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 Outline

� Gabor families and their pre-Gramian matrix
� Matrix analysis for “painless” frames
� Matrix analysis for rational lattice parameters
� Matrix analysis for Gabor frames of totally positive functions
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 1. Gabor families and their pre-Gramian matrix

Definition: Gabor family, Gabor frame

Let g ∈ L2(R) and α, β > 0. The set

G(g, α, β) = {MlβTkαg := e2πiβl·g(· − αk) : k , l ∈ Z}

is called a Gabor family. If there exist constants A,B > 0, such that

A‖f‖2
2 ≤

∑
k,l∈Z

|〈f ,MlβTkαg〉|2 ≤ B‖f‖2
2 for all f ∈ L2(R) ,

then G(g, α, β) is a Gabor frame, and A,B are called lower and upper frame
bound.

Result: For every Gabor frame, there exists another Gabor frame G(γ, α, β)
such that

f =
∑

k,l∈Z

〈f ,MlβTkαg〉 MlβTkαγ

holds for all f ∈ L2(R). The function γ ∈ L2(R) is called a dual window of g.
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 Problems addressed in this talk:

P1 Describe a class of functions g ∈ L2(R) such that

G(g, α, β) = {MlβTkαg := e2πiβl·g(· − αk) : k , l ∈ Z}

constitutes a frame of L2(R), for all lattice parameters

(α, β) ∈ F = {(x , y) ∈ R2
+ : xy < 1}.
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 Problems addressed in this talk:

P2 If G(g, α, β) is a frame of L2(R),

find explicit dual windows γ ∈ L2(R).

P3 If G(g, α, β) is a frame of L2(R) for all 0 < β < α−1,

find the rate at which the lower frame bound decreases near the critical
density β ↗ α−1.
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 Link between Gabor frames and matrix analysis

Theorem [Janssen 1993, Ron and Shen 1997]

The set G(g, α, β) is a Gabor frame for L2(R) with bounds A,B > 0

if and only if

the (pre-Gramian) matrices

Pg(x) =
(

g(x + jα− k
β )
)

j,k∈Z

satisfy
βA‖c‖2 ≤ ‖Pg(x)c‖2 ≤ βB‖c‖2

for almost all x ∈ [0, α) and all c ∈ `2(Z).

� Pg(x) is a bi-infinite matrix which defines a bounded operator on `2(Z),
which is also bounded from below, with bounds independent of
x ∈ [0, α).
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 Link between Gabor frames and matrix analysis

Moreover, G(γ, α, β) is a dual Gabor frame, if the pre-Gramian matrices

Pγ(x) =
(
γ(x + jα− k

β )
)

j,k∈Z

satisfy

Pγ(x)∗Pg(x) = id`2(Z) for a.e. x ∈ (0, α),

ess sup
x
‖Pγ(x)‖`2→`2 <∞;

that is, Pγ(x)∗ is a uniformly bounded set of left-inverses of Pg(x).

Joachim Stöckler (TU Dortmund) · Gabor Frames of Totally Positive Functions and Estimates of their Frame Bounds · Applied Matrix Positivity II, ICMS 2024



 Link between Gabor frames and matrix analysis

Formulation in terms of sampling in shift-invariant spaces:
� The columns of

Pg(x) =
(

g(x + jα− k
β )
)

j,k∈Z

refer to a shift-invariant subspace

V 2(g) = clos span {g(· − k/β)} ⊂ L2(R).

� Its rows refer to sampling points {xj = x + jα; j ∈ Z}.
� The frame bounds A,B > 0 are characterized by

βA‖c‖2
2 ≤

∑
j∈Z

|fc(x + αj)|2 ≤ βB‖c‖2 for all c ∈ `2(Z),

where we set fc =
∑

k∈Z ck g(· − k/β) ∈ V 2(g).
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 2. Matrix analysis for “painless” frames

g compactly supported, β < (length(suppg))−1, αβ < 1

G(g, α, β) has the frame bounds A,B > 0, where

βA = c(g, α) := ess inf
x

∑
j∈Z

|g(x + jα)|2,

βB = C(g, α) := ess sup
x

∑
j∈Z

|g(x + jα)|2.
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 Proof:

The assumption 1/β > length(suppg) implies that the nonzero entries in the
columns of Pg(x) do not overlap. It is a simple task to write down the
Moore-Penrose pseudoinverse Γ(x) of such a matrix:

Pg(x) =



. . .
×
...
×

a1
...

ar

×
...
×

. . .



, Γ(x)T =



. . .
×
...
×

b1
...

br

×
...
×

. . .


with bj = aj/‖a‖2.
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 3. Matrix analysis for rational lattice parameters

� For a rational lattice density

αβ =
p
q
∈ Q, p,q ∈ N, 0 < p < q, gcd(p,q) = 1

and all pairs (j , k) = (qm,pm) with m ∈ Z we have

x + jα− k
β

= x +
1
β

jp − kq
q

= x .

� The pre-Gramian satisfies Pg(x + jα) = Pg(x). In other words, it is a
block-Toeplitz matrix

Pg(x) =


. . .

P1 P0 P−1
· · · P1 P0 P−1 · · ·

P1 P0 P−1 . . .


Pm = Pm(x) = (g(x + qmα + jα− k/β)) 0≤j≤q−1

0≤k≤p−1
for m ∈ Z.
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 Matrix analysis for rational lattice parameters

� Optimal frame bounds can be obtained from the symbol of the
corresponding Laurent operator

σg(x , ω) =
∑
m∈Z

Pm(x)e−2πimω,

namely

(βA)−1 = ess sup
x

(
ess sup

ω

(
σg(x , ω)

)†)

βB = ess sup
x

(
ess sup

ω

(
σg(x , ω)

))

� This observation can be translated into the Zibulski-Zeevi condition,
which uses a q × p-matrix of Zak-transforms of g.
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4. Methods for Gabor frames of totally positive
functions

I. J. Schoenberg started an extensive investigation of totally positive functions
in 1947:

Definition

A non-constant measurable function g : R→ R is totally positive, if it satisfies
the following condition: For every two sets of increasing real numbers

x1 < x2 < · · · < xN , y1 < y2 < · · · < yN , N ∈ N,

we have the inequality

D = det
[
g(xj − yk )

]
1≤j,k≤N ≥ 0.
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 Methods for Gabor frames of totally positive functions

� Schoenberg showed that g is totally positive and integrable, if and only if
its Fourier transform is

ĝ(ω) = Ce−γω
2+2πiδω

∞∏
ν=1

e2πiω/aν

1 + 2πiω/aν
,

with real parameters C, γ, δ, real aν 6= 0 satisfying

C > 0, γ ≥ 0, 0 < γ +
∞∑
ν=1

a−2
ν <∞.

� We consider the sub-class of totally positive functions of finite type:

ĝ(ω) = C
m∏
ν=1

(1 + 2πiω/aν)−1
,

with real a1, . . . ,am 6= 0, C > 0.
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 Examples of totally positive functions of finite type

� sums of one-sided exponentials:

0 ≤ g(x) =
m∑
ν=1

cνe−aνx χ[0,∞)(x) ∈ Cm−2(R),

with a1, . . . ,am > 0; coefficients cν come from divided difference

g(x) = [a1, . . . ,am | e−x·] χ[0,∞).

� two-sided exponentials, e.g.

g(x) = eaxχ(−∞,0) + e−bxχ[0,∞) ∈ C(R), , a,b > 0;

� Variants including polynomial factors, e.g.

g(x) = xme−x χ[0,∞) ∈ Cm−1(R).

Observation: The functions decay exponentially. The set of TP functions of
finite type is closed under translation, dilation and convolution.
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 Problem P1: frame-set

Theorem (Gröchenig, St. 2011)

Assume that g is a totally positive function of finite type m ≥ 2.

Then G(g, α, β) is a Gabor frame, if and only if αβ < 1.
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 Problem P2: dual windows

Furthermore, let r := b 1
1−αβ c, and assume that in the definition of the Fourier

transform ĝ,
� n1 is the number of positive aν ’s,
� n2 is the number of negative aν ’s.

Then we construct, for each L ∈ N, a dual window γL with compact support

supp γL ⊂ [− r n1+L
β − α, r n2+L

β + α].
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 Example:
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Conjecture: the sequence of duals γL converges to the canonical dual
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 Proof by matrix analysis of the pre-Gramiam

� Choose g with

ĝ(ω) =
n∏
ν=1

(1 + 2πiω/aν)−1
, a1, . . . ,an ∈ R \ {0}.

� Fix α = 1. (All other cases by scaling of g.)
� The pre-Gramian

Pg(x) = (g(x + j − k/β))j,k∈Z

is a bi-infinite totally positive matrix. It is fully populated, if some aν ’s
are positive and some are negative.
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 Matrix product with invertible bidiagonal matrices:

In a first step, we obtain a slant-banded matrix by the following operations:
� The function Ng with

N̂g(ω) =
n∏
ν=1

(
1− e−(aν+2πiω)

)
ĝ(ω)

is an exponential B-spline with compact support [0,n]:

Ng(x) = Ce−a1(·)χ[0,1) ∗ e−a2(·)χ[0,1) ∗ . . . ∗ e−an(·)χ[0,1)

� The pre-Gramians of g and Ng are related by

PNg (x) = B1 · · ·Bn Pg(x),

where Bν is a bidiagonal (biinfinite) invertible Toeplitz matrix

Bν = I − e−aν D1, D1 = (δk,j+1)j,k∈Z.
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 New pre-Gramian PNg :

� The pre-Gramian PNg (x) has at most n nonzero entries per column.
� The sequence of row indices jk of the first nonzero entry of column k is

strictly increasing with gaps; more precisely

jk+r − jk ≥ r + 1 with r := b 1
1−αβ c.

PNg (x) =



. . . × × k
× × ↓
× × × ← jk
× × ×
× ×
× ×
× ×
× ×
× . . .


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 New pre-Gramian PNg :

� The pre-Gramian PNg (x) has at most n nonzero entries per column.
� The sequence of row indices jk of the first nonzero entry of column k is

strictly increasing with gaps; more precisely

jk+r − jk ≥ r + 1 with r := b 1
1−αβ c.

PNg (x) =



. . . × ×
× ×
× × ×
× × ×
× ×
× ×
× ×
× ×
× . . .


Joachim Stöckler (TU Dortmund) · Gabor Frames of Totally Positive Functions and Estimates of their Frame Bounds · Applied Matrix Positivity II, ICMS 2024



 New pre-Gramian PNg :

� Results in Approximation Theory (Karlin 1968, Schumaker 1981, Gasca,
Pena et al. 1992): Every finite block of PNg (x) is almost strictly totally
positive, i.e.

• every minor is non-negative,

• the minor is strictly positive iff its diagonal entries are positive.

� A left-inverse ΓNg of PNg (x) is constructed by

• choosing a finite block PNg (j1 : j2, k1 : k2) of full column rank,
such that only zeros appear to the left and right in the same rows of PNg ,

• taking rows from the Moore-Penrose pseudoinverse of this block as the
nonzero entries in corresponding rows of ΓNg (x).
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 Gabor frames with window function Ng

Theorem (Kloos, St. 2014)

Let Ng be an exponential B-spline of finite order n. Then G(Ng ,1, β) is a
Gabor frame for all 0 < β < 1.

Furthermore, G(Ng , α, β) is a Gabor frame in the following cases:
(1) 0 < α < m and 0 < β ≤ m−1 (“painless”),
(2) α ∈ {1,2, . . . ,m − 1}, β > 0 and αβ < 1,
(3) α > 0, β ∈ {1,2−1, . . . , (m − 1)−1} and αβ < 1.
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 Example: Exponential B-splines (top) with two duals
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 Previous work:

Explicit duals γ ∈ Cm−2(R) with compact support were constructed, if
β < (2m)−1 (Christensen, Massopust 2012, Nielsen 2019)
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 Matrix analysis for explicit frame bounds

� Nonsingular totally positive matrices P ∈ Rm×m can be factorized in
terms of m − 1 lower (and m − 1 upper) bidiagonal matrices of the form

Bν = I + Dν with Dν = (dν,jδj+1,k )j,k=1,...,m

(and their transpose), combined with a diagonal matrix with positive
entries. See Gasca, Pena, 1995.

� Here, dj ≥ 0 are factors in the complete Neville-elimination, first
transforming P into an upper triangular matrix U and then transforming
UT into a diagonal matrix, by subsequent row-operations.

� If P has bandwidth s, the number of factors is reduced from m − 1 to s.
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 Matrix analysis for explicit frame bounds

� The simple relation

(I + Dν)−1 =
m−1∑
j=0

(−Dν)j

allows us to obtain the following result:

If 0 < dj ≤ 1− ε for all 1 ≤ j ≤ m − 1, then ‖(I + Dν)−1‖2 ≤ 1
ε .

� Take a finite block P ∈ Rp×m of PNg (x) with p > m with the following
properties:
• P has full rank.
• P has a slanted band-structure as in PNg (x).
• P contains all nonzero entries of PNg in the corresponding rows.

Find a factorization with s invertible bidiagonal matrices Bν = I + Dν
such that 0 ≤ dν,j ≤ αβ < 1.

Then the lower frame bound satisfies

A−1 = O
(
(1− αβ)−s) .
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 A first example

The even exponential B-spline of order 2 is defined by

B2(x) = (eλ(·)χ[0,1] ∗ e−λ(·)χ[0,1])(x) =


sinh(λx)

λ
, 0 ≤ x ≤ 1,

sinh(λ(2− x))

λ
, 1 < x ≤ 2.

Theorem (Kloos, St. 2014)

The lower frame bound of G(B2,1, β) satisfies

cλ(1− β) ≤ A for 1/2 ≤ β < 1

with explicit constant cλ > 0.
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 Example:

The exponential B-spline of order 2 with exponents Λ = (−1,1) is

B2(x) =


sinh x , x ∈ [0,1],

sinh(2− x), x ∈ (1,2],

0 otherwise.

The bounds for A are shown on the left, the bound for the related TP function
g(x) = e−λ|x| are shown on the right. (right figure).
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 Explicit frame bounds by other methods:

� The Gaussian window g(x) = e−πx2
satisfies the same asymptotic

relation
A−1 = O

(
(1− αβ)−1) for αβ → 1.

(Borichev, Gröchenig, Lyubarskii 2010; methods of proof from complex
analysis)

� Upper bounds of both frame bounds A,B for more general Gabor frames
in Rd (without the requirement of a lattice structure for time-frequency
shifts) were recently obtained by K. Gröchenig, J. L. Romero and M.
Speckbacher.
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 Ongoing research

Quantitative results for the decomposition of full-rank TP matrices would be
of great benefit. They are useful for

� Gabor frames: sharp estimates of the frame bounds

� theory of sampling in shift-invariant spaces generated by TP functions
and (exponential) B-splines.
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