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Theorem
The following are equivalent:
(i) {π(αk, βl)g : k, l ∈ Z} is a Gabor frame for L2(R).
(ii) There exist A,B > 0 such that the spectrum of the Ron-Shen matrix

G(x) = (
∑

j∈Z g(x + αj − k
β
)g(x + αj − l

β
)) is contained in [A,B].

(iii) There exist A,B > 0 such that

A∥c∥2
2 ≤

∑
j

|
∑
k

g(x + αj − k
β
)ck |2 ≤ B∥c∥2

2, a.a. x ∈ R, c ∈ ℓ2(Z).

Remark
(iii) says that x + αZ is a set of sampling for the shift-invariant space
V 1

β

= {f ∈ L2(R) : f =
∑

k∈Z ckg(· −
k
β
)} with uniform constants for all x ∈ R.

Main goal
Developing a better understanding of the characterization of Gabor frames in terms of
Ron-Shen matrices.
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- Periodization trick – extension

Periodization trick

∫
R
f (x) dx =

∫ α

0

∑
k∈Zd

f (x + αk) dx

Use the partition of R into translates of the interval [0, α), i.e. ∪k∈Zd (αk + [0, α)) and
(αk + [0, α)) ∩ (αl + [0, α)) = ∅ for k ̸= l .

Consequence: Poisson summation formula:∑
k∈Z

f (x + αk) = α−1
∑
k∈Z

f̂ ( k
α
)e2πikx/α,

for "nice functions", e.g. in Feichtinger’s algebra or Schwartz class.
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Setting
▶ second-countable locally compact group G with identity element e
▶ Γ lattice in G , i.e., a discrete subgroup such that there exists a finite G -invariant Borel

probability measure µ on the left G -space G/Γ of left cosets of Γ in G .

Weil’s formula

∫
G

f (x)dx =

∫
G/Γ

∑
γ∈Γ

f (xγ)dµ(xΓ), f ∈ Cc(G).

Key observation
Weil’s formula implies the direct integral decompositions of L2(G):

L2(G) ∼=
∫
G/Γ

ℓ2(xΓ)dµ(xΓ)

The identification of L2(G) with the direct integral is given by mapping f ∈ L2(G) to the section
of (ℓ2(xΓ))xΓ∈G/Γ given by the family of restrictions (f |xΓ)xΓ∈G/Γ.
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- Direct integrals of Hilbert spaces

Field of Hilbert spaces
A field of Hilbert spaces over X is a collection (Hx)x∈X of Hilbert spaces indexed by X . We write
⟨·, ·⟩x and ∥ · ∥x for the inner product and norm ofHx , respectively.

An element f of the product
∏

x∈X Hx is called a section and we denote the projection of f onto
Hx by fx .

Measurable fields
Let X be a measurable space. The field (Hx)x is calledmeasurable when it comes equipped with
a linear subspace V of

∏
x∈X Hx such that the following hold: There exists a countable family

(ηi )∞i=1 in V such that
1. {ηi

x : i ∈ N} is dense inHx for every x ∈ X , and
2. an element f ∈

∏
x∈X Hx is in V if and only if x 7→ ⟨fx , ηi

x⟩x is measurable for every i ∈ N.
We call elements of V measurable sections.
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Direct integral
Let µ be a measure on X . A measurable section f of (Hx)x∈X is called integrable with respect to
µ if

∫
X
∥fx∥2

xdµ(x) < ∞.

The direct integral of (Hx)x∈X with respect to µ, denoted by
∫
X
Hxdµ(x), is the set of equivalence

classes of integrable sections under equality µ-almost everywhere on X . It is a Hilbert space
with respect to the inner product

⟨f , g⟩ =
∫
X

⟨fx , gx⟩xdµ(x), f , g ∈
∫
X

Hxdµ(x).

We setH =
∫
X
Hxdµ(x).
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Operators for direct integrals
Let (Hx)x∈X and (Kx)x∈X be two measurable fields of Hilbert spaces over X .
▶ A collection T = (Tx)x∈X of bounded linear maps Tx : Hx → Kx defines a map

T :
∏

x∈X Hx →
∏

x∈X Kx given by (Tf )(x) = T (f (x)).
▶ We call (Tx)x ameasurable field if the associated map T maps measurable sections of (Hx)x

to measurable sections of (Kx)x .
▶ If µ is a measure on X , then (Tx)x is called µ-essentially bounded if x∈X∥Tx∥Hx→Kx < ∞.

In that case T defines a bounded linear map from
∫
X
Hxdµ(x) to

∫
X
Kxdµ(x). Bounded

linear operators between direct integrals of this form are called decomposable.
▶ Furthermore, a decomposable operator T ∈ B(H) is positive if and only T = S∗S for some

operator S ∈ B(H) and thus S is decomposable too. Hence Tx = S∗
x Sx for µ-almost every

x ∈ X , which means that µ-almost every Tx is positive.
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Lemma
Let T ∈ B(H) be a decomposable operator. Then the following hold:
1. T is self-adjoint if and only if Tx is self-adjoint for µ-almost every x ∈ X .
2. T is positive if and only if Tx is positive for µ-almost every x ∈ X .

Let us develop the basic notions of frame theory for direct integrals:

Fibered frames and fibered Riesz bases
A sequence (g j)j∈J ∈ H ∼=

∫
X
Hxdµ(x) is called a fibered frame (resp. Riesz sequence) with

bounds c,C > 0 if (g j
x)j∈J is a frame (resp. Riesz sequence) forHx with bounds c,C > 0 for

µ-almost every x ∈ X .

If an upper frame bound in the definition of a fibered frame exists but not necessarily a lower
frame bound, we call (g j)j∈J a fibered Bessel sequence.
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Let d denote the counting measure on J . We denote byH′ =
∫
X
ℓ2(J)dµ(x) the direct integral of

the constant field (ℓ2(J))x∈X with respect to µ, which is isomorphic to L2(J × X , d × µ), and
denote its elements by a = (ajx)x∈X ,j∈J .

Let (g j)j∈J be a fibered Bessel sequence with upper Bessel bound C > 0.
Fibered analysis and synthesis operator
▶ The analysis operator Cx : Hx → ℓ2(J) is given by

Cx f = (⟨f , g j
x⟩)j∈J , f ∈ Hx ,

for µ-almost every x ∈ X . These define a µ-essentially bounded field of operators from
(Cx)x∈X to the constant field (ℓ2(J))x∈X . The corresponding decomposable operator
C : H → H′, which we call the fibered analysis operator, satisfies ∥C∥2 ≤ C .

▶ The synthesis operators Dx = C∗
x given by

Dxa =
∑
j∈J

ajg j
x , a ∈ ℓ2(J),

for µ-almost every x ∈ X also define a µ-essentially bounded field of operators with
associated fibered synthesis operator D : H′ → H.
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Fibered frame / Gramian operator
The fibered frame operator (resp. fibered Gramian operator) of a sequence (g j)j∈J inH is given by
S = C∗C ∈ B(H) (resp. G = D∗D ∈ B(H′) ) where C and D denote the associated analysis and
synthesis operators, respectively.

Basic observation
Let (g j)j be a sequence inH. Then the following hold:
1. (g j)j∈J is a fibered frame forH with bounds c,C > 0 if and only if B(H)(S) ⊆ [c,C ], that is,

c∥f ∥2 ≤
∫
X

∑
j∈J

|⟨fx , g j
x⟩|2dµ(x) ≤ C∥f ∥2 for all f ∈ H. (1)

2. (g j)j∈J is a fibered Riesz sequence forH with bounds c,C > 0 if and only if the associated
fibered Gramian operator satisfies B(H)(G) ⊆ [c,C ], that is,

c∥a∥2
2 ≤

∫
X

∥∥∥∑
j∈J

ajxg
j
x

∥∥∥2
dµ(x) ≤ C∥a∥2

2 for all a ∈ L2(J × X , c × µ). (2)
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Like for ordinary frames, it can also be verified that a sequence (g j)j∈J inH is a fibered frame
forH =

∫
X
Hxdµ(x) if and only if there exists another sequence (hj)j∈J inH such that for

µ-almost every x ∈ X we have that

⟨f , f ′⟩ =
∑
j∈J

⟨f , g j
x⟩⟨f ′, hj

x⟩, f , f ′ ∈ H. (3)

We call (hj)j a fibered dual frame to (e j)j . Similarly, (g j)j is a Riesz sequence if and only if it
admits a fibered biorthogonal sequence, that is, a sequence (hj)j that satisfies

⟨g j
x , h

j′
x ⟩ = δj,j′ for µ-almost every x ∈ X . (4)
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- Examples

Proposition
Let g ∈ L2(G). Then the following hold:
1. The family (Lλg)λ∈Λ is a fibered frame for L2(G) ∼=

∫
G/Γ

ℓ2(xΓ)dµ(xΓ) with bounds c,C > 0 if

c∥a∥2 ≤
∑
λ∈Λ

∣∣∣∑
γ∈Γ

aγg(λ−1xγ)
∣∣∣2 ≤ C∥a∥2 for all a = (aγ)γ ∈ ℓ2(Γ)

holds for µ-almost every xΓ ∈ G/Γ.
2. The family (Lλg)λ∈Λ is a fibered Riesz sequence for L2(G) ∼=

∫
G/Γ

ℓ2(xΓ)dµ(xΓ) with bounds
c,C > 0 if

c∥a∥2 ≤
∑
γ∈Γ

∣∣∣∑
λ∈Λ

aγg(λ−1xγ)
∣∣∣2 ≤ C∥a∥2 for all a = (aγ)γ ∈ ℓ2(Γ)

holds for µ-almost every xΓ ∈ G/Γ.
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Proposition – continued
1. The family (Rγg)γ∈Γ is a fibered frame for L2(G) ∼=

∫
Λ\G ℓ2(Λx)dν(xΛ) with bounds c,C > 0 if

c∥b∥2 ≤
∑
γ∈Γ

∣∣∣∑
λ∈Λ

bλg(λxγ)
∣∣∣2 ≤ C∥b∥2 for all b ∈ ℓ2(Λ)

holds for ν-almost every Λx ∈ Λ\G .
2. The sequence (Rγg)γ∈Γ is a fibered Riesz sequence for L2(G) ∼=

∫
Λ\G ℓ2(Λx)dν(xΛ) with

bounds c,C > 0 if and only if

c∥b∥2 ≤
∑
λ∈Λ

∣∣∣∑
γ∈Γ

bλg(λxγ)
∣∣∣2 ≤ C∥b∥2 for all b ∈ ℓ2(Λ)

holds for ν-almost every Λx ∈ Λ\G .

We denote the left translation operator by (Lλf )(x) = f (λ−1x) and the right translation
operator (Rγ f )(x) = f (xγ) for λ ∈ Λ and γ ∈ Γ.
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Duality theorem
Let g ∈ L2(G). The following are equivalent:
1. The family (Lλg)λ∈Λ is a fibered frame for L2(G) ∼=

∫
G/Γ

ℓ2(xΓ)dµ(xΓ) with bounds c,C > 0,
that is,

c∥a∥2 ≤
∑
λ∈Λ

∣∣∣∑
γ∈Γ

aγg(λ−1xγ)
∣∣∣2 ≤ C∥a∥2 for all a = (aγ)γ ∈ ℓ2(Γ)

2. The family (Rγg)γ∈Γ is a fibered Riesz sequence for L2(G) ∼=
∫
Λ\G ℓ2(Λx)dν(Λx) with bounds

c,C > 0, that is,

c∥b∥2 ≤
∑
λ∈Λ

∣∣∣∑
γ∈Γ

bλg(λxγ)
∣∣∣2 ≤ C∥b∥2 for all b ∈ ℓ2(Λ).
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Theorem
Let g , h ∈ L2(G). Then the following are equivalent:
1. (Lλg)λ∈Λ and (Lλh)λ∈Λ are fibered dual frames for L2(G) ∼=

∫
G/Γ

ℓ2(xΓ)dµ(xΓ), that is,

⟨f , f ′⟩ =
∫
G/Λ

∑
λ∈Λ

∑
γ,γ′∈Γ

f (xγ)g(λ−1xγ)f (xγ′)h(λ−1xγ′)dµ(xΓ), f , f ′ ∈ L2(G).

2. (Rγg)γ∈Γ and (Rγh)γ∈Γ are fibered biorthogonal systems for L2(G) ∼=
∫
Λ\G ℓ2(Λx)dν(Λx),

that is, ∑
λ∈Λ

f (λx)g(λxγ) = δγ,e , for all γ ∈ Γ and µ-almost every x ∈ X .

13



Suitable class of Lie groups
Denote byR the class of Lie groups for which their radical (i.e., largest, connected, normal,
solvable subgroup) R such that G/R contains no nontrivial, connected, compact, normal
subgroups. We write G ∈ R to indicate that G belongs to this class.

Density theorem
For G ∈ R we have:
▶ If (Lλg)λ∈Λ is a fibered frame for L2(G) ∼=

∫
G/Γ

ℓ2(xΓ)dµ(xΓ), then

covol(Γ) ≤ covol(Λ).

▶ If (Rγg)γ∈Γ is a fibered Riesz basis for L2(G) ∼=
∫
Λ\G ℓ2(Λx)dν(Λx), then

covol(Λ) ≤ covol(Γ).

Rieffel computed in 1981 the center-valued von Neumann dimensions and his results imply
these density theorems for frames and Riesz bases for our direct integrals.

14



Recall that for L2(Λ× G/Γ) the space Λ× G/Γ is equipped with the product measure d × µ
where d denotes the counting measure on Λ, and similarly for L2(Γ× Λ\G).
Note that on Cc(Λ× G/Γ) (resp. Cc(Γ× Λ\G) of L2(Γ× Λ\G)) we may define the representation
π (resp. ρ) induced by these two actions as follows:

(π(a)f )(x) =
∑
λ∈Λ

a(λ, xΓ)f (λ−1x), (5)

(ρ(b)f )(x) =
∑
γ∈Γ

b(γ,Λx)f (xγ), (6)

for a ∈ ℓ1(Λ,G/Γ) and b ∈ ℓ1(Γ,Λ\G).

Observation
The fibered synthesis operator Dg of (Lλg)λ∈Λ is given by

(Dga)(x) =
∑
λ∈Λ

a(λ, xΓ)g(λ−1x), a ∈ Cc(Λ× G/Γ).
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These two actions allow the definition of noncommutative measure spaces:

Crossed product von Neumann algebras
We briefly define the crossed product algebras associated to the group actions:
(i) Left action of the lattice Λ on the space G/Γ by left translations, i.e., λ · (xΓ) = λxΓ for λ ∈ Λ

and x ∈ G .
(ii) Right action of Γ on the space Λ\G by right translations, i.e. (Λx) · γ = Λxγ for x ∈ G and

γ ∈ Γ.
(iii) For λ ∈ Λ and g ∈ L∞(G/Γ) we define unitary operators uλ and mg on L2(Λ× G/Γ) by

(uλξ)(λ
′, xΓ) = ξ(λ−1λ′, xΓ), (mgξ)(λ, xΓ) = g(λxΓ)ξ(λ, xΓ), ξ ∈ L2(Λ× G/Γ).
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Crossed products–continued
(iv) We define unitary operators vγ for γ ∈ Γ and nh for h ∈ L∞(G/Γ) on L2(Γ× Λ\G) by

(vγξ)(γ
′,Λx) = ξ(γ′γ, xΓ), (nhξ)(γ,Λx) = h(Λxγ)ξ(γ,Λx), ξ ∈ L2(Γ× Λ\G).

(v) The crossed productM = L∞(G/Γ)⋊ Λ is defined to be the von Neumann algebra on
L2(Λ× G/Γ) generated by the operators Uλ and mg for λ ∈ Λ and g ∈ L∞(G/Γ). Similarly,
the crossed product N = L∞(Λ\G)⋊ Γ is the von Neumann algebra generated by the
operators vγ and nh for γ ∈ Γ and h ∈ L∞(Λ\G).

Both of these von Neumann algebras come equipped with faithful normal traces τ : M → C and
κ : N → C determined by µ and ν, respectively.

τ(uλmg ) = δλ,e

∫
G/Γ

gdµ, λ ∈ Λ, g ∈ L∞(G/Γ),

κ(vγnh) = δγ,e

∫
Λ\G

hdν, γ ∈ Γ, h ∈ L∞(Λ\G).

In short, these are “nice" noncommutative measure spaces.
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- Back to Gabor frames

Partial Fourier transform
Let G be a locally compact abelian group. Hence, we may associate to the lattice Γ the dual
lattice in Ĝ given by

Γ⊥ = {ω ∈ Ĝ : ω|Γ = 1}.

There is a natural isomorphism Ĝ/Γ ∼= Γ⊥, so by performing a partial Fourier transform to
elements of ℓ1(Λ× Γ⊥) in the first argument we obtain elements of ℓ1(Λ,G/Γ).

Denote this map by F : ℓ1(Λ× Γ⊥) → ℓ1(Λ,G/Γ), which we define using the convention

F(a)(λ, xΓ) =
∑
τ∈Γ⊥

a(λ, τ)τ(x), a ∈ ℓ1(Λ, Γ⊥).
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Ron-Shen matrix characterization
Let g ∈ L2(G). Then the following are equivalent:
1. (π(z)g)z∈Λ×Γ is a Gabor frame with bounds c,C > 0.
2. The family (Tλg)λ∈Λ is a fibered frame for L2(G) ∼=

∫
G/Γ

ℓ2(xΓ)dµ(xΓ) with bounds c,C > 0,
that is,

c∥a∥2 ≤
∑
λ∈Λ

∣∣∣∑
γ∈Γ

aγg(x + λ−1 + γ)
∣∣∣2 ≤ C∥a∥2 for all a = (aγ)γ ∈ ℓ2(Γ)
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Shift-invariant spaces
We associate with our left and right actions by the lattices Λ and Γ the shift-invariant spaces VΛ

and VΓ:

VΛ = {f ∈ L2(G) : f =
∑
λ∈Λ

cλLλg , c ∈ ℓ2(Λ)}

VΓ = {f ∈ L2(G) : f =
∑
γ∈Γ

cγRγg , c ∈ ℓ2(Γ)}

Then the duality result may be rephrased as follows: x + Γ is a sampling set for VΛ if and only if
x + Λ is a set of interpolation for VΓ.
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Thank you for your attention


