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Totally positive sequences

Definition
A sequence of nonnegative numbers (ak)

∞
k=0 is called the totally

positive sequence, if all minors of the infinite matrix∥∥∥∥∥∥∥∥∥∥∥

a0 a1 a2 a3 . . .
0 a0 a1 a2 . . .
0 0 a0 a1 . . .
0 0 0 a0 . . .
...

...
...

...
. . .

∥∥∥∥∥∥∥∥∥∥∥
(1)

are non-negative.

The class of totally positive sequences is denoted by TP. The class
of generating functions f (z) =

∑∞
k=0 akz

k is denoted by T̃P.

Totally (multiply) positive sequences were introduced by Fekete in
1912 (the problem of exact calculation of the number of positive
zeros of a real polynomial). TP (MP) sequences arise in many
areas of mathematics and its applications.



Totally positive sequences

The class T̃P was completely described in the classical theorem by
Aissen, Schoenberg, Whitney and Edrei.

Theorem
(Aissen, Schoenberg, Whitney and Edrei). Let (ak)

∞
k=0 be a given

sequence of nonnegative numbers. Then f (z) =
∑∞

k=0 akz
k ∈ T̃P

if and only if

f (z) = Czneγz
∞∏
k=1

(1 + αkz)/(1− βkz),

where C ≥ 0, n ∈ Z, γ ≥ 0, αk ≥ 0, βk ≥ 0,
∑

(αk + βk) < ∞.



Totally positive sequences: trivial examples

Example

Let ak = k + 1. Then (ak)
∞
k=0 ∈ TP, since

∞∑
k=0

(k + 1)zk =
1

(1− z)2
.

Example

Let bk = k + 1 + ε, ε > 0. Then (bk)
∞
k=0 /∈ TP, since

∞∑
k=0

(k + 1 + ε)zk =
−εz + (1 + ε)

(1− z)2
.



Totally positive sequences

Simple corollaries of theorem AESW.

Corollary

A polynomial with nonnegative coefficients P(z) =
∑n

k=0 akz
k has

only real zeros if and only if the sequence of its coefficients is
totally positive: (a0, a1, . . . , an, 0, 0, . . .) ∈ TP.

Corollary

An entire function with nonnegative coefficients f (z) =
∑∞

k=0 akz
k

of order less than 1 has only real zeros if and only if the sequence
of its coefficients is totally positive: (ak)

∞
k=0 ∈ TP.



The Laguerre-Pólya I class

Definition
A real entire function f belongs to the Laguerre-Pólya class of type
I, written f ∈ L − PI , if

f (x) = cxneβx
∞∏
k=1

(
1 +

x

xk

)
, (2)

where c ∈ R, β ≥ 0, xk > 0, n ∈ N ∪ {0}, and
∑∞

k=1 x
−1
k < ∞.

Corollary

Let f =
∑∞

k=0 akz
k , ak > 0, be an entire function. Then

f ∈ L − PI if and only if (ak)
∞
k=0 ∈ TP.



A remark

Let (ak)
∞
k=0 and (bk)

∞
k=0 be two sequences of positive numbers

such that the generating functions are entire functions of order less
than one. If (ak)

∞
k=0 ∈ TP and (bk)

∞
k=0 ∈ TP, then

(akbk)
∞
k=0 ∈ TP (the Hadamard convolution) and

(k!akbk)
∞
k=0 ∈ TP (the Schur convolution).

Without the assumption about generating functions this is
obviously not true:
1. For ak = k + 1 we have

∑∞
k=0(k + 1)zk = 1

(1−z)2
, so

(ak)
∞
k=0 ∈ TP. For bk = 2− 1

2k
we have

∑∞
k=0(2−

1
2k
)zk

= 1
(1−z)(1−z/2) , so (bk)

∞
k=0 ∈ TP. But (akbk)

∞
k=0 /∈ TP, since∑∞

k=0(k + 1)(2− 1
2k
)zk = 2−z2

2(1−z)2(1−z/2)2
.

2. For ak = bk ≡ 1 we have (ak)
∞
k=0, (bk)

∞
k=0 ∈ TP, but

(k!)∞k=0 /∈ TP.



The Laguerre-Pólya Theorem

Theorem
(E. Laguerre and G. Pólya).

(i) Let (Pn)
∞
n=1, Pn(0) = 1, be a sequence of real polynomials

having only real negative zeros which converges uniformly in the
circle |z | ≤ A,A > 0. Then this sequence converges locally
uniformly to an entire function from the class L − PI .

(ii) For every f ∈ L − PI there is a sequence of real polynomials
with only real negative zeros which converges locally uniformly to
f .



The second quotients of Taylor Coefficients

Let f (z) =
∑∞

k=0 akz
k be an entire function with positive

coefficients. We will use the following notation:

qn = qn(f ) :=
a2n−1

an−2an
, n ≥ 2.

It is easy to see that

an =
a1

qn−1
2 qn−2

3 · . . . · q2n−1qn

(
a1
a0

)n−1

, n ≥ 2.



Sufficient Condition for an Entire Function to belong to
the Laguerre-Pólya class

Theorem
(J. I. Hutchinson).

Let f (z) =
∑∞

k=0 akz
k be an entire function with positive

coefficients. Inequalities qn(f ) ≥ 4, ∀n ≥ 2, are valid if and only if
the following two properties hold:
(i) The zeros of f are all real, simple and negative and

(ii) the zeros of any polynomial
∑n

k=m akz
k , m < n, formed by

taking any number of consecutive terms of f , are all real and
non-positive.

Easy to check: the constant 4 is the smallest possible in both
statements.



Sufficient Condition for an Entire Function to belong to
the Laguerre-Pólya class

Theorem
(Thu Hien Nguyen and A.V.).
Let P(x) =

∑n
k=0 akx

k , ak > 0, be a polynomial, and n ≥ 4. If

there exists α, 1 +
√
5 ≤ α < 4, such that qk(P) ∈

[
α, 8

α(4−α)

]
for

all k = 2, 3, . . . , n, then the zeros of P are all real, simple and
negative.

Corollary

(Thu Hien Nguyen and A.V.).
Let f (x) =

∑∞
k=0 akx

k , ak > 0, be an entire function. If there

exists α, 1 +
√
5 ≤ α < 4, such that qk(f ) ∈

[
α, 8

α(4−α)

]
for all

k = 2, 3, . . . , then the zeros of f are all real, simple and negative.



Multiplier sequences

The question about whether or not a given polynomial has only
real zeros is of great importance in many areas of mathematics.
So, the problem to describe the set of operators that preserve this
set of polynomials is of great interest.

Definition
A sequence (γk)

∞
k=0 of real numbers is called a multiplier sequence

(written (γk)
∞
k=0 ∈ MS) if, whenever a real polynomial P(x) =∑n

k=0 akz
k has only real zeros, the polynomial

∑n
k=0 γkakz

k has
only real zeros.

Example

Let γk = k , k = 0, 1, 2, . . . For P(x) =
∑n

k=0 akz
k with real

coefficients and all real zeros, we have
∑n

k=0 kakz
k = zP ′(z), and

this polynomial has only real zeros.



Multiplier sequences

Theorem
(G. Pólya and J.Schur).

Let (γk)
∞
k=0 be a given real sequence. The following three

statements are equivalent.

1. (γk)
∞
k=0 is a multiplier sequence.

2. For every n ∈ N the polynomial Pn(z) =
∑n

k=0

(n
k

)
γkz

k has
only real zeros of the same sign.

3. The power series Φ(z) :=
∑∞

k=0
γk
k! z

k converges absolutely in
the whole complex plane and the entire function Φ(z) or the entire
function Φ(−z) admits the representation

czneβz
∞∏
k=1

(
1 +

z

xk

)
, (3)

where c ∈ R, β ≥ 0, n ∈ N ∪ {0}, 0 < xk ≤ ∞,
∑∞

k=1
1
xk

< ∞.



Multiplier sequences

Corollary

The sequence (γ0, γ1, . . . , γl , 0, 0, . . .) is a multiplier sequence if
and only if the polynomial P(z) =

∑l
k=0

γk
k! z

k has only real zeros
of the same sign.

The way to construct multiplier sequences gives the following
remarkable theorem proved by Laguerre and extended by Pólya.

Theorem
(E. Laguerre). Let f be an entire function from the Laguerre-Pólya
class having only negative zeros. Then (f (k))∞k=0 ∈ MS.

As it follows from the theorem above,(
a−k2

)∞

k=0
∈ MS, a ≥ 1,

(
1

k!

)∞

k=0

∈ MS.



Multiplier sequences

Corollary

1. f (z) =
∞∑
k=0

zk

k!ak2 ∈ L − PI , a ≥ 1.

2. g(z) =
∞∑
k=0

zk

(k!)m
∈ L − PI ,m ∈ N.

Open problem. 1. For which b > 1

h(z) =
∞∑
k=0

zk

(k!)b
∈ L − PI?

2. More generally, fix an arbitrary b > 1 . For which a ≥ 1

φ(z) =
∞∑
k=0

zk

(k!)bak2 ∈ L − PI?



Convolution operator

Definition
Let A = (ak)

∞
k=0 be a nonnegative sequence. We define the linear

convolution operator on the set of real sequences

ΛA((bk)
∞
k=0) = (akbk)

∞
k=0.

The following problem was posed by Alan Sokal during the
inspiring AIM workshop “Theory and applications of total
positivity”, July 24-July 28, 2023.

Problem
Describe the set of nonnegative sequences A = (ak)

∞
k=0, such that

the corresponding convolution operator ΛA preserves the set of
TP-sequences: for every (bk)

∞
k=0 ∈ TP we have

ΛA((bk)
∞
k=0) ∈ TP.



Example

We consider the multiplier sequence Γ = (k)∞k=0 and the
corresponding convolution operator ΛΓ((bk)

∞
k=0) = (kbk)

∞
k=0. This

operator preserves the set of finite totally positive sequences (i.e.,
the set of coefficients of polynomials with nonnegative coefficients
and only real zeros). But this operator does not preserve the set of
all totally positive sequences. Consider the function

f (z) =
1

(1− z)(2− z)
=

∞∑
k=0

bkz
k

(we have bk = 1− 1
2k+1 ). By Theorem ASWE, (bk)

∞
k=0 ∈ TP. But

∞∑
k=0

kbkz
k = zf ′(z) =

z(3− 2z)

(1− z)2(2− z)2
.

This function has a positive zero, so the sequence of its coefficients
is not a TP-sequence.



Generating functions with at least one pole
We will denote by A the generating function of a sequence
A = (ak)

∞
k=0 : A(z) =

∑∞
k=0 akz

k .

Suppose that A has the property that the corresponding
convolution operator ΛA preserves the set of TP-sequences. Since
the constant sequence of all ones is the TP-sequence, by theorem
ASWE, the generating function has the representation

A(z) = Czneγz
∞∏
k=1

(1 + αkz)/(1− βkz),

where C ≥ 0, n ∈ Z, γ ≥ 0, αk ≥ 0, βk ≥ 0,
∑

(αk + βk) < ∞.

Theorem
(Olga Katkova and A.V.).
Let A = (ak)

∞
k=0 be a nonnegative sequence, and suppose its

generating function is a meromorphic function with at least one
pole. Then for every (bk)

∞
k=0 ∈ TP we have ΛA((bk)

∞
k=0) ∈ TP if

and only if A(z) = C
1−βz ,C > 0, β > 0.



Sufficiency

Suppose that A(z) = C
1−βz ,C > 0, β > 0. Then A(z) =∑∞

k=0 Cβkzk , so for every B = (bk)
∞
k=0 ∈ TP with the generation

function B, the generation function of ΛA((bk)
∞
k=0) is∑∞

k=0 Cβkbkz
k = CB(βz) ∈ T̃P. The sufficiency is proved.

It remains to describe TP-preservers whose generating functions
are entire functions.

1. Two term sequences. Let us consider a nonnegative sequence
A = (ak)

∞
k=0, such that a0 ≥ 0, a1 ≥ 0, and ak = 0 for k ≥ 2.

Then, obviously, for every (bk)
∞
k=0 ∈ TP we have

ΛA((bk)
∞
k=0) ∈ TP.



Three term sequences

2. Three term sequences. Obvious statement.

Statement
Let A = (ak)

∞
k=0 be a nonnegative sequence, such that ak > 0 for

k = 0, 1, 2, and ak = 0 for k ≥ 3. Then for every (bk)
∞
k=0 ∈ TP we

have ΛA((bk)
∞
k=0) ∈ TP if and only if A(z) = a0 + a1z + a2z

2 has
only real (and negative) zeros. Moreover, ΛA : TP → TP if and
only if ΛA : TP2 → TP.



Four and five term sequences

Theorem
(Olga Katkova and A.V.).
Let A = (ak)

∞
k=0 be a nonnegative sequence, such that ak > 0 for

0 ≤ k ≤ 3, and ak = 0 for k ≥ 4. Then for every (bk)
∞
k=0 ∈ TP we

have ΛA((bk)
∞
k=0) ∈ TP if and only if both polynomials∑3

k=0 akx
k and

∑3
k=1 akx

k have only real (and nonpositive) zeros.
Moreover, ΛA : TP → TP if and only if ΛA : TP3 → TP.

Theorem
Let A = (ak)

∞
k=0 be a nonnegative sequence, such that ak > 0 for

0 ≤ k ≤ 4, and ak = 0 for k ≥ 5. Then for every (bk)
∞
k=0 ∈ TP we

have ΛA((bk)
∞
k=0) ∈ TP if and only if the three polynomials∑4

k=0 akx
k ,

∑4
k=1 akx

k and
∑4

k=2 akx
k have only real (and

nonpositive) zeros. Moreover, ΛA : TP → TP if and only if
ΛA : TP4 → TP.



Infinite positive sequences

The following example was given by Alan Sokal.

Example

Let f be an entire function of the form f (z) =
∑∞

k=0 akz
k with

a0 = a1 = 1, ak = 1
qk−1
2 qk−2

3 ·...·q2k−1qk
for k ≥ 2, where (qk)

∞
k=2 is a

sequence of arbitrary parameters under the following conditions:
qk ≥ 4 for all k . Suppose that (bk)

∞
k=0 ∈ TP is an arbitrary

sequence. For an entire function (A ∗ B)(z) =
∑∞

k=0 akbkz
k we

have (an−1bn−1)2

(an−2bn−2)(anbn)
=

a2n−1

an−2an
· b2n−1

bn−2bn
≥ 4 for all n ≥ 2, since

a2n−1

an−2an
= qn ≥ 4 by our assumption, and

b2n−1

bn−2bn
≥ 1, because every

TP-sequence is, in particular, a 2-times positive sequence. Thus,
using Hutchinson’s Theorem , we get (A ∗ B)(z) ∈ TP.



Conjecture

We formulate the following conjecture, which is consistent with
previous theorems and and example.

Conjecture

Let A = (ak)
∞
k=0 be a nonnegative sequence with entire generating

function. Then A is a TP-preserver, i.e. for every (bk)
∞
k=0 ∈ TP

we have ΛA((bk)
∞
k=0) ∈ TP if and only if for every s ∈ N ∪ {0} the

formal power series
∑∞

k=s akz
k is an entire function from the L-PI

class (in particular, it has only real nonpositive zeros).

Necessity. Let A = (ak)
∞
k=0 be a nonnegative sequence with

entire generating function, such that the operator ΛA preserves the
set of the TP-sequences. For every k ∈ N the sequence
Bk = (0, 0, . . . , 0, 1, 1, 1, 1, . . .) ∈ TP, (Bk has k zeros and after
that all ones). So, ΛA(Bk) = (0, 0, . . . , 0, ak+1, ak+2, ak+3, . . .)
∈ TP. Hence, by ASWE theorem, the function

∑∞
j=k+1 ajx

j

∈ L-PI , in particular, it has only real nonpositive zeros.



Entire functions with remainders having only real zeros

Entire functions whose Taylor sections have only real zeros were
studied in various works, but entire functions whose remainders
have only real zeros have been studied less (some results can be
found in the survey by I.V. Ostrovskii).

The entire function ga(z) =
∑∞

j=0 z
ja−j2 , a > 1, is called the

partial theta-function. The survey by S.O. Warnaar contains the
history of investigation of the partial theta-function and some of its
main properties. The paper by O. Katkova, T. Lobova and A.V.
answers the question: for which a > 1 we have ga ∈ L-PI . In
particular, it is proved that there exists a constant
q∞ ≈ 3.23363666 . . . , such that ga ∈ L-PI if and only if a2 ≥ q∞.

Let f (z) =
∑∞

k=0 akz
k with a0 = a1 = 1, ak = 1

qk−1
2 qk−2

3 ·...·q2k−1qk

for k ≥ 2, and (qk)
∞
k=2 is an arbitrary sequence such that: q2 ≥ q3

≥ q4 ≥ . . . and limn→∞ qn ≥ q∞. Then, by theorem by Thu Hien
Nguen and A.V., f has all remainders from the class L-PI .



Entire functions with remainders having only real zeros

Example

Consider a function f (z) = ez =
∑∞

k=0
zk

k! ∈ L-PI (
(
1
k!

)∞
k=0

∈ TP). Its first remainder g(z) =
∑∞

k=1
zk

k! = ez − 1 /∈ L-PI , it
has infinitely many nonreal zeros. Moreover, for all s ∈ N the
remainder

∑∞
k=s

zk

k! has infinitely many nonreal zeros.

Theorem
(Olga Katkova and A.V.).
Let f (z) =

∑∞
k=0 akz

k be an entire function such that for every
s ∈ N ∪ {0} the function

∑∞
k=s akz

k belongs to the L-PI class.
Then

qn(f ) =
a2n−1

an−2an
≥ 3, n = 2, 3, 4, . . . .



Entire functions with remainders having only real zeros

Problem
Let us consider the set M of all entire functions f (z) =∑∞

k=0 akz
k such that for every s ∈ N ∪ {0} the function∑∞

k=s akz
k belongs to the L-PI class. Find the following constant

c = inf

{
qn(f ) =

a2n−1

an−2an
| f ∈ M, n = 2, 3, 4, . . .

}
.

Conjecture

c = q∞.
(q∞ ≈ 3.23363666 . . .).



Thank you

for attention!
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