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Positive definite matrices (real case)

Let A be a real symmetric matrix.

Theorem
The following are equivalent for a symmetric matrix A ∈ Mn(R):

1 A is positive definite (xTAx > 0 ∀x ∈ Rn \ {0n}.).
2 All the eigenvalues of A are positive.

3 There exist a non-singular matrix B ∈ Mn(R) such that A = B2.

4 There exist a full rank matrix B ∈ Mn,m(R) such that A = BBT .

5 The matrix A admits a Cholesky factorization A = LLT

(L is lower triangular with positive diagonal entries).

6 All the principal minors of A are positive.

7 The leading principal minors of A are positive.

Moreover, the entrywise product A ◦B = (aijbij) of two positive
definite matrices is positive definite.
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Positive definite matrices over finite fields

What about positive definite matrices over finite fields?

Fq = finite field with q = pk elements. We let F∗
q := Fq \ {0}.

(e.g. k = 1: Fp = Zp = integers mod p)
Positive elements in Fq (non-zero quadratic residues):

F+
q := {a2 : a ∈ F∗

q}.

Definition: (see Cooper, Hanna, and Whitlatch, 2022) A matrix
A ∈ Mn(Fq) is positive definite if it is symmetric and its leading
principal minors are positive.
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Example

For example, consider F7 = {0, 1, 2, 3, 4, 5, 6}. Then

F+
7 = {12, 22, 32, 42, 52, 62} = {1, 2, 4}.

The matrix (
4 1
1 6

)
is positive definite.

However, (
4 1
1 1

)
is not positive definite since detA = 3 ̸∈ F+

7 .
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(Lack of) Equivalent definitions

Theorem (Cooper, Hanna, and Whitlatch, 2022)

The following are equivalent for a symmetric matrix A ∈ Mn(Fq):

1 xTAx ∈ F+
q ∀x ∈ (F∗

q)
n.

2 All the eigenvalues of A are positive.

3 There exist a non-singular matrix B ∈ Mn(R) such that A = B2.

4 There exist a full rank matrix B ∈ Mn,m(R) such that A = BBT .

5 Only if q is even or q ≡ 3 (mod 4) The matrix A admits a Cholesky
factorization A = LLT

(L is lower triangular with positive diagonal entries).

6 All the principal minors of A are positive.

7 The leading principal minors of A are positive.

Moreover, the entrywise product A ◦B = (aijbij) of two positive
definite matrices is positive definite.
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Equivalent Definitions (cont.)

In particular, the quadratic form approach does not yield a useful
notion of matrix positivity.

Proposition (Cooper, Hanna, and Whitlatch, 2022)

Let Fq be a finite field, let n ≥ 3, and let A ∈ Mn(Fq). Then there
exists a non-zero vector x ∈ Fn

q so that xTAx = 0.

The range of the quadratic form of a positive definite matrix is not
contained in F+

q .

Proposition (Guillot, Gupta, Vishwakarma, Yip, 2024)

Let n ≥ 2 and let A ∈ Mn(Fq) be a positive definite matrix. Then

{xTAx : x ∈ Fn
q } = Fq.
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Non-linear entrywise transformers

The theory of positive definiteness is still in its infancy.
There are a lot of opportunities to develop the theory and find
applications (algebra? combinatorics? cryptography? total
positivity/ finite Grassmannian (Machacek, 2024)).

Given a function f : F → F and a matrix A = (aij) ∈ Mn(F), let

f [A] := (f(aij)).

We say f preserves positivity on Mn(F) if f [A] is positive
definite for all positive definite A ∈ Mn(F).

(Entrywise) Positivity Preserver Problems:
1 Determine the functions preserving positivity on Mn(F) for a

fixed dimension n (usually very hard).
2 Determine the functions preserving positivity on Mn(F) for all

n ≥ 1.
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Schoenberg’s theorem

The F = R case was first considered by Pólya-Szegö (1925), and
resolved by Schoenberg (1942) and Rudin (1959).

Theorem (Schoenberg, 1942; Rudin, 1959)

Let f : R → R. The following are equivalent:

1 The function f acts entrywise to preserve the set of positive
definite matrices of all dimensions with entries in I.

2 The function f is non-constant and absolutely monotone, that is,
f(x) =

∑∞
n=0 cnx

n for all x ∈ I with cn ≥ 0 for all n and cn > 0
for at least one n ≥ 1.

Lots of variants considered (for matrices in Mn(R) or Mn(C)).
For more details, see e.g.:

A. Belton et al, A panorama of positivity. I, II., 2019, 2020.

A. Khare, Matrix analysis and entrywise positivity preservers,
London Math Society Lecture Notes Series, 2022.
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Other preserver problems over finite fields

Other settings:
A lot of work has been done to characterize transformations
that preserve various matrix quantities.
The focus is usually on linear maps (linear preserver problems).

Typical result:

Theorem (Dieudonné, 1949)

Let ϕ : Mn(F) → Mn(F) be an invertible linear map over a field F.
Suppose ϕ maps the set of singular matrices into itself. Then

ϕ(A) = MAN or ϕ(A) = MATN

for some M,N ∈ Mn(F) with det(MN) ̸= 0.

See e.g. Marko Orel, “Preserver problems over finite fields” for
more details.
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What about entrywise positivity preservers for finite fields?

A bijective function σ : Fq → Fq is called field automorphism if
for all x, y ∈ Fq

σ(x+ y) = σ(x) + σ(y)

σ(xy) = σ(x)σ(y)

Let q = pk. Then the distinct automorphisms of Fq are exactly
the mappings σ0, σ1, . . . , σk−1 defined by σℓ(x) = xp

ℓ
.

In particular, in Fq, we have (x+ y)p = xp + yp.
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Theorem (Guillot, Gupta, Vishwakarma, Yip, 2024)

Let q = pk. Then all the positive multiples of the field
automorphisms of Fq preserve positivity on Mn(Fq) for all n ≥ 1.

Proof: Let f(x) = xp
ℓ

and A = (aij) ∈ Mn(Fq).
We have

det f [A] =
∑
σ∈Sn

sgn(σ)ap
ℓ

1,σ(1)a
pℓ

2,σ(2) . . . a
pℓ

n,σ(n)

=

(∑
σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) . . . an,σ(n)

)pℓ

= f(detA).

The result follows by applying the above to all leading principal
minors of A.
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Paley graphs
The quadratic character η : Fq → {−1, 0, 1} is:

η(x) = x
q−1
2 =


1 if x ∈ F+

q

−1 if x ̸∈ F+
q and x ̸= 0

0 if x = 0.

Let q = pk where p is odd. The Paley graph P (q) = (V,E) is
the graph such that

1 V = Fq and
2 (a, b) ∈ E if and only if η(a− b) = 1.

The Paley graph P (13).
Credits: David Eppstein – Wikipedia.

Dominique Guillot (U. Delaware) 12 / 31



Paley graphs
The quadratic character η : Fq → {−1, 0, 1} is:

η(x) = x
q−1
2 =


1 if x ∈ F+

q

−1 if x ̸∈ F+
q and x ̸= 0

0 if x = 0.

Let q = pk where p is odd. The Paley graph P (q) = (V,E) is
the graph such that

1 V = Fq and
2 (a, b) ∈ E if and only if η(a− b) = 1.

The Paley graph P (13).
Credits: David Eppstein – Wikipedia.

Dominique Guillot (U. Delaware) 12 / 31



A function f is an automorphism of the Paley graph P (q) if

η(f(a)− f(b)) = η(a− b)

for all a, b ∈ Fq.

In other words, an automorphism is a bijective map that
preserve edges and non-edges.

Theorem (Carlitz, 1960)

Suppose q = pk where p is odd. Let f : Fq → Fq such that
f(0) = 0, f(1) = 1 and η(f(a)− f(b)) = η(a− b) for all a, b ∈ Fq.
Then f(x) = xp

ℓ
for some 0 ≤ ℓ ≤ k − 1.
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Main result: n ≥ 3

Theorem (Main Result, Guillot, Gupta, Vishwakarma, Yip, 2024)

Let q = pk and f : Fq → Fq. Then the following are equivalent:

1 f preserves positivity on Mn(Fq) for some n ≥ 3. Fixed dimension
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Key ingredient: bijectivity on F+
q

Lemma

Let Fq be a finite field with q even or q ≡ 3 (mod 4) and let f : Fq → Fq.
Suppose f preserves positive definiteness on M2(Fq). Then:

1 The restriction of f to F+
q is a bijection of F+

q onto itself.

2 f(0) = 0.

Proof.

1 For a ∈ F+
q , f [aI2] is PD =⇒ f(a) ∈ F+

q . Thus f(F+
q ) ⊆ F+

q .
2 Let a, b ∈ F+

q with a ̸= b. WLOG a− b ∈ F+
q . Consider the

PD matrix

A =

(
b b
b a

)
, detA = b(a− b) ∈ F+

q .

det f [A] = f(b) (f(a)− f(b)) ∈ F+
q =⇒ f(a) ̸= f(b).

Dominique Guillot (U. Delaware) 15 / 31



Key ingredient: bijectivity on F+
q

Lemma

Let Fq be a finite field with q even or q ≡ 3 (mod 4) and let f : Fq → Fq.
Suppose f preserves positive definiteness on M2(Fq). Then:

1 The restriction of f to F+
q is a bijection of F+

q onto itself.

2 f(0) = 0.

Proof.
1 For a ∈ F+

q , f [aI2] is PD =⇒

f(a) ∈ F+
q . Thus f(F+

q ) ⊆ F+
q .

2 Let a, b ∈ F+
q with a ̸= b. WLOG a− b ∈ F+

q . Consider the
PD matrix

A =

(
b b
b a

)
, detA = b(a− b) ∈ F+

q .

det f [A] = f(b) (f(a)− f(b)) ∈ F+
q =⇒ f(a) ̸= f(b).

Dominique Guillot (U. Delaware) 15 / 31



Key ingredient: bijectivity on F+
q

Lemma

Let Fq be a finite field with q even or q ≡ 3 (mod 4) and let f : Fq → Fq.
Suppose f preserves positive definiteness on M2(Fq). Then:

1 The restriction of f to F+
q is a bijection of F+

q onto itself.

2 f(0) = 0.

Proof.
1 For a ∈ F+

q , f [aI2] is PD =⇒ f(a) ∈ F+
q . Thus f(F+

q ) ⊆ F+
q .

2 Let a, b ∈ F+
q with a ̸= b. WLOG a− b ∈ F+

q . Consider the
PD matrix

A =

(
b b
b a

)
, detA = b(a− b) ∈ F+

q .

det f [A] = f(b) (f(a)− f(b)) ∈ F+
q =⇒ f(a) ̸= f(b).

Dominique Guillot (U. Delaware) 15 / 31



Key ingredient: bijectivity on F+
q

Lemma

Let Fq be a finite field with q even or q ≡ 3 (mod 4) and let f : Fq → Fq.
Suppose f preserves positive definiteness on M2(Fq). Then:

1 The restriction of f to F+
q is a bijection of F+

q onto itself.

2 f(0) = 0.

Proof.
1 For a ∈ F+

q , f [aI2] is PD =⇒ f(a) ∈ F+
q . Thus f(F+

q ) ⊆ F+
q .

2 Let a, b ∈ F+
q with a ̸= b. WLOG a− b ∈ F+

q .

Consider the
PD matrix

A =

(
b b
b a

)
, detA = b(a− b) ∈ F+

q .

det f [A] = f(b) (f(a)− f(b)) ∈ F+
q =⇒ f(a) ̸= f(b).

Dominique Guillot (U. Delaware) 15 / 31



Key ingredient: bijectivity on F+
q

Lemma

Let Fq be a finite field with q even or q ≡ 3 (mod 4) and let f : Fq → Fq.
Suppose f preserves positive definiteness on M2(Fq). Then:

1 The restriction of f to F+
q is a bijection of F+

q onto itself.

2 f(0) = 0.

Proof.
1 For a ∈ F+

q , f [aI2] is PD =⇒ f(a) ∈ F+
q . Thus f(F+

q ) ⊆ F+
q .

2 Let a, b ∈ F+
q with a ̸= b. WLOG a− b ∈ F+

q . Consider the
PD matrix

A =

(
b b
b a

)
, detA = b(a− b) ∈ F+

q .

det f [A] = f(b) (f(a)− f(b)) ∈ F+
q =⇒ f(a) ̸= f(b).

Dominique Guillot (U. Delaware) 15 / 31



Key ingredient: bijectivity on F+
q

Lemma

Let Fq be a finite field with q even or q ≡ 3 (mod 4) and let f : Fq → Fq.
Suppose f preserves positive definiteness on M2(Fq). Then:

1 The restriction of f to F+
q is a bijection of F+

q onto itself.

2 f(0) = 0.

Proof.
1 For a ∈ F+

q , f [aI2] is PD =⇒ f(a) ∈ F+
q . Thus f(F+

q ) ⊆ F+
q .

2 Let a, b ∈ F+
q with a ̸= b. WLOG a− b ∈ F+

q . Consider the
PD matrix

A =

(
b b
b a

)
, detA = b(a− b) ∈ F+

q .

det f [A] = f(b) (f(a)− f(b)) ∈ F+
q =⇒ f(a) ̸= f(b).

Dominique Guillot (U. Delaware) 15 / 31



3 Finally, suppose f(0) = c ∈ F+
q . By the above, f(a) = c for

some a ∈ F+
q .

Consider

f [aI2] =

(
f(a) f(0)
f(0) f(a)

)
=

(
c c
c c

)
which is not PD, a contradiction. A similar argument can be
used if f(0) ∈ −F+

q . Thus f(0) = 0.
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Characteristic 2: preservers on M2(Fq)

Assume q = 2k for some k ≥ 1.
Since f(x) = x2 is bijective, every x ∈ Fq has a unique square
root

√
x.

Well known result: f(x) = xn is bijective on Fq iff
gcd(n, q − 1) = 1.

Theorem

Let q = 2k for some k ≥ 1 and let f : Fq → Fq. Then the following
are equivalent:

1 f preserves positivity on M2(Fq).
2 f(0) = 0, f is bijective, and f(

√
xy)2 = f(x)f(y) for all

x, y ∈ Fq.
3 There exist c ∈ F∗

q and 1 ≤ n ≤ q − 1 with gcd(n, q − 1) = 1
such that f(x) = cxn for all x ∈ Fq.
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Idea of proof

(1) =⇒ (2). For x, y ̸= 0, consider

A(z) =

(
x

√
xyz√

xyz y

)
(z ∈ Fq). detA(z) = xy(1− z2).

We have detA(z) = 0 ⇐⇒ z = 1.
Thus z ̸= 1 =⇒ f(x)f(y) ̸= f(

√
xyz)2.

The map z 7→ f(
√
xyz)2 is bijective on Fq since f is bijective.

This forces f(x)f(y) = f(
√
xy)2.

(2) =⇒ (3). With some effort, we prove the only polynomials
satisfying f(x)f(y) = f(

√
xy)2 are monomials.

(3) =⇒ (1). Trivial.
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Characteristic 2: dimension ≥ 3

Theorem

Let q = 2k and let f : Fq → Fq preserve positivity on M3(Fq). Then
f(x) = cx2l for some 0 ≤ l ≤ k − 1 and c ∈ F+

q .

Proof.
1 By the 2× 2 case, f(x) = cxn and is bijective. WLOG, assume c = 1.

2 Consider
A(x, y) =

1 x y
x 1 0
y 0 1

 , detA(x, y) = 1− x2 − y2.

Since f preserves positivity, A(x, y) is PD =⇒ f [A(x, y)] is PD.
Observe:

detA = 0 ⇐⇒ x2 + y2 = (x+ y)2 = 1 ⇐⇒ x+ y = 1

det f [A] = 0 ⇐⇒ x2n + y2n = (xn + yn)2 = 1 ⇐⇒ xn + yn = 1.
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3 Consider

S1 := {(x, y) ∈ F2
q : x+ y = 1}, S2 := {(x, y) ∈ F2

q : xn + yn = 1}.

Clearly |S1| = q. Also, |S2| = q since we know f(x) = xn is bijective.
4 Claim: if f preserves positivity, we have S2 ⊆ S1.

(x, y) ∈ S2 =⇒ det f [A(x, y)] = 0 =⇒ A(x, y) is not PD
=⇒ x = 1 or detA(x, y) = 0

=⇒ x+ y = 1

=⇒ (x, y) ∈ S1.

5 We conclude that S1 = S2. That means x+ y = 1 ⇐⇒ xn + yn = 1.
6 Not hard to show that this implies (x+ y)n = xn + yn:

x+ y = a =⇒ x

a
+

y

a
= 1 =⇒

(x
a

)n

+
(y
a

)n

= 1

=⇒ xn + yn = an = (x+ y)n.

7 Thus x 7→ xn is a field automorphism and so n = 2l for some
0 ≤ l ≤ k − 1.
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Theorem (Main Result, Guillot, Gupta, Vishwakarma, Yip, 2024)

Let q = pk and f : Fq → Fq. Then the following are equivalent:
1 f preserves positivity on Mn(Fq) for some n ≥ 3.
2 f preserves positivity on Mn(Fq) for all n ≥ 3.
3 f(x) = cxp

ℓ
for some c ∈ F+

q and 0 ≤ ℓ ≤ k − 1.
Moreover, when p is odd, the above are equivalent to

4 f(0) = 0 and f is an automorphism of the Paley graph
associated to Fq, i.e., η(f(a)− f(b)) = η(a− b) for all
a, b ∈ Fq.

The key idea for resolving the p ̸= 2 cases is to show that the
positivity preservers are automorphisms of the associated Paley
graph, i.e.,

η(f(a)− f(b)) = η(a− b) for all a, b ∈ Fq.
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Proof of (1) =⇒ (3) when q ≡ 3 (mod 4)

Assume q ≡ 3 (mod 4). We already know f(0) = 0 and f is
bijective on F+

q .

If η(a− b) = 0, then we are done. Let us assume
that η(a− b) = 1 and consider the following three cases.
Case 1 Assume b = 0. Since f(F+

q ) = F+
q ,

η(a− b) = η(a) = 1 =⇒ η(f(a)) = 1 = η(f(a)− f(0)).

Case 2 Assume η(b) = 1. Then the matrix

A =

b b 0
b a 0
0 0 1


is positive definite. Hence,

det f [A] = f(b)(f(a)− f(b)) ∈ F+
q .

Thus, η(f(a)− f(b)) = 1 since η(f(b)) = 1.
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Case 3 Assume η(b) = −1.

Consider the matrix

A = A(c) =

c c c
c b b
c b a

 , detA = c(b− c)(a− b)

where c ∈ F+
q and η(b− c) = 1. Consider the linear map

g : Fq → Fq given by g(x) = x+ b. We have
g is bijective,
g(0) = b, and
g(−b) = 0.

Thus, there must exist x0 ∈ Fq such that η(x0) = −1 and
η(g(x0)) = 1.
Let x0 = −c where η(c) = 1, and hence η(b− c) = 1. Thus, the
matrix A is positive definite. It follows that

det f [A] = f(c)(f(b)− f(c))(f(a)− f(b)) ∈ F+
q .

We know that η(f(c)) = 1, and using the previous case applied
with a′ = b and b′ = c, we conclude that η(f(b)− f(c)) = 1.
Thus, η(f(a)− f(b)) = 1.
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g(−b) = 0.

Thus, there must exist x0 ∈ Fq such that η(x0) = −1 and
η(g(x0)) = 1.
Let x0 = −c where η(c) = 1, and hence η(b− c) = 1.

Thus, the
matrix A is positive definite. It follows that

det f [A] = f(c)(f(b)− f(c))(f(a)− f(b)) ∈ F+
q .

We know that η(f(c)) = 1, and using the previous case applied
with a′ = b and b′ = c, we conclude that η(f(b)− f(c)) = 1.
Thus, η(f(a)− f(b)) = 1.

Dominique Guillot (U. Delaware) 23 / 31



Case 3 Assume η(b) = −1. Consider the matrix

A = A(c) =

c c c
c b b
c b a

 , detA = c(b− c)(a− b)

where c ∈ F+
q and η(b− c) = 1. Consider the linear map

g : Fq → Fq given by g(x) = x+ b. We have
g is bijective,
g(0) = b, and
g(−b) = 0.

Thus, there must exist x0 ∈ Fq such that η(x0) = −1 and
η(g(x0)) = 1.
Let x0 = −c where η(c) = 1, and hence η(b− c) = 1. Thus, the
matrix A is positive definite.

It follows that

det f [A] = f(c)(f(b)− f(c))(f(a)− f(b)) ∈ F+
q .

We know that η(f(c)) = 1, and using the previous case applied
with a′ = b and b′ = c, we conclude that η(f(b)− f(c)) = 1.
Thus, η(f(a)− f(b)) = 1.

Dominique Guillot (U. Delaware) 23 / 31



Case 3 Assume η(b) = −1. Consider the matrix

A = A(c) =

c c c
c b b
c b a

 , detA = c(b− c)(a− b)

where c ∈ F+
q and η(b− c) = 1. Consider the linear map

g : Fq → Fq given by g(x) = x+ b. We have
g is bijective,
g(0) = b, and
g(−b) = 0.

Thus, there must exist x0 ∈ Fq such that η(x0) = −1 and
η(g(x0)) = 1.
Let x0 = −c where η(c) = 1, and hence η(b− c) = 1. Thus, the
matrix A is positive definite. It follows that

det f [A] = f(c)(f(b)− f(c))(f(a)− f(b)) ∈ F+
q .

We know that η(f(c)) = 1, and using the previous case applied
with a′ = b and b′ = c, we conclude that η(f(b)− f(c)) = 1.
Thus, η(f(a)− f(b)) = 1.

Dominique Guillot (U. Delaware) 23 / 31



Case 3 Assume η(b) = −1. Consider the matrix

A = A(c) =

c c c
c b b
c b a

 , detA = c(b− c)(a− b)

where c ∈ F+
q and η(b− c) = 1. Consider the linear map

g : Fq → Fq given by g(x) = x+ b. We have
g is bijective,
g(0) = b, and
g(−b) = 0.

Thus, there must exist x0 ∈ Fq such that η(x0) = −1 and
η(g(x0)) = 1.
Let x0 = −c where η(c) = 1, and hence η(b− c) = 1. Thus, the
matrix A is positive definite. It follows that

det f [A] = f(c)(f(b)− f(c))(f(a)− f(b)) ∈ F+
q .

We know that η(f(c)) = 1, and using the previous case applied
with a′ = b and b′ = c, we conclude that η(f(b)− f(c)) = 1.
Thus, η(f(a)− f(b)) = 1.

Dominique Guillot (U. Delaware) 23 / 31



Finally, if η(a− b) = −1, then η(b− a) = 1. Hence, by the above
argument η(f(b)− f(a)) = 1. That implies η(f(a)− f(b)) = −1.
Thus, (1) =⇒ (3) and the result follows.
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Positivity preservers on M2(Fq)

For 2× 2 matrices. . .
When p = 2, we saw that the preservers are f(x) = cxn for
some c ∈ F∗

q and n such that gcd(n, q − 1) = 1. (Bijective
power functions.)

When q ≡ 3 (mod 4), all positivity preservers are f(x) = cxp
ℓ

for some c ∈ F+
q and 0 ≤ ℓ ≤ k − 1. Proof is much more

complicated for M2(Fq)!
When q ≡ 1 (mod 4), we resolved the case q = r2.
Otherwise, this is an open problem.
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General approach when q ≡ 1 (mod 4)

Proposition

Let q = pk be a prime power with q ≡ 1 (mod 4) and let f be a
positivity preserver over M2(Fq) with f(1) = 1. Assume additionally
that f is injective on F+

q . Then there exists 0 ≤ l ≤ k − 1 such that
f(x) = xpl

for all x ∈ Fq.

The proof relies on the following result of Muzychuk and Kovács.

Theorem (Muzychuk and Kovács, 2005)

Let p be a prime and q = pk ≡ 1 (mod 4). The automorphisms of the
subgraph of P (q) induced by F+

q are precisely given by the maps
x 7→ ax±pl

, where a ∈ F+
q and l ∈ {0, 1, . . . , k − 1}.

We show that a positivity preserver on M2(Fq) that is injective on
F+
q is an automorphism of the above subgraph of P (q). Thus ax±pl

.

With (quite a bit of) extra work, we rule out the ax−pl

case.
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When q ≡ 1 (mod 4),
Not hard to show that a preserver on Mn(Fq) is injective on
F+
q if n ≥ 3.

This implies our main result.

In general, we were not able to show that a positivity preserver
on M2(Fq) needs to be injective on F+

q .
When q = r2, we can exploit extra structure of P (q) to show a
preserver on M2(Fq) is injective on F+

q .
Open problem: If f preserves positivity on M2(Fq) where q ≡ 1
(mod 4) is not a square, does f have to be injective on F+

q ?
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The q = r2 case

When q = r2, we can exploit known structure of P (q) to determine
the positivity preservers on M2(Fq).

Note Fr ⊂ F+
r2

⊂ Fr2 .
The maximal cliques of P (r2) are known.

Theorem (Erdős-Ko-Rado for Paley graphs of square order)

In the Paley graph P (q), the clique number of P (q) is r. Moreover,
all maximum cliques are of the form αFr + β, where α ∈ F+

q and
β ∈ Fq (squares translates of the subfield Fr).

Note that F∗
q/F∗

r is a well-defined group.
We can thus write F∗

q = a1F∗
r ⊔ a2F∗

r ⊔ · · · ⊔ ar+1F∗
r .

We say that a coset of the form aF∗
q with a ∈ F+

q is a square
coset.
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Outline of proof for q = r2

Let f be a positivity preserver on M2(Fq) where q = r2.
1 The function f maps a square coset to a square coset.

2 Action of f on a square coset αF∗
r: there exist a positive

integer m = m(α) such that gcd(m, r − 1) = 1 and
f(αx) = βxm for all x ∈ Fr, where β = f(α) ∈ F+

q .
3 The function f maps different square cosets to different square

cosets. Equivalently, f is injective on F+
q .

4 We conclude f(x) = axp
j

for all x ∈ Fq.
The above steps are highly non-trivial and exploit the known
maximal clique structure of P (r2).
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Ongoing work

Ongoing work:
Linear positivity preservers.
k-positive, completely positive linear maps.

Possible research directions:
New connections to other areas/problems? Applications?
Applications of positive definite matrices over Fq?
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