NTNU | Norwegian University of Science and Technology

DUALITY THEOREMS FOR SHIFT-INVARIANT SYSTEMS AND GREEN'S IMPRIMITIVITY THEOREM

Franz Luef (joint work Ulrik Enstad) Applied Matrix Positivity II ICMS, Bayes Centre, Edinburgh

Theorem

The following are equivalent:

- (i) $\{\pi(\alpha k, \beta I)g : k, I \in \mathbb{Z}\}$ is a Gabor frame for $L^2(\mathbb{R})$.
- (ii) There exist A, B > 0 such that the spectrum of the Ron-Shen matrix $G(x) = (\sum_{j \in \mathbb{Z}} g(x + \alpha j \frac{k}{\beta})\overline{g}(x + \alpha j \frac{l}{\beta}))$ is contained in [A, B].
- (iii) There exist A, B > 0 such that

$$A\|c\|_2^2 \leq \sum_j |\sum_k g(x+\alpha j - \frac{k}{\beta})c_k|^2 \leq B\|c\|_2^2, \qquad \text{a.a. } x \in \mathbb{R}, \ c \in \ell^2(\mathbb{Z}).$$

Remark

(*iii*) says that $x + \alpha \mathbb{Z}$ is a set of sampling for the shift-invariant space $V_{\frac{1}{\beta}} = \{f \in L^2(\mathbb{R}) : f = \sum_{k \in \mathbb{Z}} c_k g(\cdot - \frac{k}{\beta})\}$ with uniform constants for all $x \in \mathbb{R}$.

Main goal

Developing a better understanding of the characterization of Gabor frames in terms of Ron-Shen matrices.

- Periodization trick - extension

Periodization trick

$$\int_{\mathbb{R}} f(x) \, dx = \int_0^\alpha \sum_{k \in \mathbb{Z}^d} f(x + \alpha k) \, dx$$

Use the partition of \mathbb{R} into translates of the interval $[0, \alpha)$, i.e. $\cup_{k \in \mathbb{Z}^d} (\alpha k + [0, \alpha))$ and $(\alpha k + [0, \alpha)) \cap (\alpha l + [0, \alpha)) = \emptyset$ for $k \neq l$.

Consequence: Poisson summation formula:

$$\sum_{k\in\mathbb{Z}}f(x+\alpha k)=\alpha^{-1}\sum_{k\in\mathbb{Z}}\widehat{f}(\frac{k}{\alpha})e^{2\pi ikx/\alpha},$$

for "nice functions", e.g. in Feichtinger's algebra or Schwartz class.

Setting

- second-countable locally compact group G with identity element e
- **Γ** lattice in *G*, i.e., a discrete subgroup such that there exists a finite *G*-invariant Borel probability measure μ on the left *G*-space *G*/Γ of left cosets of Γ in *G*.

Weil's formula

$$\int_{G} f(x) dx = \int_{G/\Gamma} \sum_{\gamma \in \Gamma} f(x\gamma) d\mu(x\Gamma), \qquad f \in C_{c}(G).$$

Key observation

Weil's formula implies the direct integral decompositions of $L^2(G)$:

$$L^2(G)\cong \int_{G/\Gamma}\ell^2(x\Gamma)d\mu(x\Gamma)$$

The identification of $L^2(G)$ with the direct integral is given by mapping $f \in L^2(G)$ to the section of $(\ell^2(x\Gamma))_{x\Gamma \in G/\Gamma}$ given by the family of restrictions $(f|_{x\Gamma})_{x\Gamma \in G/\Gamma}$.

- Direct integrals of Hilbert spaces

Field of Hilbert spaces

A *field* of Hilbert spaces over X is a collection $(\mathcal{H}_x)_{x \in X}$ of Hilbert spaces indexed by X. We write $\langle \cdot, \cdot \rangle_x$ and $\| \cdot \|_x$ for the inner product and norm of \mathcal{H}_x , respectively.

An element *f* of the product $\prod_{x \in X} \mathcal{H}_x$ is called a section and we denote the projection of *f* onto \mathcal{H}_x by f_x .

Measurable fields

Let X be a measurable space. The field $(\mathcal{H}_x)_x$ is called *measurable* when it comes equipped with a linear subspace V of $\prod_{x \in X} \mathcal{H}_x$ such that the following hold: There exists a countable family $(\eta^i)_{i=1}^{\infty}$ in V such that

1. $\{\eta_x^i : i \in \mathbb{N}\}$ is dense in \mathcal{H}_x for every $x \in X$, and

2. an element $f \in \prod_{x \in X} \mathcal{H}_x$ is in *V* if and only if $x \mapsto \langle f_x, \eta_x^i \rangle_x$ is measurable for every $i \in \mathbb{N}$. We call elements of *V* measurable sections.

Direct integral

Let μ be a measure on X. A measurable section f of $(\mathcal{H}_x)_{x \in X}$ is called *integrable* with respect to μ if $\int_X \|f_x\|_x^2 d\mu(x) < \infty$.

The *direct integral* of $(\mathcal{H}_x)_{x \in X}$ with respect to μ , denoted by $\int_X \mathcal{H}_x d\mu(x)$, is the set of equivalence classes of integrable sections under equality μ -almost everywhere on X. It is a Hilbert space with respect to the inner product

$$\langle f,g\rangle = \int_X \langle f_x,g_x\rangle_x d\mu(x), \qquad f,g\in \int_X \mathcal{H}_x d\mu(x).$$

We set $\mathcal{H} = \int_X \mathcal{H}_x d\mu(x)$.

Operators for direct integrals

Let $(\mathcal{H}_x)_{x \in X}$ and $(\mathcal{K}_x)_{x \in X}$ be two measurable fields of Hilbert spaces over *X*.

- ► A collection $T = (T_x)_{x \in X}$ of bounded linear maps $T_x : \mathcal{H}_x \to \mathcal{K}_x$ defines a map $T : \prod_{x \in X} \mathcal{H}_x \to \prod_{x \in X} \mathcal{K}_x$ given by (Tf)(x) = T(f(x)).
- We call $(T_x)_x$ a measurable field if the associated map T maps measurable sections of $(\mathcal{H}_x)_x$ to measurable sections of $(\mathcal{K}_x)_x$.
- ▶ If μ is a measure on X, then $(T_x)_x$ is called μ -essentially bounded if $_{x \in X} ||T_x||_{\mathcal{H}_x \to \mathcal{K}_x} < \infty$.

In that case T defines a bounded linear map from $\int_X \mathcal{H}_x d\mu(x)$ to $\int_X \mathcal{K}_x d\mu(x)$. Bounded linear operators between direct integrals of this form are called *decomposable*.

Furthermore, a decomposable operator $T \in \mathcal{B}(\mathcal{H})$ is positive if and only $T = S^*S$ for some operator $S \in \mathcal{B}(\mathcal{H})$ and thus *S* is decomposable too. Hence $T_x = S_x^*S_x$ for μ -almost every $x \in X$, which means that μ -almost every T_x is positive.

Lemma

Let $T \in \mathcal{B}(\mathcal{H})$ be a decomposable operator. Then the following hold:

- **1.** *T* is self-adjoint if and only if T_x is self-adjoint for μ -almost every $x \in X$.
- **2.** *T* is positive if and only if T_x is positive for μ -almost every $x \in X$.

Let us develop the basic notions of frame theory for direct integrals:

Fibered frames and fibered Riesz bases

A sequence $(g^j)_{j\in J} \in \mathcal{H} \cong \int_X \mathcal{H}_x d\mu(x)$ is called a *fibered frame* (resp. Riesz sequence) with bounds c, C > 0 if $(g^j_x)_{j\in J}$ is a frame (resp. Riesz sequence) for \mathcal{H}_x with bounds c, C > 0 for μ -almost every $x \in X$.

If an upper frame bound in the definition of a fibered frame exists but not necessarily a lower frame bound, we call $(g^j)_{j \in J}$ a *fibered Bessel sequence*.

Let *d* denote the counting measure on *J*. We denote by $\mathcal{H}' = \int_X \ell^2(J) d\mu(x)$ the direct integral of the constant field $(\ell^2(J))_{x \in X}$ with respect to μ , which is isomorphic to $L^2(J \times X, d \times \mu)$, and denote its elements by $a = (a_x^j)_{x \in X, j \in J}$.

Let $(g^j)_{j \in J}$ be a fibered Bessel sequence with upper Bessel bound C > 0.

Fibered analysis and synthesis operator

• The analysis operator $C_x \colon \mathcal{H}_x \to \ell^2(J)$ is given by

$$\mathcal{C}_{x}f = (\langle f, g_{x}^{j} \rangle)_{j \in J}, \quad f \in \mathcal{H}_{x},$$

for μ -almost every $x \in X$. These define a μ -essentially bounded field of operators from $(\mathcal{C}_x)_{x \in X}$ to the constant field $(\ell^2(J))_{x \in X}$. The corresponding decomposable operator $\mathcal{C} \colon \mathcal{H} \to \mathcal{H}'$, which we call the *fibered analysis operator*, satisfies $\|\mathcal{C}\|^2 \leq C$.

• The synthesis operators $\mathcal{D}_x = \mathcal{C}_x^*$ given by

$$\mathcal{D}_x a = \sum_{j \in J} a^j g^j_x, \quad a \in \ell^2(J),$$

for μ -almost every $x \in X$ also define a μ -essentially bounded field of operators with associated *fibered synthesis operator* $\mathcal{D} \colon \mathcal{H}' \to \mathcal{H}$.

NTNU | Norwegian University of Science and Technology

Fibered frame / Gramian operator

The *fibered frame operator* (resp. *fibered Gramian operator*) of a sequence $(g^j)_{j \in J}$ in \mathcal{H} is given by $\mathcal{S} = \mathcal{C}^*\mathcal{C} \in \mathcal{B}(\mathcal{H})$ (resp. $\mathcal{G} = \mathcal{D}^*\mathcal{D} \in \mathcal{B}(\mathcal{H}')$) where \mathcal{C} and \mathcal{D} denote the associated analysis and synthesis operators, respectively.

Basic observation

Let $(g^j)_j$ be a sequence in \mathcal{H} . Then the following hold:

1. $(g^j)_{j \in J}$ is a fibered frame for \mathcal{H} with bounds c, C > 0 if and only if $_{\mathcal{B}(\mathcal{H})}(\mathcal{S}) \subseteq [c, C]$, that is,

$$c\|f\|^{2} \leq \int_{X} \sum_{j \in J} |\langle f_{x}, g_{x}^{j} \rangle|^{2} d\mu(x) \leq C\|f\|^{2} \quad \text{for all } f \in \mathcal{H}.$$

$$(1)$$

2. $(g^j)_{j \in J}$ is a fibered Riesz sequence for \mathcal{H} with bounds c, C > 0 if and only if the associated fibered Gramian operator satisfies $_{\mathcal{B}(\mathcal{H})}(\mathcal{G}) \subseteq [c, C]$, that is,

$$c\|\mathbf{a}\|_{2}^{2} \leq \int_{X} \left\|\sum_{j \in J} a_{x}^{j} \mathbf{g}_{x}^{j}\right\|^{2} d\mu(x) \leq C\|\mathbf{a}\|_{2}^{2} \quad \text{for all } \mathbf{a} \in L^{2}(J \times X, c \times \mu).$$

$$(2)$$

Like for ordinary frames, it can also be verified that a sequence $(g^j)_{j \in J}$ in \mathcal{H} is a fibered frame for $\mathcal{H} = \int_X \mathcal{H}_x d\mu(x)$ if and only if there exists another sequence $(h^j)_{j \in J}$ in \mathcal{H} such that for μ -almost every $x \in X$ we have that

$$\langle f, f' \rangle = \sum_{j \in J} \langle f, g_x^j \rangle \overline{\langle f', h_x^j \rangle}, \qquad f, f' \in \mathcal{H}.$$
 (3)

We call $(h^i)_j$ a *fibered dual frame* to $(e^j)_j$. Similarly, $(g^j)_j$ is a Riesz sequence if and only if it admits a *fibered biorthogonal sequence*, that is, a sequence $(h^i)_j$ that satisfies

$$\langle g_x^j, h_x^{j'} \rangle = \delta_{j,j'}$$
 for μ -almost every $x \in X$. (4)

- Examples

Proposition

Let $g \in L^2(G)$. Then the following hold:

1. The family $(L_{\lambda}g)_{\lambda \in \Lambda}$ is a fibered frame for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)$ with bounds c, C > 0 if

$$c\|a\|^2 \leq \sum_{\lambda \in \Lambda} \Big| \sum_{\gamma \in \Gamma} a^{\gamma} \overline{g(\lambda^{-1}x\gamma)} \Big|^2 \leq C\|a\|^2 \quad \text{for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)$$

holds for μ -almost every $x\Gamma \in G/\Gamma$.

2. The family $(L_{\lambda}g)_{\lambda \in \Lambda}$ is a fibered Riesz sequence for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)$ with bounds c, C > 0 if

$$\|c\|\|a\|^2 \leq \sum_{\gamma \in \Gamma} \Big|\sum_{\lambda \in \Lambda} a^{\gamma} g(\lambda^{-1} x \gamma)\Big|^2 \leq C \|a\|^2 \quad \text{for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)$$

holds for μ -almost every $x\Gamma \in G/\Gamma$.

Proposition – continued

1. The family $(R_{\gamma}g)_{\gamma\in\Gamma}$ is a fibered frame for $L^2(G) \cong \int_{\Lambda\setminus G} \ell^2(\Lambda x) d\nu(x\Lambda)$ with bounds c, C > 0 if

$$c\|b\|^2 \leq \sum_{\gamma \in \Gamma} \Big|\sum_{\lambda \in \Lambda} b^\lambda \overline{g(\lambda x \gamma)}\Big|^2 \leq C\|b\|^2 \quad ext{for all } b \in \ell^2(\Lambda)$$

holds for ν -almost every $\Lambda x \in \Lambda \setminus G$.

2. The sequence $(R_{\gamma}g)_{\gamma\in\Gamma}$ is a fibered Riesz sequence for $L^2(G) \cong \int_{\Lambda\setminus G} \ell^2(\Lambda x) d\nu(x\Lambda)$ with bounds c, C > 0 if and only if

$$\|c\|\|^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} b^{\lambda} g(\lambda x \gamma)\Big|^2 \leq C \|b\|^2 \quad \text{for all } b \in \ell^2(\Lambda)$$

holds for ν -almost every $\Lambda x \in \Lambda \setminus G$.

We denote the left translation operator by $(L_{\lambda}f)(x) = f(\lambda^{-1}x)$ and the right translation operator $(R_{\gamma}f)(x) = f(x\gamma)$ for $\lambda \in \Lambda$ and $\gamma \in \Gamma$.

Duality theorem

Let $g \in L^2(G)$. The following are equivalent:

1. The family $(L_{\lambda}g)_{\lambda \in \Lambda}$ is a fibered frame for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)$ with bounds c, C > 0, that is,

$$c\|a\|^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} a^{\gamma} \overline{g(\lambda^{-1}x\gamma)}\Big|^2 \leq C\|a\|^2 \quad \text{for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)$$

2. The family $(R_{\gamma g})_{\gamma \in \Gamma}$ is a fibered Riesz sequence for $L^2(G) \cong \int_{\Lambda \setminus G} \ell^2(\Lambda x) d\nu(\Lambda x)$ with bounds c, C > 0, that is,

$$c\|b\|^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} b^\lambda g(\lambda x \gamma)\Big|^2 \leq C\|b\|^2 \quad ext{ for all } b \in \ell^2(\Lambda).$$

Theorem

Let $g, h \in L^2(G)$. Then the following are equivalent:

1. $(L_{\lambda}g)_{\lambda \in \Lambda}$ and $(L_{\lambda}h)_{\lambda \in \Lambda}$ are fibered dual frames for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)$, that is,

$$\langle f, f' \rangle = \int_{G/\Lambda} \sum_{\lambda \in \Lambda} \sum_{\gamma, \gamma' \in \Gamma} f(x\gamma) \overline{g(\lambda^{-1}x\gamma)} f(x\gamma') h(\lambda^{-1}x\gamma') d\mu(x\Gamma), \qquad f, f' \in L^2(G).$$

2. $(R_{\gamma}g)_{\gamma\in\Gamma}$ and $(R_{\gamma}h)_{\gamma\in\Gamma}$ are fibered biorthogonal systems for $L^2(G) \cong \int_{\Lambda\setminus G} \ell^2(\Lambda x) d\nu(\Lambda x)$, that is,

$$\sum_{\lambda \in \Lambda} \overline{f(\lambda x)} g(\lambda x \gamma) = \delta_{\gamma, e}, \qquad ext{for all } \gamma \in \mathsf{\Gamma} ext{ and } \mu ext{-almost every } x \in X.$$

Suitable class of Lie groups

Denote by \mathcal{R} the class of Lie groups for which their radical (i.e., largest, connected, normal, solvable subgroup) R such that G/R contains no nontrivial, connected, compact, normal subgroups. We write $G \in \mathcal{R}$ to indicate that G belongs to this class.

Density theorem

For $G \in \mathcal{R}$ we have:

▶ If $(L_{\lambda}g)_{\lambda \in \Lambda}$ is a fibered frame for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)$, then

 $\operatorname{covol}(\Gamma) \leq \operatorname{covol}(\Lambda).$

▶ If $(R_{\gamma}g)_{\gamma\in\Gamma}$ is a fibered Riesz basis for $L^2(G) \cong \int_{\Lambda\setminus G} \ell^2(\Lambda x) d\nu(\Lambda x)$, then

 $\operatorname{covol}(\Lambda) \leq \operatorname{covol}(\Gamma).$

Rieffel computed in 1981 the center-valued von Neumann dimensions and his results imply these density theorems for frames and Riesz bases for our direct integrals.

Recall that for $L^2(\Lambda \times G/\Gamma)$ the space $\Lambda \times G/\Gamma$ is equipped with the product measure $d \times \mu$ where d denotes the counting measure on Λ , and similarly for $L^2(\Gamma \times \Lambda \setminus G)$. Note that on $C_c(\Lambda \times G/\Gamma)$ (resp. $C_c(\Gamma \times \Lambda \setminus G)$ of $L^2(\Gamma \times \Lambda \setminus G)$) we may define the representation π (resp. ρ) induced by these two actions as follows:

$$(\pi(a)f)(x) = \sum_{\lambda \in \Lambda} a(\lambda, x\Gamma)f(\lambda^{-1}x),$$

$$(\rho(b)f)(x) = \sum_{\gamma \in \Gamma} b(\gamma, \Lambda x)f(x\gamma),$$
(6)

for
$$a \in \ell^1(\Lambda, G/\Gamma)$$
 and $b \in \ell^1(\Gamma, \Lambda \backslash G)$.

Observation

The fibered synthesis operator \mathcal{D}_g of $(L_{\lambda}g)_{\lambda \in \Lambda}$ is given by

$$(D_g a)(x) = \sum_{\lambda \in \Lambda} a(\lambda, x\Gamma)g(\lambda^{-1}x), \qquad a \in C_c(\Lambda \times G/\Gamma)$$

These two actions allow the definition of noncommutative measure spaces:

Crossed product von Neumann algebras

We briefly define the crossed product algebras associated to the group actions:

- (i) Left action of the lattice Λ on the space G/Γ by left translations, i.e., $\lambda \cdot (x\Gamma) = \lambda x\Gamma$ for $\lambda \in \Lambda$ and $x \in G$.
- (ii) Right action of Γ on the space $\Lambda \setminus G$ by right translations, i.e. $(\Lambda x) \cdot \gamma = \Lambda x \gamma$ for $x \in G$ and $\gamma \in \Gamma$.

(iii) For $\lambda \in \Lambda$ and $g \in L^{\infty}(G/\Gamma)$ we define unitary operators u_{λ} and m_g on $L^2(\Lambda \times G/\Gamma)$ by

 $(u_{\lambda}\xi)(\lambda',x\Gamma) = \xi(\lambda^{-1}\lambda',x\Gamma), \qquad (m_{g}\xi)(\lambda,x\Gamma) = g(\lambda x\Gamma)\xi(\lambda,x\Gamma), \quad \xi \in L^{2}(\Lambda \times G/\Gamma).$

Crossed products-continued

(iv) We define unitary operators v_{γ} for $\gamma \in \Gamma$ and n_h for $h \in L^{\infty}(G/\Gamma)$ on $L^2(\Gamma \times \Lambda \backslash G)$ by

 $(v_{\gamma}\xi)(\gamma',\Lambda x) = \xi(\gamma'\gamma,x\Gamma),$ $(n_{h}\xi)(\gamma,\Lambda x) = h(\Lambda x\gamma)\xi(\gamma,\Lambda x), \quad \xi \in L^{2}(\Gamma \times \Lambda \setminus G).$

(v) The crossed product $M = L^{\infty}(G/\Gamma) \rtimes \Lambda$ is defined to be the von Neumann algebra on $L^{2}(\Lambda \times G/\Gamma)$ generated by the operators U_{λ} and m_{g} for $\lambda \in \Lambda$ and $g \in L^{\infty}(G/\Gamma)$. Similarly, the crossed product $N = L^{\infty}(\Lambda \backslash G) \rtimes \Gamma$ is the von Neumann algebra generated by the operators v_{γ} and n_{h} for $\gamma \in \Gamma$ and $h \in L^{\infty}(\Lambda \backslash G)$.

Both of these von Neumann algebras come equipped with faithful normal traces $\tau: M \to \mathbb{C}$ and $\kappa: N \to \mathbb{C}$ determined by μ and ν , respectively.

$$\begin{aligned} \tau(u_{\lambda}m_g) &= \delta_{\lambda,e} \int_{G/\Gamma} g d\mu, \quad \lambda \in \Lambda, \ g \in L^{\infty}(G/\Gamma), \\ \kappa(v_{\gamma}n_h) &= \delta_{\gamma,e} \int_{\Lambda \setminus G} h d\nu, \quad \gamma \in \Gamma, \ h \in L^{\infty}(\Lambda \setminus G). \end{aligned}$$

In short, these are "nice" noncommutative measure spaces.

- Back to Gabor frames

Partial Fourier transform

Let *G* be a locally compact abelian group. Hence, we may associate to the lattice Γ the dual lattice in \hat{G} given by

$$\Gamma^{\perp} = \{ \omega \in \widehat{G} : \omega|_{\Gamma} = 1 \}.$$

There is a natural isomorphism $\widehat{G/\Gamma} \cong \Gamma^{\perp}$, so by performing a partial Fourier transform to elements of $\ell^1(\Lambda \times \Gamma^{\perp})$ in the first argument we obtain elements of $\ell^1(\Lambda, G/\Gamma)$.

Denote this map by $\mathcal{F} \colon \ell^1(\Lambda \times \Gamma^{\perp}) \to \ell^1(\Lambda, G/\Gamma)$, which we define using the convention

$$\mathcal{F}(a)(\lambda,x\Gamma) = \sum_{ au \in \Gamma^{\perp}} a(\lambda, au) au(x), \qquad a \in \ell^1(\Lambda,\Gamma^{\perp}).$$

Ron-Shen matrix characterization

Let $g \in L^2(G)$. Then the following are equivalent:

- **1.** $(\pi(z)g)_{z \in \Lambda \times \Gamma}$ is a Gabor frame with bounds c, C > 0.
- **2.** The family $(T_{\lambda g})_{\lambda \in \Lambda}$ is a fibered frame for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)$ with bounds c, C > 0, that is,

$$c\|a\|^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} a^{\gamma} \overline{g(x + \lambda^{-1} + \gamma)}\Big|^2 \leq C\|a\|^2 \quad \text{for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)$$

Shift-invariant spaces

We associate with our left and right actions by the lattices Λ and Γ the shift-invariant spaces V_{Λ} and V_{Γ} :

$$egin{aligned} &V_{\Lambda}=\{f\in L^2(G):\,f=\sum_{\lambda\in\Lambda}c_{\lambda}L_{\lambda}g,\quad c\in\ell^2(\Lambda)\}\ &V_{\Gamma}=\{f\in L^2(G):\,f=\sum_{\gamma\in\Gamma}c_{\gamma}R_{\gamma}g,\quad c\in\ell^2(\Gamma)\} \end{aligned}$$

Then the duality result may be rephrased as follows: $x + \Gamma$ is a sampling set for V_{Λ} if and only if $x + \Lambda$ is a set of interpolation for V_{Γ} .

Thank you for your attention

NTNU | Norwegian University of Science and Technology