O NTNU | Norwegian University of

DUALITY THEOREMS FOR SHIFT-INVARIANT SYSTEMS AND GREEN'S IMPRIMITIVITY THEOREM

Franz Luef (joint work Ulrik Enstad) Applied Matrix Positivity II ICMS, Bayes Centre, Edinburgh

Theorem

The following are equivalent:

- (i) $\{\pi(\alpha k, \beta l)g : k, l \in \mathbb{Z}\}$ is a Gabor frame for $L^2(\mathbb{R})$.
- **(ii)** There exist $A, B > 0$ such that the spectrum of the Ron-Shen matrix $G(x) = (\sum_{j\in\mathbb{Z}} g(x + \alpha j - \frac{k}{\beta})\overline{g}(x + \alpha j - \frac{l}{\beta}))$ is contained in [A, B].
- **(iii)** There exist $A, B > 0$ such that

$$
A||c||_2^2 \leq \sum_j |\sum_k g(x+\alpha j-\frac{k}{\beta})c_k|^2 \leq B||c||_2^2, \qquad \text{a.a. } x \in \mathbb{R}, c \in \ell^2(\mathbb{Z}).
$$

Remark

(iii) says that $x + \alpha \mathbb{Z}$ is a set of sampling for the shift-invariant space $V_{\tfrac{1}{\beta}} = \{f \in L^2(\mathbb{R}): \, f = \sum_{k \in \mathbb{Z}} c_k g(\cdot - \tfrac{k}{\beta})\}$ with uniform constants for all $x \in \mathbb{R}.$

Main goal

Developing a better understanding of the characterization of Gabor frames in terms of Ron-Shen matrices.

- Periodization trick – extension

Periodization trick

$$
\int_{\mathbb{R}} f(x) dx = \int_0^{\alpha} \sum_{k \in \mathbb{Z}^d} f(x + \alpha k) dx
$$

Use the partition of R into translates of the interval [0, α), i.e. $\cup_{k\in\mathbb{Z}^d}(\alpha k + [0,\alpha))$ and $(\alpha k + [0, \alpha)) \cap (\alpha l + [0, \alpha)) = \emptyset$ for $k \neq l$.

Consequence: **Poisson summation formula:**

$$
\sum_{k\in\mathbb{Z}}f(x+\alpha k)=\alpha^{-1}\sum_{k\in\mathbb{Z}}\widehat{f}(\frac{k}{\alpha})e^{2\pi ikx/\alpha},
$$

for "nice functions", e.g. in Feichtinger's algebra or Schwartz class.

Setting

- \triangleright second-countable locally compact group G with identity element e
- \blacktriangleright Γ lattice in G, i.e., a discrete subgroup such that there exists a finite G-invariant Borel probability measure μ on the left G-space G/Γ of left cosets of Γ in G.

Weil's formula

$$
\int_G f(x)dx = \int_{G/\Gamma} \sum_{\gamma \in \Gamma} f(x\gamma) d\mu(x\Gamma), \qquad f \in C_c(G).
$$

Key observation

Weil's formula implies the direct integral decompositions of $L^2(G)$:

$$
L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)
$$

The identification of $L^2(G)$ with the direct integral is given by mapping $f\in L^2(G)$ to the section of $(\ell^2(x\Gamma))_{x\Gamma\in G/\Gamma}$ given by the family of restrictions $(f|_{x\Gamma})_{x\Gamma\in G/\Gamma}$.

- Direct integrals of Hilbert spaces

Field of Hilbert spaces

A *field* of Hilbert spaces over X is a collection $(\mathcal{H}_x)_{x\in\mathcal{X}}$ of Hilbert spaces indexed by X. We write $\langle \cdot, \cdot \rangle_{x}$ and $\|\cdot\|_{x}$ for the inner product and norm of \mathcal{H}_{x} , respectively.

An element f of the product $\prod_{\mathsf{x}\in\mathsf{X}}\mathcal{H}_\mathsf{x}$ is called a section and we denote the projection of f onto \mathcal{H}_x by f_x .

Measurable fields

Let X be a measurable space. The field $(\mathcal{H}_x)_x$ is called *measurable* when it comes equipped with a linear subspace V of $\prod_{\times \in X}\mathcal{H}_\times$ such that the following hold: There exists a countable family $(\eta^i)_{i=1}^\infty$ in V such that

1. $\{\eta_x^i : i \in \mathbb{N}\}$ is dense in \mathcal{H}_x for every $x \in X$, and

2. an element $f \in \prod_{x\in X}\mathcal{H}_x$ is in V if and only if $x\mapsto \langle f_x,\eta_x^i\rangle_x$ is measurable for every $i\in \mathbb{N}.$ We call elements of V *measurable sections*.

Direct integral

Let μ be a measure on X. A measurable section f of $(\mathcal{H}_x)_{x\in X}$ is called *integrable* with respect to μ if $\int_X ||f_x||_x^2 d\mu(x) < \infty$.

The *direct integral* of $(\mathcal{H}_x)_{x\in X}$ with respect to μ , denoted by $\int_X \mathcal{H}_x d\mu(x)$, is the set of equivalence classes of integrable sections under equality μ -almost everywhere on X. It is a Hilbert space with respect to the inner product

$$
\langle f,g\rangle=\int_X\langle f_x,g_x\rangle_x d\mu(x),\qquad f,g\in\int_X\mathcal{H}_xd\mu(x).
$$

We set $\mathcal{H} = \int_X \mathcal{H}_x d\mu(x)$.

Operators for direct integrals

Let $(\mathcal{H}_x)_{x\in X}$ and $(\mathcal{K}_x)_{x\in X}$ be two measurable fields of Hilbert spaces over X.

- ▶ A collection $T = (T_x)_{x \in X}$ of bounded linear maps $T_x: \mathcal{H}_x \to \mathcal{K}_x$ defines a map $\mathcal{T}: \prod_{x \in X} \mathcal{H}_x \to \prod_{x \in X} \mathcal{K}_x$ given by $(\mathcal{T}f)(x) = \mathcal{T}(f(x)).$
- ▶ We call $(T_x)_x$ a *measurable field* if the associated map T maps measurable sections of $(\mathcal{H}_x)_x$ to measurable sections of $(\mathcal{K}_x)_x$.
- **►** If μ is a measure on X, then $(T_x)_x$ is called μ -essentially bounded if $\kappa \in X||T_x||_{\mathcal{H}_x \to \mathcal{K}_x} < \infty$.

In that case $\mathcal T$ defines a bounded linear map from $\int_X \mathcal H_\times d\mu(x)$ to $\int_X \mathcal K_\times d\mu(x)$. Bounded linear operators between direct integrals of this form are called *decomposable*.

▶ Furthermore, a decomposable operator $T \in \mathcal{B}(\mathcal{H})$ is positive if and only $T = S^*S$ for some operator $S \in \mathcal{B}(\mathcal{H})$ and thus S is decomposable too. Hence $\mathcal{T}_x = S_x^*S_x$ for μ -almost every $x \in X$, which means that μ -almost every T_x is positive.

Lemma

Let $T \in \mathcal{B}(\mathcal{H})$ be a decomposable operator. Then the following hold:

- **1.** T is self-adjoint if and only if T_x is self-adjoint for μ -almost every $x \in X$.
- **2.** T is positive if and only if T_x is positive for μ -almost every $x \in X$.

Let us develop the basic notions of frame theory for direct integrals:

Fibered frames and fibered Riesz bases

A sequence $(g^j)_{j\in J}\in {\cal H}\cong \int_X\mathcal{H}_xd\mu(x)$ is called a *fibered frame* (resp. Riesz sequence) with bounds $c,$ $\mathcal{C}>0$ if $(g_{\mathsf{x}}^j)_{j\in J}$ is a frame (resp. Riesz sequence) for \mathcal{H}_x with bounds $c,$ $\mathcal{C}>0$ for μ -almost every $x \in X$.

If an upper frame bound in the definition of a fibered frame exists but not necessarily a lower frame bound, we call (*g^j)_{J∈J} a fibered Bessel sequence*.

Let d denote the counting measure on *J*. We denote by $\mathcal{H}'=\int_X \ell^2(\mathsf{J})d\mu(x)$ the direct integral of the constant field $(\ell^2(J))_{x\in X}$ with respect to μ , which is isomorphic to $L^2(J\times X, d\times \mu)$, and denote its elements by $a=(a_{x}^{j})_{x\in X,j\in J}.$

Let $(g^{j})_{j\in J}$ be a fibered Bessel sequence with upper Bessel bound ${\cal C}>0.$

Fibered analysis and synthesis operator

▶ The *analysis operator* C_x : $\mathcal{H}_x \to \ell^2(J)$ is given by

$$
\mathcal{C}_x f = (\langle f, g_x^j \rangle)_{j \in J}, \quad f \in \mathcal{H}_x,
$$

for μ -almost every $x \in X$. These define a μ -essentially bounded field of operators from $(\mathcal{C}_x)_{x\in X}$ to the constant field $(\ell^2(\mathcal{J}))_{x\in X}.$ The corresponding decomposable operator $\mathcal{C}\colon\mathcal{H}\to\mathcal{H}'$, which we call the *fibered analysis operator*, satisfies $\|\mathcal{C}\|^2\leq\mathcal{C}.$

▶ The synthesis operators $\mathcal{D}_x = \mathcal{C}_x^*$ given by

$$
\mathcal{D}_x a = \sum_{j \in J} a^j g_x^j, \quad a \in \ell^2(J),
$$

for μ -almost every $x \in X$ also define a μ -essentially bounded field of operators with associated *fibered synthesis operator* $\mathcal{D}: \mathcal{H}' \to \mathcal{H}$.

Fibered frame / Gramian operator

The *fibered frame operator* (resp. *fibered Gramian operator*) of a sequence ($g^{j})_{j\in J}$ in ${\cal H}$ is given by $\mathcal{S}=\mathcal{C}^*\mathcal{C}\in\mathcal{B}(\mathcal{H})$ (resp. $\mathcal{G}=\mathcal{D}^*\mathcal{D}\in\mathcal{B}(\mathcal{H}')$) where \mathcal{C} and \mathcal{D} denote the associated analysis and synthesis operators, respectively.

Basic observation

Let $(g^{j})_{j}$ be a sequence in ${\mathcal H}.$ Then the following hold:

1. $(g^{j})_{j\in J}$ is a fibered frame for $\mathcal H$ with bounds $c,C>0$ if and only if $_{\mathcal B(\mathcal H)}(\mathcal S)\subseteq [c,C]$, that is,

$$
c||f||^2 \leq \int_X \sum_{j\in J} |\langle f_x, g_x^j\rangle|^2 d\mu(x) \leq C||f||^2 \quad \text{for all } f \in \mathcal{H}.
$$
 (1)

2. $(g^{j})_{j\in J}$ is a fibered Riesz sequence for $\mathcal H$ with bounds $c, C > 0$ if and only if the associated fibered Gramian operator satisfies $_{\mathcal{B(H)}}(\mathcal{G}) \subseteq [c, C]$, that is,

$$
c||a||_2^2 \leq \int_X \Big\| \sum_{j \in J} a_x^j g_x^j \Big\|^2 d\mu(x) \leq C ||a||_2^2 \quad \text{for all } a \in L^2(J \times X, c \times \mu).
$$
 (2)

Like for ordinary frames, it can also be verified that a sequence $(g^j)_{j\in J}$ in ${\mathcal H}$ is a fibered frame for $\mathcal{H}=\int_X\mathcal{H}_xd\mu(x)$ if and only if there exists another sequence $(h^j)_{j\in J}$ in \mathcal{H} such that for μ -almost every $x \in X$ we have that

$$
\langle f, f' \rangle = \sum_{j \in J} \langle f, g_x^j \rangle \overline{\langle f', h_x^j \rangle}, \qquad f, f' \in \mathcal{H}.
$$
 (3)

We call $(\vec{h'})_j$ a *fibered dual frame* to $(e^j)_j$. Similarly, $(g^j)_j$ is a Riesz sequence if and only if it admits a *fibered biorthogonal sequence*, that is, a sequence $(\vec{h'})_j$ that satisfies

$$
\langle g_x^j, h_x^{j'} \rangle = \delta_{j,j'} \qquad \text{for } \mu\text{-almost every } x \in X. \tag{4}
$$

- Examples

Proposition

Let $g \in L^2(G)$. Then the following hold:

1. The family $(L_\lambda g)_{\lambda\in\Lambda}$ is a fibered frame for $L^2(G)\cong \int_{G/\Gamma}\ell^2(x\Gamma)d\mu(x\Gamma)$ with bounds $c,C>0$ if

$$
c||a||^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} a^{\gamma} \overline{g(\lambda^{-1}x\gamma)}\Big|^2 \leq C||a||^2 \quad \text{ for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)
$$

holds for μ -almost every $x\Gamma \in G/\Gamma$.

2. The family $(L_\lambda g)_{\lambda\in\Lambda}$ is a fibered Riesz sequence for $L^2(G)\cong \int_{G/\Gamma}\ell^2(x\Gamma)d\mu(x\Gamma)$ with bounds $c, C > 0$ if

$$
c||a||^2 \leq \sum_{\gamma \in \Gamma} \left| \sum_{\lambda \in \Lambda} a^{\gamma} g(\lambda^{-1} x \gamma) \right|^2 \leq C||a||^2 \quad \text{ for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)
$$

holds for μ -almost every $x\Gamma \in G/\Gamma$.

Proposition – continued

1. The family $(R_\gamma g)_{\gamma \in \Gamma}$ is a fibered frame for $L^2(G) \cong \int_{\Lambda \setminus G} \ell^2(\Lambda x) d\nu(x\Lambda)$ with bounds $c, C > 0$ if

$$
c||b||^2 \leq \sum_{\gamma \in \Gamma} \Big|\sum_{\lambda \in \Lambda} b^{\lambda} \overline{g(\lambda x \gamma)}\Big|^2 \leq C||b||^2 \quad \text{ for all } b \in \ell^2(\Lambda)
$$

holds for ν -almost every $\Lambda x \in \Lambda \backslash G$.

2. The sequence $(R_\gamma g)_{\gamma\in\Gamma}$ is a fibered Riesz sequence for $L^2(G)\cong \int_{\Lambda\setminus G}\ell^2(\Lambda x)d\nu(x\Lambda)$ with bounds $c, C > 0$ if and only if

$$
c||b||^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} b^{\lambda} g(\lambda x \gamma)\Big|^2 \leq C||b||^2 \quad \text{ for all } b \in \ell^2(\Lambda)
$$

holds for ν -almost every $\Lambda x \in \Lambda \backslash G$.

We denote the left translation operator by $(L_\lambda f)(x)=f(\lambda^{-1}x)$ and the right translation operator $(R_{\gamma}f)(x) = f(x_{\gamma})$ for $\lambda \in \Lambda$ and $\gamma \in \Gamma$.

Duality theorem

- Let $g \in L^2(G).$ The following are equivalent:
	- **1.** The family $(L_\lambda g)_{\lambda \in \Lambda}$ is a fibered frame for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x \Gamma) d\mu(x \Gamma)$ with bounds $c, C > 0$, that is,

$$
c||a||^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} a^{\gamma} \overline{g(\lambda^{-1}x\gamma)}\Big|^2 \leq C||a||^2 \quad \text{ for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)
$$

2. The family $(R_\gamma g)_{\gamma \in \Gamma}$ is a fibered Riesz sequence for $L^2(G)\cong \int_{\Lambda\setminus G}\ell^2(\Lambda x)d\nu(\Lambda x)$ with bounds $c, C > 0$, that is,

$$
c||b||^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} b^{\lambda} g(\lambda x \gamma)\Big|^2 \leq C||b||^2 \quad \text{ for all } b \in \ell^2(\Lambda).
$$

Theorem

Let $g,h\in L^2(G).$ Then the following are equivalent:

1. $(L_\lambda g)_{\lambda \in \Lambda}$ and $(L_\lambda h)_{\lambda \in \Lambda}$ are fibered dual frames for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x\Gamma) d\mu(x\Gamma)$, that is,

$$
\langle f, f' \rangle = \int_{G/\Lambda} \sum_{\lambda \in \Lambda} \sum_{\gamma, \gamma' \in \Gamma} f(x\gamma) \overline{g(\lambda^{-1}x\gamma)} f(x\gamma') h(\lambda^{-1}x\gamma') d\mu(x\Gamma), \qquad f, f' \in L^2(G).
$$

2. $(R_\gamma g)_{\gamma \in \Gamma}$ and $(R_\gamma h)_{\gamma \in \Gamma}$ are fibered biorthogonal systems for $L^2(G) \cong \int_{\Lambda \setminus G} \ell^2(\Lambda x) d\nu(\Lambda x)$, that is,

$$
\sum_{\lambda \in \Lambda} \overline{f(\lambda x)} g(\lambda x \gamma) = \delta_{\gamma, e}, \quad \text{for all } \gamma \in \Gamma \text{ and } \mu\text{-almost every } x \in X.
$$

Suitable class of Lie groups

Denote by R the class of Lie groups for which their radical (i.e., largest, connected, normal, solvable subgroup) R such that G/R contains no nontrivial, connected, compact, normal subgroups. We write $G \in \mathcal{R}$ to indicate that G belongs to this class.

Density theorem

For $G \in \mathcal{R}$ we have:

► If $(L_\lambda g)_{\lambda \in \Lambda}$ is a fibered frame for $L^2(G) \cong \int_{G/\Gamma} \ell^2(x \Gamma) d\mu(x \Gamma)$, then

covol(Γ) ≤ covol(Λ).

► If $(R_\gamma g)_{\gamma \in \Gamma}$ is a fibered Riesz basis for $L^2(G) \cong \int_{\Lambda \setminus G} \ell^2(\Lambda x) d\nu(\Lambda x)$, then

covol(Λ) ≤ covol(Γ).

Rieffel computed in 1981 the center-valued von Neumann dimensions and his results imply these density theorems for frames and Riesz bases for our direct integrals.

Recall that for $\mathsf{L}^2(\Lambda\times G/\Gamma)$ the space $\Lambda\times G/\Gamma$ is equipped with the product measure $d\times \mu$ where d denotes the counting measure on Λ, and similarly for $L^2(\Gamma\times\Lambda\backslash G).$ Note that on $\mathcal{C}_c(\Lambda\times G/\Gamma)$ (resp. $\mathcal{C}_c(\Gamma\times\Lambda\backslash G)$ of $L^2(\Gamma\times\Lambda\backslash G)$) we may define the representation π (resp. ρ) induced by these two actions as follows:

$$
(\pi(a)f)(x) = \sum_{\lambda \in \Lambda} a(\lambda, x\Gamma) f(\lambda^{-1}x),
$$
\n
$$
(\rho(b)f)(x) = \sum_{\gamma \in \Gamma} b(\gamma, \Lambda x) f(x\gamma),
$$
\n(6)

for $a\in \ell^1(\Lambda, G/\Gamma)$ and $b\in \ell^1(\Gamma, \Lambda\backslash G).$

Observation

The fibered synthesis operator \mathcal{D}_{g} of $(L_{\lambda}g)_{\lambda\in\Lambda}$ is given by

$$
(D_g a)(x) = \sum_{\lambda \in \Lambda} a(\lambda, x\Gamma) g(\lambda^{-1}x), \qquad a \in C_c(\Lambda \times G/\Gamma).
$$

These two actions allow the definition of noncommutative measure spaces:

Crossed product von Neumann algebras

We briefly define the crossed product algebras associated to the group actions:

- **(i)** Left action of the lattice Λ on the space G/Γ by left translations, i.e., $\lambda \cdot (x\Gamma) = \lambda x\Gamma$ for $\lambda \in \Lambda$ and $x \in G$.
- **(ii)** Right action of Γ on the space $\Lambda \backslash G$ by right translations, i.e. $(\Lambda x) \cdot \gamma = \Lambda x \gamma$ for $x \in G$ and $γ ∈ Γ$.

(iii) For $\lambda \in \Lambda$ and $g \in L^\infty(G/\Gamma)$ we define unitary operators u_λ and m_g on $L^2(\Lambda \times G/\Gamma)$ by

 $(u_\lambda \xi)(\lambda', x\Gamma) = \xi(\lambda^{-1}\lambda', x\Gamma), \qquad (m_g \xi)(\lambda, x\Gamma) = g(\lambda x\Gamma)\xi(\lambda, x\Gamma), \quad \xi \in L^2(\Lambda \times G/\Gamma).$

Crossed products–continued

(iv) We define unitary operators v_γ for $\gamma\in\Gamma$ and n_h for $h\in L^\infty(G/\Gamma)$ on $L^2(\Gamma\times\Lambda\backslash G)$ by

 $(v_{\gamma} \xi)(\gamma', \Lambda x) = \xi(\gamma' \gamma, x\Gamma),$ $(n_h \xi)(\gamma, \Lambda x) = h(\Lambda x \gamma) \xi(\gamma, \Lambda x), \xi \in L^2(\Gamma \times \Lambda \backslash G).$

(v) The crossed product $M = L^{\infty}(G/\Gamma) \rtimes \Lambda$ is defined to be the von Neumann algebra on $L^2(\Lambda \times G/\Gamma)$ generated by the operators U_λ and m_g for $\lambda \in \Lambda$ and $g \in L^\infty(G/\Gamma)$. Similarly, the crossed product $N = L^{\infty}(\Lambda \backslash G) \rtimes \Gamma$ is the von Neumann algebra generated by the operators v_γ and n_h for $\gamma \in \Gamma$ and $h \in L^\infty(\Lambda \backslash G)$.

Both of these von Neumann algebras come equipped with faithful normal traces $\tau \colon M \to \mathbb{C}$ and $\kappa: N \to \mathbb{C}$ determined by μ and ν , respectively.

$$
\tau(u_{\lambda}m_{g})=\delta_{\lambda,e}\int_{G/\Gamma}gd\mu, \quad \lambda\in\Lambda, g\in L^{\infty}(G/\Gamma),
$$

$$
\kappa(v_{\gamma}n_{h})=\delta_{\gamma,e}\int_{\Lambda\setminus G}hd\nu, \quad \gamma\in\Gamma, h\in L^{\infty}(\Lambda\setminus G).
$$

In short, these are "nice" noncommutative measure spaces.

- Back to Gabor frames

Partial Fourier transform

Let G be a locally compact abelian group. Hence, we may associate to the lattice Γ the dual lattice in \widehat{G} given by

$$
\Gamma^{\perp} = \{ \omega \in \widehat{G} : \omega|_{\Gamma} = 1 \}.
$$

There is a natural isomorphism $\widehat{G/\Gamma} \cong \Gamma^{\perp}$, so by performing a partial Fourier transform to elements of $\ell^1(\Lambda\times\Gamma^\perp)$ in the first argument we obtain elements of $\ell^1(\Lambda,G/\Gamma).$

Denote this map by $\mathcal{F}\colon\ell^1(\Lambda\times\Gamma^\perp)\to\ell^1(\Lambda,\mathsf{G}/\Gamma)$, which we define using the convention

$$
\mathcal{F}(\mathsf{a})(\lambda,\mathsf{x}\Gamma)=\sum_{\tau\in\Gamma^{\perp}}\mathsf{a}(\lambda,\tau)\tau(\mathsf{x}),\qquad \mathsf{a}\in\ell^{1}(\Lambda,\Gamma^{\perp}).
$$

Ron-Shen matrix characterization

Let $g\in L^2(G).$ Then the following are equivalent:

- **1.** $(\pi(z)g)_{z \in \Lambda \times \Gamma}$ is a Gabor frame with bounds $c, C > 0$.
- **2.** The family $(T_\lambda g)_{\lambda\in\Lambda}$ is a fibered frame for $L^2(G)\cong \int_{G/\Gamma}\ell^2(x\Gamma)d\mu(x\Gamma)$ with bounds $c,C>0$, that is,

$$
c||a||^2 \leq \sum_{\lambda \in \Lambda} \Big|\sum_{\gamma \in \Gamma} a^{\gamma} \overline{g(x + \lambda^{-1} + \gamma)}\Big|^2 \leq C||a||^2 \quad \text{ for all } a = (a^{\gamma})_{\gamma} \in \ell^2(\Gamma)
$$

Shift-invariant spaces

We associate with our left and right actions by the lattices Λ and Γ the shift-invariant spaces V_{Λ} and V_r :

$$
V_{\Lambda} = \{ f \in L^{2}(G) : f = \sum_{\lambda \in \Lambda} c_{\lambda} L_{\lambda} g, \quad c \in \ell^{2}(\Lambda) \}
$$

$$
V_{\Gamma} = \{ f \in L^{2}(G) : f = \sum_{\gamma \in \Gamma} c_{\gamma} R_{\gamma} g, \quad c \in \ell^{2}(\Gamma) \}
$$

Then the duality result may be rephrased as follows: $x + \Gamma$ is a sampling set for V_{Λ} if and only if $x + \Lambda$ is a set of interpolation for V_{Γ} .

Thank you for your attention

O NTNU | Norwegian University of