COMBINATORIAL INDICES AND MATRIX POSITIVITY

Alexander E. Guterman

Bar-Ilan University, Israel

Applied Matrix Positivity II November 4-8, Edinburgh The talk is based on a series of works with Yu.A. Alpin, A.M. Maksaev, E.R. Shafeev Let $A \in M_n(\mathbb{R})$ be an $n \times n$ matrix with the real entries. A is positive if all its entries are positive, $a_{ij} > 0$, A is non-negative, if all $a_{ij} \ge 0$.

Combinatorial matrix theory is an efficient approach to investigate non-negative matrices. Here

matrix properties \longrightarrow graph theory constructions

• Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.

- Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- u → v walk in a digraph G. The length of a walk is the number of edges in it. The notation u → v is used to indicate that there is a u → v walk of length k.

- Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- u → v walk in a digraph G. The length of a walk is the number of edges in it. The notation u → v is used to indicate that there is a u → v walk of length k.
- A closed walk is a $u \rightarrow v$ walk where u = v.

- Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- u → v walk in a digraph G. The length of a walk is the number of edges in it. The notation u → v is used to indicate that there is a u → v walk of length k.
- A closed walk is a $u \rightarrow v$ walk where u = v.
- A cycle is a closed $u \rightarrow v$ walk with distinct vertices except for u = v.
- The length of a shortest cycle in G is called the girth of G.

Let $A = (a_{ij}) \in M_n(\mathbf{B})$. A corresponds to a digraph G = G(A) of order *n* as follows. The vertex set is the set $V = \{1, \ldots, n\}$. There is an edge (i, j) from *i* to *j* iff $a_{ij} \neq 0$. A is adjacency matrix of G.

Let $A = (a_{ij}) \in M_n(\mathbf{B})$. A corresponds to a digraph G = G(A) of order *n* as follows. The vertex set is the set $V = \{1, ..., n\}$. There is an edge (i, j) from *i* to *j* iff $a_{ij} \neq 0$. A is adjacency matrix of G.

Non-negative $A \in M_n$, $A \ge 0$, $n \ge 2$, is called decomposable if \exists permutation matrix $P \in M_n$ such that

$$A = P \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} P^t,$$

where B, D are square matrices and C is possibly a rectangular matrix. If A is not decomposable, then it is called indecomposable.

Definition

G is strongly connected iff for any $u, v \in V(G)$ there is an oriented path from u to v.

Theorem

Let $A \in M_n$, $A \ge 0$. TFAE

- A is indecomposable,
- G(A) is strongly connected,
- $(I + A)^{n-1} > 0$,
- $\forall i, j, i \neq j, \exists k: (i, j)$ -th element of A^k is positive.

Example

3

$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

2

• A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.

- A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.
- If G is primitive, the exponent of G is the smallest such t.

- A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.
- If G is primitive, the exponent of G is the smallest such t.

Definition

- $A \in M_n$, $A \ge 0$, is primitive if $\exists k \in \mathbb{Z}_{>0}$: $A^k > 0$.
- If A ∈ M_n is primitive, then the exponent of A is the smallest such k.

- A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.
- If G is primitive, the exponent of G is the smallest such t.

Definition

- $A \in M_n$, $A \ge 0$, is primitive if $\exists k \in \mathbb{Z}_{>0}$: $A^k > 0$.
- If A ∈ M_n is primitive, then the exponent of A is the smallest such k.

Then $A^{k+1} = A^k \cdot A > 0$.

Theorem

Let G be an digraph. THAE

- G is primitive,
- G is strongly connected and the GCD of all cycle lengths in G is 1,
- A(G) is primitive.

Corollary

Let G be a primitive digraph. Then $\exp(G) = \exp(A(G))$.

Example

$$\begin{array}{c} 1 \\ 2 \\ 3 \\ not \ primitive: \ A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \ is \ indecomposable \ and \ is \\ not \ primitive: \ A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ A^3 = I, \ A^4 = A, \ etc.$$

The Wielandt matrix is

$$W_n = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Theorem (Wielandt)

Let $A \in M_n$, $A \ge 0$. Then $\exp(A) \le \exp(W_n) = (n-1)^2 + 1$.

Classical example

 W_n is called a Wielandt digraph. It is the digraph with the maximal possible exponent, $(n-1)^2 + 1$.

The scrambling index of a digraph G is the smallest positive integer k such that for every pair u, $v \in V(G)$, exists $w \in V(G)$ such that $u \xrightarrow{k} w$ and $v \xrightarrow{k} w$ in G.

The scrambling index of G is denoted by k(G). If such w does not exist, let k(G) = 0.

$$k(W_n) = \left\lceil \frac{(n-1)^2 + 1}{2} \right\rceil < (n-1)^2 + 1 = \exp(W_n)$$

What is the value of k(G)?

Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$).

Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P. Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Coefficient of ergodicity (Dobrushin or delta coefficient):

$$\tau(P) = \frac{1}{2} \max_{i,j} \sum_{l=1}^{n} |p_{il} - p_{jl}|$$

Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Coefficient of ergodicity (Dobrushin or delta coefficient):

$$\tau(P) = \frac{1}{2} \max_{i,j} \sum_{l=1}^{n} |p_{il} - p_{jl}|$$

Theorem (Akelbek, Kirkland)

Let $P = (p_{ij})$ be an $n \times n$ primitive stochastic matrix with k(P) = k and suppose that λ is a non-unit eigenvalue of P. Then $\tau(P^k) < 1$ and $|\lambda| \leq (\tau(P^k))^{1/k}$.

• A memoryless communication system is represented by a digraph G, |G| = n.

- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t = 0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary λ ∈ Z, 2 ≤ λ ≤ n) 'knows' 1 bit of inf. and these bits are distinct.

- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t = 0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary λ ∈ Z, 2 ≤ λ ≤ n) 'knows' 1 bit of inf. and these bits are distinct.
- At time t = 1 each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then ∀ v_i forgets the passed information and has only the received information or nothing.

- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t = 0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary λ ∈ Z, 2 ≤ λ ≤ n) 'knows' 1 bit of inf. and these bits are distinct.
- At time t = 1 each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then ∀ v_i forgets the passed information and has only the received information or nothing.
- The system continues in this way.

- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t = 0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary λ ∈ Z, 2 ≤ λ ≤ n) 'knows' 1 bit of inf. and these bits are distinct.
- At time t = 1 each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then ∀ v_i forgets the passed information and has only the received information or nothing.
- The system continues in this way.
- For some digraphs after certain time there exists a vertex that knows both bits of the information, independently on the choice of the initial two vertices. When and what digraphs?
How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of k(G)?

How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of k(G)?

- G is strongly connected (it has a Hamilton cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$),
- G is not primitive (it has cycles of lengths only 2 and 4)

How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of k(G)?

• G is strongly connected (it has a Hamilton cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$),

• G is not primitive (it has cycles of lengths only 2 and 4) $\Rightarrow k(G) = 0.$

Theorem (Chen, Liu)

Let G be symmetric, i.e. for any vertices u and v, (u, v) is an edge iff (v, u) is an edge, and G be primitive. Then $k(G) = \left\lceil \frac{\exp(G)}{2} \right\rceil$.

What is the value of k(G)?

Theorem (Chen, Liu)

Let G be symmetric, i.e. for any vertices u and v, (u, v) is an edge iff (v, u) is an edge, and G be primitive. Then $k(G) = \left\lceil \frac{\exp(G)}{2} \right\rceil$.

What is the value of k(G)?

 $\exp(G) = 4$

Theorem (Chen, Liu)

Let G be symmetric, i.e. for any vertices u and v, (u, v) is an edge iff (v, u) is an edge, and G be primitive. Then $k(G) = \left\lceil \frac{\exp(G)}{2} \right\rceil$.

What is the value of k(G)?

 $\exp(G) = 4 \implies$

Definition (Seneta)

Matrix $A \in M_n(\mathbf{B})$ is named scrambling matrix if no two rows of it are orthogonal. Equivalently, if any two rows have at least one non-zero element in coincident position.

Definition (Seneta)

Matrix $A \in M_n(\mathbf{B})$ is named scrambling matrix if no two rows of it are orthogonal. Equivalently, if any two rows have at least one non-zero element in coincident position.

Definition (Akelbek, Kirkland)

The scrambling index of a matrix $A \in M_n(\mathbf{B})$ is the smallest positive integer k such that A^k is the scrambling matrix.

The scrambling index of A is denoted by k(A). If such k does not exist, let k(A) = 0.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph. Then k(G) = k(A(G)).

What is the value of k(A)?

What is the value of k(A)? G(A)

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A^{2} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, A^{3} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

G(A)

What is the value of k(A)?

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A^2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, A^3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
$$\implies \quad k(A) = 3$$

G(A)

What is the value of k(A)?

 $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A^{2} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, A^{3} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ $\implies \quad k(A) = 3$ u = 2, v = 3. Then w = 3 and the shortest paths are $2 \rightarrow 1 \rightarrow 2 \rightarrow 3 \text{ and } 3 \rightarrow 1 \rightarrow 2 \rightarrow 3.$

Theorem (Huang, Liu)

Let G de a primitive digraph of order $n \ge 2$ with d loops. Then

$$k(G) \leq n - \left\lceil \frac{d}{2} \right\rceil.$$

Denote

$$K(n,s) = n - s + \begin{cases} \left(\frac{s-1}{2}\right)n, & \text{when } s \text{ is odd,} \\ \left(\frac{n-1}{2}\right)s, & \text{when } s \text{ is even.} \end{cases}$$

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph with n vertices and girth s. Then $k(G) \leq K(n,s)$.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph of order $n \ge 3$. Then

$$k(G) \leq \left\lceil \frac{(n-1)^2+1}{2}
ight
ceil.$$

Equality holds iff $G \cong W_n$.

Actually, we do not need to require primitivity ...

G: $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \nearrow$

Actually, we do not need to require primitivity ...

• G is not primitive.

Actually, we do not need to require primitivity...

• G is not primitive.

G:

• G is not strongly connected.

Actually, we do not need to require primitivity ...

- G is not primitive.
- G is not strongly connected.
- $k(G) = 3 \neq 0$.

G:

Theorem (GM, 2019)

For an arbitrary digraph G the following conditions are equivalent:

- $k(G) \neq 0.$
- There exists a primitive subgraph G' of G s.t. ∀ v ∈ V(G) ∃ w ∈ V(G') for which ∃ a directed walk from v to w in G.

Definition

Let G be a directed graph. G has a $(G_1 \rightarrow G_2)$ -partition if G_1 and G_2 are non-empty subgraphs of the digraph G such that:

1. $V(G) = V(G_1) \sqcup V(G_2);$

2. for each directed edge $e = (v_1, v_2) \in E(G)$, either $e \in E(G_1)$, or $e \in E(G_2)$, or $v_1 \in V(G_1)$, $v_2 \in V(G_2)$.

Illustration

For a not strongly connected digraph G let us consider a $(G_1 \rightarrow G_2)$ -partition:

Remark

Geometrically this means that V(G) is partitioned into two non-intersecting components $V(G_1)$ and $V(G_2)$ that are connected only by edges from G_1 to G_2 .

New upper bounds

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Let s be a girth of G_2 . Then

 $k(G) \leq 1 + K(n-1,s).$

Here,

$$K(n,s) = n - s + \begin{cases} \left(\frac{s-1}{2}\right)n, & \text{when } s \text{ is odd,} \\ \left(\frac{n-1}{2}\right)s, & \text{when } s \text{ is even.} \end{cases}$$

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Assume that $|G_2| = b \leq n - 1$. Then

$$k(G) \leq n-b+\left\lceil \frac{(b-1)^2+1}{2} \right\rceil$$

Sharpness of the upper bound

Let $n \ge 3$, $b \le n - 1$. Define a digraph $\mathscr{H}_{n,b}$:

Sharpness of the upper bound

Let $n \geq 3$, $b \leq n-1$. Define a digraph $\mathscr{H}_{n,b}$:

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Assume that $|G_2| = b \leq n - 1$. Then

$$k(G) \leq n-b+\left\lceil \frac{(b-1)^2+1}{2} \right\rceil$$

If $4 \leq n < 2b$, then equality holds if and only if $G \cong \mathscr{H}_{n,b}$.

Theorem (GM, 2019)

Let G be an arbitrary digraph of order $n \ge 3$. Then

$$k(G) \leqslant \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.$$

The equality holds if and only if $G \cong W_n$.

Theorem (GM, 2019)

Let G be an arbitrary digraph of order $n \ge 3$. Then

$$k(G) \leqslant \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.$$

The equality holds if and only if $G \cong W_n$.

Theorem (GM, 2019)

Let G be a not strongly connected digraph of order $n \ge 3$. Then

$$k(G) \leq 1 + \left\lceil \frac{(n-2)^2 + 1}{2} \right\rceil.$$

When $n \ge 4$, the equality holds if and only if $G \cong \mathscr{H}_{n,n-1}$.

Chain rank

Definition

Recall that rows i and j of the matrix A are intersecting if they have positive elements in a certain common column.

The scrambling matrix is such that all its rows are intersecting.

Definition

We say that indices *i* and *j* are in solidarity relation in the matrix *A* (*A*-solidarity relation), if there exists a sequence of indices $i = i_1, i_2, \ldots, i_s = j$ such that rows with the indices i_k, i_{k+1} are intersecting for $k = 1, \ldots, s - 1$.

Definition

The matrix is chainable if all its rows are in the same solidarity class.

A-solidarity relation is indeed an equivalence relation on **n**. The number of equivalence classes by this relation is called chain rank of A and is denoted by $\operatorname{crk}(A)$.

Definition

A is called a chainable matrix, if one of the following equivalent conditions is satisfied:

1. $\operatorname{crk}(A) = 1$.

2. A = (a_{ik}) is a chainable matrix iff ∀ couple of its positive entries a_{ik}, a_{pq} ∃ a sequence of positive entries a_{i1k1}, a_{i2k2},..., a_{inkn} satisfying following conditions:
a) i₁ = i, k₁ = k,
b) i_n = p, k_n = q,
c) ∀ l ∈ {1, 2, ..., n - 1} it is true that i_l = i_{l+1} or k_l = k_{l+1}.

Consider every entry as a square of a chessboard, where the rook is allowed to stay only on positive entries. Matrix is chainable if the rook can reach any positive entry from any other positive entry.

Theorem

A is a scrambling matrix \implies A is a chainable matrix.

Reminder: A is a scrambling matrix, iff $\forall i, p \exists q: a_{iq} \neq 0 \& a_{pq} \neq 0$.

But the converse does not hold:

Properties of the chain rank

 $\mathbb P$ is the set of non-negative matrices without zero rows&columns

Theorem (Al'pin, Bashkin, 2020)

For any $A \in \mathbb{P}$ it holds that $1 \leq \operatorname{crk}(A) \leq n$ and

 $\operatorname{crk}(A^{t}) = \operatorname{crk}(A)$

If $A, B \in \mathbb{P}$ and the product AB exists then

 $\operatorname{crk}(AB) \leq \min{\operatorname{crk}(A), \operatorname{crk}(B)},$

 $\operatorname{crk}(AA^{t}) = \operatorname{crk}(A) = \operatorname{crk}(A^{t}A)$

Theorem (Guterman, Shafeev, 2024)

 $\operatorname{crk}(ABC) \leq \operatorname{crk}(AB) + \operatorname{crk}(BC) - \operatorname{crk}(B)$

Corollary

$\forall A, B \in \mathbb{P}$ such that the product AB exists

$$\operatorname{crk}(A) + \operatorname{crk}(B) - n \leq \operatorname{crk}(AB) \leq \min{\operatorname{crk}(A), \operatorname{crk}(B)}$$

Corollary

 \forall square $A \in \mathbb{P}$

$$\operatorname{crk}\left(\mathsf{A}^{k}
ight)-\operatorname{crk}\left(\mathsf{A}^{k+1}
ight)\leq\operatorname{crk}\left(\mathsf{A}^{k-1}
ight)-\operatorname{crk}\left(\mathsf{A}^{k}
ight)$$

Potentially chainable and primitive matrices

Definition

If a certain power of a matrix A is a chainable matrix then A is called potentially chainable matrix.

The notion of potentially chainable matrix is an analog of the notion of a primitive matrix. There a certain degree is a positive matrix, and here it is a chainable matrix.

If A is primitive $\stackrel{\Longrightarrow}{\nleftrightarrow}$ A is potentially chainable.

Theorem

Let A be indecomposable. Then A is primitive iff A is potentially chainable.

However, there are potentially chainable decomposable matrices.

Example

$$M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}, M_2^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}. M_2 \text{ is potentially chainable,}$$
since M_2^2 is chainable.
Theorem

- Any primitive matrix $A \in M_n$ has a positive eigenvalue ρ which is a simple root of $\chi_A(x)$.
- $\forall \lambda, \lambda \neq \rho$ being eigenvalue of $A \Rightarrow |\lambda| < |\rho|$.
- Maximal eigenvalue corresponds to the eigenvector *z* with all positive coordinates.
- ρ is called Perron–Frobenius eigenvalue of A.

If A is not primitive but indecomposable, the following generalization is true:

Theorem (Frobenius)

Let $A \in M_n$ be indecomposable. Then either A is primitive or by the permutation similarity A can be reduced to the block form

$$PAP^{T} = \begin{pmatrix} 0 & A_{12} & 0 & \dots & 0 \\ 0 & 0 & A_{23} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & A_{h-1,h} \\ A_{h1} & 0 & 0 & \dots & 0 \end{pmatrix}$$

where all the blocks are primitive matrices.

In this case Perron–Frobenius eigenvalues of all blocks are different but have the same absolute value.

Definition

h is the imprimitivity index of *A*.

[Protasov and Voynov, 2012]: matrix semigroups.

Definition 1

Matrix semigroup S is called indecomposable if for any indices i and j there exists $A \in S$ such that $a_{ij} > 0$.

To compare: A is indecomposable, if $\forall i, j, i \neq j, \exists k: (i, j)$ -th element of A^k is positive.

If \exists indecomposable $A \in S$, then S is an indecomposable semigroup.

 \exists indecomposable semigroups without indecomposable matrices!

Definition 2

Matrix semigroup S is called primitive if \exists a positive $A \in S$.

To compare: A is primitive, if $\exists k: A^k$ is positive.

In particular, A is a primitive matrix iff $\langle A \rangle$ is a primitive semigroup.

Imprimitivity index

Let $v \in \mathbb{R}^n$, $v \ge 0$. supp(v) is the set of positive coordinates of v.

Definition

 $S \subseteq M_n$ is a semigroup. Imprimitivity index of a semigroup $\gamma(S)$ is the biggest $\gamma \in \mathbb{N}$, s.t. $\exists e_{i_1}, \ldots, e_{i_{\gamma}} \in \mathbb{R}^n : \forall A \in S$ supp $(Ae_{i_1}), \ldots,$ supp $(Ae_{i_{\gamma}})$ are pairwise non-intersecting.

Lemma. If $A \in M_n$ is indecomposable matrix, then $h(A) = \gamma(\langle A \rangle)$.

Example (Illustrating example)

 $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in M_n \text{ is indecomp., } h(B) = 2 = h(B^2) = \gamma(\langle B \rangle),$ indeed, $B^2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$

Example (For decomposable matrices the equality does not hold.)

Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Then supp $(Ae_1) = \{1, 2\}$, supp $(Ae_2) = \{3\} =$ supp (Ae_3) . Hence h(A) = 2. But $h(A^2) = 1$, since A is decomp.

Protasov–Voynov Theorem, 2012

Definition

 $\alpha = (\alpha_1, \ldots, \alpha_t)$ is a certain partition of the set **n**. Matrix $A \in \mathbb{P}_n$ is acting on α as a permutation if, for any set $\alpha_i \exists$ a unique set α_j , such that $\alpha_i A = \alpha_j$, i.e., all vectors of the standard basis with the numbers from α_i are mapped by A to the linear combinations of the vectors with the indices from α_j .

Theorem

- Let $S \subseteq M_n$ be a matrix semigroup satisfying:
- 1. matrices in S are without zero rows or columns,
- 2. S is irreducible semigroup.

Then TFAE:

- **1** S does not contain a positive matrix,
- 2 imprimitivity index $\gamma(S) > 1$.
- **3** There exists a partition $\mathbf{n} = \bigsqcup_{k=1}^{m} \alpha_k$, $m \ge 2$, on which all matrices from S act like permutations.

Corollary (1)

If one of the conditions of the Theorem hold then:

- **a** partition of the set **n** onto $m = \gamma(S)$ sets, on which matrices from S act like permutations.
- All matrices from S can be reduced by one permutation similarity to the block-monomial form with γ(S) blocks.
- The semigroup S contains a matrix with strictly positive blocks.

Corollary (2)

Let $\mathcal{A} = \{A_1, \ldots, A_m\}$ be a family of matrices of size *n*. Then there exists an algorithm which requires $O(2mn^3)$ operations and determines if there exists a product of matrices in \mathcal{A} , which is positive.

To do this it is necessary to determine the partition α from Protasov–Voynov Theorem. Then a positive product does exist iff $m = \gamma(S) = 1$.

Definition

Indices $i, j \in \mathbf{n}$ are intersecting in the semigroup $S \subseteq \mathbb{P}_n$, if $\exists A \in S$: rows i, j are intersecting in A.

Definition

Indices *i*, *j* are in solidarity relation in the semigroup $S \subseteq \mathbb{P}_n$, if there exists a sequence of indices $i = i_1, i_2, \ldots, i_s = j$, such that neighbor indices (i_k, i_{k+1}) are intersecting in S, i.e., $\forall k = 1, \ldots, s - 1 \exists A_k \in S$ such that (i_k, i_{k+1}) are intersecting in A_k .

Reminder: indices *i* and *j* are in solidarity relation in the matrix *A*, if \exists a sequence of indices $i = i_1, i_2, \ldots, i_s = j$ such that rows with the indices (i_k, i_{k+1}) are intersecting for $k = 1, \ldots, s - 1$.

Lemma

Solidarity relation in S is an equivalence relation on \mathbf{n} .

Lemma

Let $A \in \mathbb{P}_n$. Then $i, j \in \mathbf{n}$ are in solidarity relation in $\langle A \rangle$ iff i, j are in solidarity relation in A^{n-1} .

Definition

Insolidarity index of $S \subseteq \mathbb{P}_n$ is the number of S-solidarity classes, denote i(S).

Theorem (Al'pin, Guterman, Shafeev, 2024)

Let $S \subseteq \mathbb{P}_n$ is a semigroup, i(S) = r. Then 1. If r = 1, then \exists a potentially chainable matrix in S. 2. If $r \ge 2$, then $\forall A \in S$ acts on solidarity classes as permutation. I.e., \exists a permutation P such that $\forall A \in S$ the matrix PAP^t is block-monomial with r blocks and $\exists X \in S$ such that all non-zero blocks of PXP^T are potentially chainable.

Corollary (Al'pin, Guterman, Shafeev, 2024)

Let $A \in \mathbb{P}_n$.

1. If i(A) = 1, then A is potentially chainable, i.e., A^k are chainable $\forall k \ge n - 1$.

2. If $r = i(A) \ge 2$, then \exists a permutation P such that PAP^t is block-monomial with r blocks and $\forall k \ge n-1$ all non-zero blocks of A^k are chainable.

3. If $S \subseteq \mathbb{P}_n$ is an indecomposable semigroup, then the partition to solidarity classes coincide with the partition to equivalence classes under intersection relation.

- In Theorem we show, what is possible to save from Protasov-Voynov theorem if we change the condition of indecomposability to a not so strong condition of the absence of zero rows and columns.
- Corollary is a generalization of Frobenius theorem. But absence of indecomposability leads to change of primitive blocks with potentially chainable blocks.

Definition

- We say that T is a map preserving the scrambling index, if for all $A \in M_n(\mathbf{B})$ we have that k(T(A)) = k(A).
- We say that T is a map preserving the non-zero scrambling index, if for all $A \in M_n(\mathbf{B})$, for which $k(A) \neq 0$, we have that k(T(A)) = k(A).
- We say that T is a map preserving the scrambling index on the set of primitive matrices if \forall primitive $A \in M_n(\mathbf{B})$ we have that k(T(A)) = k(A).

Theorem (Frobenius, 1896)

 $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ — linear, bijective,

 $\det(T(A)) = \det A \qquad \forall A \in M_n(\mathbb{C})$

 $\exists P, Q \in GL_n(\mathbb{C}), \det(PQ) = 1:$

∜

 $T(A) = PAQ \quad \forall A \in M_n(\mathbb{C})$

or

 $T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{C})$

Definition

 $T: M_{mn}(\mathbb{F}) \to M_{mn}(\mathbb{F}) \text{ is standard iff} \\ \exists P \in GL_m(\mathbb{F}), \ Q \in GL_n(\mathbb{F}):$

 $T(A) = PAQ \quad \forall A \in M_{m,n}(\mathbb{F})$

or m = n and

 $T(A) = PA^tQ \quad \forall A \in M_{m,n}(\mathbb{F})$

Let $X \in M_{m,n}(\mathbb{C})$. Then $C_r(X) \in M_{\binom{m}{r},\binom{n}{r}}(\mathbb{C})$ consists from *r*-minors of X ordered lexicographically by rows and columns.

Theorem

 $\begin{array}{l} [Schur, 1925] \quad Let \ T : M_{m\,n}\mathbb{C}) \to M_{m\,n}(\mathbb{C}) \ be \ bijective \ and \ linear, \\ r, \ 2 \leq r \leq \min\{m, n\}, \ be \ given. \ \exists \ bijective \ linear \\ S : M_{\binom{m}{r},\binom{n}{r}}(\mathbb{C}) \to M_{\binom{m}{r},\binom{n}{r}}(\mathbb{C}) \ s.t. \\ C_r(T(X)) = S(C_r(X)) \ \forall \ \in M_{m,n}(\mathbb{C}) \end{array}$

iff T is standard.

Theorem (Dieudonné, 1949)

 $\Omega_n(\mathbb{F})$ is the set of singular matrices $T: M_n(\mathbb{F}) \to M_n(\mathbb{F}) - linear$, bijective, $T(\Omega_n(\mathbb{F})) \subseteq \Omega_n(\mathbb{F})$

 $\exists P, Q \in GL_n(\mathbb{F})$

∜

 $T(A) = PAQ \quad \forall A \in M_n(\mathbb{F})$

or

 $T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{F})$

E.B. Dynkin, Maximal subgroups of classical groups // The Proceedings of the Moscow Mathematical Society, **1** (1952) 39-166.

 $St_n(\mathbb{F}) \subseteq Fix(S) \subseteq GL_{n^2}(\mathbb{F})$

The quantity of Linear Preservers for a given matrix invariant is a measure of its complexity. Indeed, to compute the invariant for a given matrix, we reduce it to a certain good form, where computations are easy.

$$\det(A) = \sum_{\sigma \in S_n} (-1)^n a_{1\sigma(1)} \cdots a_{n\sigma(n)}$$

• Computations of det require $\sim O(n^3)$ operations $per(A) = \sum_{\sigma \in S_n} a_{1\sigma(1)} \cdots a_{n\sigma(n)}$

• Computations of per require

 $\sim (n-1) \cdot (2^n-1)$ multiplicative operations (Raiser formula).

There are just few linear preservers of permanent in comparison with the determinant. Indeed,

Theorem (Marcus, May)

Linear transformation T is permanent preserver iff $T(A) = P_1 D_1 A D_2 P_2 \quad \forall A \in M_n(\mathbb{F}), \text{ or}$ $T(A) = P_1 D_1 A^t D_2 P_2 \quad \forall A \in M_n(\mathbb{F})$ where D_i are invertible diagonal matrices, $i = 1, 2, \det(D_1 D_2) = 1$ P_i are permutation matrices, i = 1, 2 • Group theory

Question Is it possible that two non-isomorphic finite groups have the same group determinant?

Theorem (E. Formanek, D. Sibley)

A group determinant determines the group up to an automorphism

Proof is based on an extension of Dieudonne singularity preserver theorem to the direct products of matrix algebras. $\rho: M_n(R) \to S$ is a certain matrix invariant $T: M_n(R) \to M_n(R)$

 $\rho(T(A)) = \rho(A) \quad \forall A \in M_n(R)$

T =?

$$\begin{array}{c|c} \text{Let } \mathbb{F} \text{ be a field} \\ \hline \emptyset \neq S \subseteq M_n(\mathbb{F}) & T(S) \subseteq S \\ \hline \rho : M_n(\mathbb{F}) \to \mathbb{F} \ \forall A \in M_n(\mathbb{F}) & \rho(T(A)) = \rho(A) \\ \sim : M_n(\mathbb{F})^2 \to \{0, 1\} & A \sim B \Rightarrow T(A) \sim T(B) \\ & \forall A, B \in M_n(\mathbb{F}) \\ \hline P - \text{property in } M_n(\mathbb{F}) & A \in P \Rightarrow T(A) \in P \\ \hline T = ? \\ \hline The \text{ standard solution in linear case} \\ \hline \text{There are } P, Q \in GL_n(\mathbb{F}): \end{array}$$

 $T(X) = PXQ \quad \forall X \in M_n(\mathbb{F})$

or

$$T(X) = PXQ \quad \forall X^t \in M_n(\mathbb{F})$$

Basic methods to investigate PPs

- 1. Matrix theory
- 2. Theory of classical groups
- 3. Projective geometry
- 4. Algebraic geometry
- 5. Differential geometry
- 6. Dualisations
- 7. Tensor calculus
- 8. Functional identities
- 9. Model theory

Theorem

Let $n \ge 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an arbitrary mapping. Then T is a bijective additive operator which preserves non-zero scrambling index

€

 \exists permutation matrix P such that $T(A) = P^T A P$, $\forall A \in M_n(\mathbf{B})$.

Theorem

Let $n \ge 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an arbitrary mapping. Then T is a bijective additive operator which preserves non-zero scrambling index

Î

 \exists permutation matrix P such that $T(A) = P^T A P$, $\forall A \in M_n(\mathbf{B})$.

For $A \in M_n(\mathbf{B})$ let us use the notation:

$$A_{id} = \sum_{k: A(k,k)=1} E_{kk}; \quad A_{od} = \sum_{i \neq j: A(i,j)=1} E_{ij}.$$

Maps preserving distinct values of the scrambling index

Theorem

Let $n \ge 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an additive bijective map. • T preserves k = 1 iff \exists permutation matrices P, Q s.t.

T(A) = PAQ.

• T preserves k = 0 iff \exists a permutation matrix P, s.t.

 $T(A) = P^T A P.$

• T preserves $k = \max \text{ iff } \exists \text{ permutation matrices } P, Q \text{ s.t.}$

 $T(A) = P^T A_{od} P + Q^T A_{id} Q$ for all $A \in M_n(\mathbf{B})$

 $T(A) = P^T A_{od}^T P + Q^T A_{id} Q$ for all $A \in M_n(\mathbf{B})$

Theorem

Let $n \ge 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be the additive map preserves the scrambling index. Then T is a bijection. 1. Let $A, B \in M_n$. If A is primitive, then A + B is primitive. 2. Let $A, B \in M_n$. If $k(A) \neq 0$, then $k(A + B) \neq 0$ and $k(A + B) \leq k(A)$.

3. Some notations: $C_n = E_{n,1} + \sum_{i=1}^{n-1} E_{i,i+1}$ is the adjacency matrix of the elementary cycle $(12 \dots n)$. Then $W_n = C_n + E_{n-1,1}$ is the Wielandt matrix.

 $\mathcal{W} = \{A \in M_n(\mathbf{B}) \mid \exists P \in \mathcal{P}_n \colon P^T A P = W_n\} - \text{ Wielandt like } \mathcal{C} = \{A \in M_n(\mathbf{B}) \mid \exists P \in \mathcal{P}_n \colon P^T A P = C_n\} - \text{ cycles } \mathcal{E} = \{E_{ij} \in M_n(\mathbf{B}) \mid 1 \leqslant i, j \leqslant n\} - \text{ cells } \mathcal{D} = \{E_{ii} \in M_n(\mathbf{B}) \mid 1 \leqslant i \leqslant n\} - \text{ diagonal cells } \mathcal{N} = \mathcal{E} \setminus \mathcal{D} = \{E_{ij} \in \mathcal{E} \mid i \neq j\} - \text{ off-diagonal cells } \mathcal{A}. \text{ By } 2. A \in \mathcal{W} \Rightarrow T(A) \in \mathcal{W}.$

5. T is bijective on \mathcal{W} .

6. Let $n \ge 4$, $E_{ij} \in \mathcal{N}$. Then there exist two distinct matrices $W_1, W_2 \in \mathcal{W}$ such that $W_1 \circ W_2 = E_{ij}$, i.e. W_1 and W_2 have a unique non-zero entry in the position (i, j).

7. For any pair $E_{ij}, E_{kl} \in \mathcal{N}, E_{ij} \neq E_{kl}$, there exists a matrix $W \in \mathcal{W}$ such that $W \ge E_{ij}, W \ngeq E_{kl}$. 8. Let $A \in M_n$. Then T(A) = O iff A = 0.9. $T(\mathcal{N}) \subseteq \mathcal{N}$, and moreover, $T(\mathcal{N}) = \mathcal{N}$. 10. For any digraph *G* the edge number |E(G)| = |E(G(T(A(G))))|. 11. *G* does not have loops iff G(T(A(G))) does not have loops. 12. $T(\mathcal{C}) = \mathcal{C}$ 13. $T(\mathcal{D}) \subseteq \mathcal{D}$, and moreover, $T(\mathcal{D}) = \mathcal{D}$. Hence *T* is bijective!

Application to minimal synchronizing automaton

Application to minimal synchronizing automaton

Definition

A word w is called a synchronizing (reset) word of a deterministic finite automaton DFA if w brings all states of the automaton to some specific state.

abbbabbba

Conjecture (Černý, 1964)

The shortest synchronizing word for any *n*-state complete DFA has length $\leq (n-1)^2$.

Theorem (Černý, 1964)

There are DFAs with minimal synchronizing words of length exactly $(n-1)^2$.

Theorem

All known bounds are of order n^3 .

Graphs of large exponent and/or scrambling index lead to examples of slowly synchronizing automata.

Thank you!