. G does not have loops iff $G(T(A(G)))$ does not have loops. 12. $T(\mathcal{C}) = \mathcal{C}$ 13. $T(\mathcal{D}) \subseteq \mathcal{D}$, and moreover, $T(\mathcal{D}) = \mathcal{D}$. Hence T is bijective!

Application to minimal synchronizing automaton

Application to minimal synchronizing automaton

Definition

A word w is called a synchronizing (reset) word of a deterministic finite automaton DFA if w brings all states of the automaton to some specific state.

abbbabbba

Conjecture (Černý, 1964)

The shortest synchronizing word for any n-state complete DFA has length $\leq (n-1)^2$.

Theorem (Cerný, 1964)

There are DFAs with minimal synchronizing words of length exactly $(n-1)^2$.

Theorem

All known bounds are of order n^3 .

Graphs of large exponent and/or scrambling index lead to examples of slowly synchronizing automata.

Thank you!