Multivariate Higher Order Monotonicity – and its Preservation

Paul Ressel

Katholische Universität Eichstätt-Ingolstadt

ICMS, Edinburgh Applied Matrix Positivity II

4th – 8th November 2024

 2990 1

一番

メロメ メ都 メメ モメ メモメン

$$
I_1, \ldots, I_d \subseteq \mathbb{R} \text{ intervals (always non-degenerate)}
$$
\n
$$
I := I_1 \times \cdots \times I_d, \ f : I \to \mathbb{R}
$$
\nFor $s \in I$, $h \in \mathbb{R}_+^d$ such that also $s + h \in I$

$$
(E_h f)(s) := f(s+h)
$$

$$
\Delta_h := E_h - E_0, \text{ i.e. } (\Delta_h f)(s) := f(s+h) - f(s)
$$

Since $\{E_h|\ h\in\mathbb{R}^d_+\}$ is commutative, so is $\{\Delta_h|\ h\in\mathbb{R}^d_+\}.$ For any h , $\Delta_h^0 f \coloneqq f$ (also for $h = 0$), but $\Delta_0 f = 0 \ \forall f$.

For
$$
\mathbf{n} = (n_1, \ldots, n_d) \in \mathbb{N}_0^d
$$
 and $h = (h_1, \ldots, h_d) \in \mathbb{R}_+^d$

$$
\Delta_h^n \coloneqq \Delta_{h_1e_1}^{n_1} \Delta_{h_2e_2}^{n_2} \ldots \Delta_{h_de_d}^{n_d}
$$

 $(\text{where } e_1, \ldots, e_d \text{ are standard unit vectors}), \text{ so that } (\Delta_h^n f)(s) \text{ is }$ defined for $s, s + \sum_{i=1}^{d} n_i h_i e_i \in I$.

We first consider $d = 1$, $\mathbf{n} = n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ and put

$$
\sigma_n(x_1,\ldots,x_n):=x_1+\cdots+x_n.
$$

医阿里氏阿里氏

Assume $I = [0, 1]$, hence $f : [0, 1] \rightarrow \mathbb{R}$. For $t \in [0, 1]$ and $h > 0$, $t + nh \leq 1$,

$$
(\Delta_h^n f)(t) = f(t + nh) - {n \choose 1} f(t + (n-1)h) \pm \cdots + (-1)^n f(t)
$$

=
$$
[\Delta_{(h,\ldots,h)}^{(1,\ldots,1)}(f \circ \sigma_n)] \left(\frac{t}{n},\ldots,\frac{t}{n}\right).
$$

If a univariate f is C^{∞} , then

$$
\Delta_h^n(f) \geq 0 \ \forall h > 0 \quad \Leftrightarrow \quad f^{(n)} \geq 0.
$$

If a multivariate f is C^{∞} , then

$$
\Delta_h^n(f) \geq 0 \ \forall h \in \mathbb{R}_+^d \quad \Leftrightarrow \quad f_n := \frac{\partial^{|\mathbf{n}|} f}{\partial x_1^{n_1} \dots \partial x_d^{n_d}} \geq 0
$$

4

 Ω

Definition 1.

 $I\subseteq \mathbb{R}^d$, $\textbf{n}\in\mathbb{N}_0^d\setminus\{0\}$, $f:I\to\mathbb{R}$ is \textbf{n} - \uparrow (read " $\textbf{n}\text{-}increasing$ ") iff

$$
\left(\Delta_h^{\mathbf{p}}f\right)(s) \geq 0 \,\,\forall s \in I, \,\, h \in \mathbb{R}_+^d, \,\, \mathbf{p} \in \mathbb{N}_0^d, \,\, 0 \lneqq \mathbf{p} \leq \mathbf{n}
$$

such that $s_i + p_j h_j \in I_j \ \forall j \in [d] := \{1, \ldots, d\}.$

For a C^{∞} function f then

 f is **n** - $\uparrow \Leftrightarrow f_{\mathbf{p}} \geq 0$ for $0 \leq \mathbf{p} \leq \mathbf{n}$.

→ 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ│ │

 OQ 5

• For $d = 1$, $\mathbf{n} = n \in \mathbb{N}$, f is 1- \uparrow iff f is (weakly) increasing, and f is $2 - \uparrow$ iff f is increasing and convex.

•
$$
d = 2
$$
, $f(s_1, s_2) := (s_1s_2 - a)_+$, $a > 0$
\n f is $(1, 0) - \uparrow$, $(0, 1) - \uparrow$, $(1, 1) - \uparrow$ (will be shown later), but not
\n $(2, 2) - \uparrow$:
\n
$$
\left(\Delta_{(\sqrt{a}, \sqrt{a})}^{(2, 2)} f\right)(0) = -a.
$$

医尿管的尿管的

 2996

∍

Theorem 1.

f : $[0,1]$ → \mathbb{R}_+ *is n* - \uparrow (*n* ≥ 2) *iff* ∃! a_0, \ldots, a_{n-2} ≥ 0 and a measure μ on [0, 1] such that

$$
f(t) = a_0 + a_1t + \cdots + a_{n-2}t^{n-2} + \int (t-a)_+^{n-1} d\mu(a).
$$

f is continuous and for $n > 2$ ($n - 2$) times continuously differentiable.

→ 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ│ │

7

Let
$$
K_n := \{f : [0,1] \to \mathbb{R}_+ | f \text{ is } n-\uparrow, f(1) = 1\}
$$
, and
\n $f_a(t) := (t - a)_+ / (1 - a)$ for $0 \le a < 1$, $f_1 := \mathbf{1}_{\{1\}}$,
\n $E_n := \{1, t, \ldots, t^{n-2}\} \cup \{f_a^{n-1} | a \in [0,1]\}, n \ge 2$

Corollary 1.

$$
K_n
$$
 is a Bauer simplex, $ex(K_n) = E_n$ for $n \ge 2$.

Corollary 2.

If $f : [0,1] \to \mathbb{R}_+$ is "absolutely monotone", i.e. $n - \uparrow \forall n \in \mathbb{N}$, then

$$
f(t) = \sum_{j\geq 0} a_j t^j \quad \text{where } a_j \geq 0 \ \forall j.
$$

Corollary 3.

$$
K_{\infty} := \bigcap_{n \geq 1} K_n \text{ is a Bauer simplex with}
$$

$$
ex(K_{\infty}) = \{1, t, t^2, \dots\} \cup \{1_{\{1\}}\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q → 8

First some special situations and examples.

\n- $$
f_j: I_j \to \mathbb{R}, 1 \leq j \leq d, f := f_1 \otimes \cdots \otimes f_d
$$
, i.e.
\n- $f(s) = \prod_{i=1}^d f_j(s_i)$
\n

Then

$$
\left(\Delta_h^{\mathbf{p}}f\right)(s)=\prod_{j=1}^d\left(\Delta_{h_j}^{p_j}f_j\right)(s_j)
$$

for $\mathbf{p} \in \mathbb{N}_0^d$, $h \in \mathbb{R}_+^d$, implying for $f_j \geq 0$

$$
f
$$
 is $n - \uparrow \iff f_j$ is $n_j - \uparrow \forall j$.

何 ▶ イヨ ▶ イヨ ▶ │

•
$$
f(s) := \sum_{j=1}^{d} f_j(s_j)
$$
 (a "tensor sum")
Then

$$
\Delta_h^{\mathbf{p}}f(s) = \begin{cases} \Delta_{h_i}^{p_i}f_i(s_i) & \text{if } \mathbf{p} = p_i e_i, p_i \ge 1 \\ = 0 & \text{if } \mathbf{p} \text{ has more than one positive entry.} \end{cases}
$$

$$
f
$$
 is $n-\uparrow \Leftrightarrow f_j$ is $n_j-\uparrow \forall j$

 $(f_i \geq 0 \text{ not necessary})$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ → 할 → 9 Q (2 10)

$$
d = 2,
$$

$$
f(s, t) := \int_0^\infty \underbrace{1_{[a, \infty[}(s) (t - a)_{+} \text{ } d\text{a on } \mathbb{R}^2_{+})}_{(1, 2) \uparrow}
$$

$$
= \int_0^{s \wedge t} (t - a)_{+} \, da = (s \wedge t) \cdot \left(t - \frac{1}{2} (s \wedge t) \right)
$$

f is (1*,* 2) -↑ (and not more!)

4 0 8

個→ メモ > メモ > ニモー

 $\begin{array}{cc} \circ \\ \circ \circ \circ \\ \circ \end{array}$

$$
f(s,t) \coloneqq (s \wedge t) \cdot \left(t - \frac{1}{2}(s \wedge t)\right)
$$

(ロ) (@) (경) (경) (경) 경 (9) 12

For $\textbf{n} \in \mathbb{N}^d$, $\textbf{n} \geq \textbf{2}_d$ we consider

$$
\mathcal{K}_{\mathbf{n}} \coloneqq \{f : [0,1]^d \to \mathbb{R}_+ \mid f \text{ is } \mathbf{n} \cdot \uparrow, f(\mathbf{1}_d) = 1\},
$$

obviously convex and compact, and

$$
E_{n} := E_{n_1} \otimes \cdots \otimes E_{n_d} = \{f_1 \otimes \cdots \otimes f_d \mid f_i \in E_{n_i} \forall i\}.
$$

Theorem 2.

For $n \geq 2_d$ K_n is a Bauer simplex, and $ex(K_n) = E_n$.

→ 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ │

 Ω Ω 13

For example, if $d=2$, any $f:[0,1]^2\rightarrow \mathbb{R}_+$ which is $(2,2)$ - \uparrow , has the form

$$
f(s,t)=\int_{E_2\times E_2}\rho_1(s)\rho_2(t)\,d\mu(\rho_1,\rho_2),
$$

hence in case $f(s, 0) = f(0, t) = 0 \,\forall s, t$,

$$
f(s,t) = \int_{[0,1]^2} f_a(s) f_b(t) d\mu(a,b)
$$

for some measure μ on $[0,1]^2$.

キスラメスラメーラー

 Ω ¹⁴

Let us now consider the special important case

$$
\mathbf{n} = \mathbf{1}_d = (1, \dots, 1).
$$

For $d = 2$, $h = (h_1, h_2) \in \mathbb{R}_+^2$

$$
\left(\Delta_h^{(1,1)} f\right)(s, t) = f(s + h_1, t + h_2) - f(s, t + h_2)
$$

$$
- f(s + h_1, t) + f(s, t)
$$

$$
\left(\Delta_h^{(1,0)} f\right)(s, t) = f(s + h_1, t) - f(s, t)
$$

$$
\left(\Delta_h^{(0,1)} f\right)(s, t) = f(s, t + h_2) - f(s, t).
$$

4 0 8

御き メミメ メミメー

 $\bigcirc Q \bigcirc Q = 15$

■■

For general $d \in \mathbb{N}$, $h \in \mathbb{R}^d_+$

$$
\left(\Delta_h^{1_d} f\right)(s) = f(s+h) - f(s_1, s_2 + h_2, \dots, s_d + h_d) - \dots
$$

$$
- f(s_1 + h_1, \dots, s_{d-1} + h_{d-1}, s_d)
$$

$$
+ f(s_1, s_2, s_3 + h_3, \dots, s_d + h_d) + \dots
$$

$$
\dots + (-1)^d f(s).
$$

If f is the distribution function ("d.f.") of some measure μ , say on \mathbb{R}^d_+ , i.e.

$$
f(s)=\mu([0,s]),
$$

then

$$
\left(\Delta_h^{1_d}f\right)(s)=\mu([s,s+h])\geq 0.
$$

御き メミメ メミメー

 $990 - 16$

DE 11

Theorem 3.

Let $\emptyset \neq I_j \subseteq \mathbb{R}$ be arbitrary (not necessarily intervals), $j \leq d$, $I = I_1 \times \cdots \times I_d$, $f : I \rightarrow \mathbb{R}_+$. Then

f is the d.f. of some measure on \overline{I}

⇔ f is **1**^d *-*↑ and right-continuous.

The proof relies on the fact, that $f(\geq 0)$ is $\mathbf{1}_d$ - \uparrow iff f is completely monotone on the semigroup (I, \wedge) iff f is positive definite on (I, \wedge) .

- 母 ト (ヨ) (ヨ) (ヨ)

In dimension one any $2 - \uparrow$ function is right-continuous; if a multivariate f is (only) $\mathbf{1}_d$ - \uparrow , this need **not** be the case:

 $f = \mathbf{1}_{]0,1]^2}$ on $[0,1]^2$.

However, for $\textbf{n} \in \mathbb{N}^d$ each \textbf{n} - \uparrow f is the pointwise limit of some net of **n** -↑ right-continuous functions.

(If $n > 2_d$, then f itself is right-continuous.)

母 ▶ イヨ ▶ イヨ ▶ │ ヨ │

Application. Mean values as distribution functions

For $x \in]0, \infty[^d$ and $t \in \mathbb{R}$ consider

$$
M_t(x) := \left(\frac{1}{d} \sum_{i=1}^d x_i^t\right)^{\frac{1}{t}} \quad \text{for } t \neq 0
$$

$$
M_0(x) := \left(\prod_{i=1}^d x_i\right)^{\frac{1}{d}} \quad \left(= \lim_{t \to 0} M_t(x) \right)
$$

$$
M_{\infty}(x) := \max_{i \leq d} x_i \quad \left(= \lim_{x \to \infty} M_t(x) \right)
$$

$$
M_{-\infty}(x) := \min_{i \leq d} x_i \quad \left(= \lim_{t \to -\infty} M_t(x) \right).
$$

伊 ▶ 4 ヨ ▶ 4 ヨ ▶ │

 Ω ¹⁹

(B)

(If $t < 0$ and $x_i = 0$ for some *i*, then $M_t(x) = 0$.)

The function $\mathbb{R} \ni t \mapsto M_t(x)$ (for non-constant x) is continuous and strictly increasing from min x_i to max x_i . Since $M_t(1,\ldots,1)=1$, these mean values are candidates for d.f.s

of probability measures on $[0,1]^d$.

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ │

20

 $2Q$

Theorem 4.

$$
M_t|_{[0,1]^d} \text{ is a d.f.} \Leftrightarrow t \in [-\infty, \frac{1}{d-1}] \cup \{\frac{1}{d-2}, \dots, \frac{1}{2}, 1\}
$$

($t \in [-\infty, 1]$ for $d = 2$)

How to prove this?

$$
M_t = f_t \circ \left(\frac{1}{d} \sum_{i=1}^d x_i^t\right), \quad f_t(s) \coloneqq s^{1/t} \text{ on }]0, \infty[
$$

For $t>0$, $\sum_{i=1}^d x_i^t$ is a tensor sum of increasing functions, hence $\mathbf{1}_d - \uparrow$.

We need to know which functions on \mathbb{R}_+ preserve this property!

4 ロ > 4 何 > 4 ヨ > ィヨ > ニョー イタペー 21

3. The multivariate case

The following result was essentially shown by P. M. Morillas (2005):

Theorem 5.

Let $I\subseteq \mathbb{R}^d$ and $J\subseteq \mathbb{R}$ be intervals, $g:I\to J$, $f:J\to \mathbb{R}$. Then, if g is $\mathbf{1}_d$ - \uparrow and f is d $-\uparrow$, f \circ g is again $\mathbf{1}_d - \uparrow$.

イロメ イ団メ イ君メ イ君メー 君

 $\begin{array}{cc} \textcircled{1} & \textcircled{2} & \textcircled{2} \\ \textcircled{3} & \textcircled{4} & \textcircled{2} \end{array}$

Theorem 5.

Let $I\subseteq \mathbb{R}^d$ and $J\subseteq \mathbb{R}$ be intervals, $g:I\to J$, $f:J\to \mathbb{R}$. Then, if g is $\mathbf{1}_d$ - \uparrow and f is d $-\uparrow$, f \circ g is again $\mathbf{1}_d - \uparrow$.

Let's apply this to the mean values M_t (for $t > 0$):

• for $t \in \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ we have $f_t(s) = s^k$ for some $k \in \mathbb{N}$, hence f_t is absolutely monotone, and M_t a d.f.

する イヨン オミット ミー

22

 $2Q$

Theorem 5.

Let $I\subseteq \mathbb{R}^d$ and $J\subseteq \mathbb{R}$ be intervals, $g:I\to J$, $f:J\to \mathbb{R}$. Then, if g is $\mathbf{1}_d$ - \uparrow and f is d $-\uparrow$, $f \circ g$ is again $\mathbf{1}_d - \uparrow$.

Let's apply this to the mean values M_t (for $t > 0$):

- for $t \in \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ we have $f_t(s) = s^k$ for some $k \in \mathbb{N}$, hence f_t is absolutely monotone, and M_t a d.f.
- for $t \in]0,1] \setminus \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$:

$$
\left(x^{\frac{1}{t}}\right)^{(k)} = \frac{1}{t} \left(\frac{1}{t} - 1\right) \cdots \left(\frac{1}{t} - (k - 1)\right) x^{\frac{1}{t} - k}
$$
\n
$$
\frac{1}{t} > k - 1 \Rightarrow \dots > 0
$$
\n
$$
\Leftrightarrow t < \frac{1}{k - 1}
$$

22 hence $t < \frac{1}{d-1}$ is sufficient for f_t to be d - \uparrow . (in fact also necessary; $t > 1$ will be dealt with later)

Before considering M_t for $t < 0$, this remark: Let $\alpha, \beta > 0$

then
$$
x_i \mapsto -x_i^{-\alpha}
$$
 is increasing on]0, ∞[
\n $\Rightarrow x \mapsto -\sum x_i^{-\alpha}$ is 1_d -↑ on]0, ∞[^d
\n $s \mapsto s^{-\beta}$ is completely monotone on]0, ∞[
\n $\Leftrightarrow s \mapsto (-s)^{-\beta}$ is absolutely monotone on]-∞, 0[

Now let $t < 0$, $\alpha \coloneqq -t$, $\beta \coloneqq -\frac{1}{t}$ t

$$
\Rightarrow M_t(x) = d^{-1/t} \left[- \left(-\sum x_i^{-\alpha} \right) \right]^{-\beta} \text{ is } \mathbf{1}_d - \uparrow,
$$

again by Theorem 5.

4 0 8

K @ ▶ K 로 X X B X 2 를 → 9 Q @ 23

An important supplement to Theorem 5:

Theorem 6.

Let $I \subseteq \mathbb{R}^d$ be an interval (always non-degenerate), $\sigma_{d}(x)\coloneqq\sum_{i=1}^{d}x_{i}$, $J\coloneqq\sigma_{d}(I)$, $f:J\rightarrow\mathbb{R}.$ Then f is $d - \uparrow \Leftrightarrow f \circ \sigma_d$ is $\mathbf{1}_d - \uparrow$.

イ母 トマミメ マミメーヨー

24

 $2Q$

An important supplement to Theorem 5:

Theorem 6.

Let $I \subseteq \mathbb{R}^d$ be an interval (always non-degenerate), $\sigma_d(x)\coloneqq\sum_{i=1}^d x_i$, $J\coloneqq\sigma_d(I)$, $f:J\to\mathbb{R}$. Then f is $d - \uparrow \Leftrightarrow f \circ \sigma_d$ is $\mathbf{1}_d - \uparrow$.

Here " \Rightarrow " follows from Theorem 5. For " \Leftarrow " it is sufficient to consider $I=[0,\frac{1}{d}]$ $\frac{1}{d}$]^d and $J = [0, 1]$. Then for $t \in [0, 1]$, $h > 0$, $t + k \cdot h \leq 1$ $(k \leq d)$

$$
\left(\Delta_h^k f\right)(t) = f(t + kh) - {k \choose 1} f(t + (k-1)h) + \cdots + (-1)^k f(t)
$$

$$
= \left(\Delta_{(h,\ldots,h)}^{1_k,0_{d-k}}(f \circ \sigma_d)\right)(\frac{t}{d},\ldots,\frac{t}{d})
$$

(□) (何) (月) (日) (日) 日 | 900 24

However: attention!

We'd need $\frac{t}{d} + h \leq \frac{1}{d}$ $\frac{1}{d}$, or $t + dh \leq 1$, but only know $t + kh \leq 1$.

Lemma 1.

 $J \subseteq \mathbb{R}$ interval, $f : J \to \mathbb{R}$, $k \in \mathbb{N}$. If $\exists h_0 > 0$ such that $\left(\Delta_h^k f\right)(t) \geq 0 \,\,\forall t \in J, \ h \in]0,h_0]$ with $t+kh \in J,$ then the same holds $\forall h > 0$ such that $t + kh \in J$.

To finish the proof of Theorem 6, choose $h_0 \coloneqq \frac{1-t}{d}$ $\frac{-t}{d}$.

- 母 ト (ヨ) (ヨ) (ヨ)

However: attention!

We'd need $\frac{t}{d} + h \leq \frac{1}{d}$ $\frac{1}{d}$, or $t + dh \leq 1$, but only know $t + kh \leq 1$.

Lemma 1.

 $J \subseteq \mathbb{R}$ interval, $f : J \to \mathbb{R}$, $k \in \mathbb{N}$. If $\exists h_0 > 0$ such that $\left(\Delta_h^k f\right)(t) \geq 0 \,\,\forall t \in J, \ h \in]0,h_0]$ with $t+kh \in J,$ then the same holds $\forall h > 0$ such that $t + kh \in J$.

To finish the proof of Theorem 6, choose $h_0 \coloneqq \frac{1-t}{d}$ $\frac{-t}{d}$.

Corollary 4.

 $f : [0, 1] \rightarrow \mathbb{R}$ is d $-\uparrow$ iff $f \circ M_1$ is $\mathbf{1}_d$ $-\uparrow$.

イロン イ母ン イヨン イヨン・ヨー

25

 $2Q$

A natural question:

Suppose F is a two-dimensional d.f., G a three-dimensional d.f., for which functions f on $[0,1]^2$ is then always $f\circ (F\times G)$ a five-dimensional d.f.?

Apart from normalisation, when is $f(F(x), G(y))$ 1₅ - \uparrow ?

No. 2 Report Follows

TE.

26

 $2Q$

Theorem 7.

Let $I_1 \subseteq \mathbb{R}^{n_1}, \ldots, I_d \subseteq \mathbb{R}^{n_d}$ be intervals, $g_1 : I_1 \to [0,1]$ $\mathbf{1}_{n_1} \cdot \uparrow, \ldots, g_d : I_d \to [0,1]$ 1_{n_d} -↑, $n := (n_1, \ldots, n_d)$. If $f : [0,1]^d \to \mathbb{R}_+$ is n -↑, then $f ∘ (g_1 × \cdots × g_d)$ is $1_{|n|}$ -↑.

4 ロ > 4 何 > 4 ヨ > 4 ヨ > - ヨ - 4 이익(* 27)

Theorem 7.

Let
$$
I_1 \subseteq \mathbb{R}^{n_1}, \ldots, I_d \subseteq \mathbb{R}^{n_d}
$$
 be intervals, $g_1 : I_1 \to [0, 1]$ $1_{n_1} \to \uparrow, \ldots, g_d : I_d \to [0, 1]$
\n $1_{n_d} \to \uparrow$, $\mathbf{n} := (n_1, \ldots, n_d)$. If $f : [0, 1]^d \to \mathbb{R}_+$ is $\mathbf{n} \to \uparrow$, then $f \circ (g_1 \times \cdots \times g_d)$ is $1_{|\mathbf{n}|} \to \uparrow$.

Proof.

We may assume $f(1_d) = 1$, and also $n \geq 2_d$. Then (Theorem 2)

$$
f(s) = \int_{E_n} \prod_{i=1}^d \rho_i(s_i) d\mu(\rho_1,\ldots,\rho_d)
$$

for some probability measure μ on E_n . So

$$
f\circ (g_1\times \cdots \times g_d)=\int\bigotimes_{i=1}^d (\rho_i\circ g_i)\,d\mu(\rho_1,\ldots,\rho_d)
$$

where each $\rho_i\circ g_i$ is $\mathbf{1}_{n_i}$ - \uparrow (Theorem 5), therefore $\bigotimes_{i=1}^d(\rho_i\circ g_i)$ is $\mathbf{1}_{|\mathbf{n}|}$ - \uparrow , and so is then $f \circ (g_1 \times \cdots \times g_d)$ as a mixture of those. г

K ロ X x (日 X X B X X B X X B X X D X 27

A special case would be $g_i = \sigma_{n_i}$ $(\forall i)$ on suitable n_i -dimensional intervals. As a generalisation of Theorem 6 we have

 $(\sigma_{\mathbf{n}} := \sigma_{n_1} \times \cdots \times \sigma_{n_d})$

Theorem 8.

Let $I_1 \subseteq \mathbb{R}^{n_1}, \ldots, I_d \subseteq \mathbb{R}^{n_d}$ be non-degenerate intervals,

 $J_i \coloneqq \sigma_{n_i}(I_i)$, $J \coloneqq J_1 \times \cdots \times J_d$ and $f : J \to \mathbb{R}$. Then

$$
f
$$
 is $n - \uparrow \iff f \circ \sigma_n$ is $1_{|n|} - \uparrow$

(similar proof!)

4 ロ > 4 何 > 4 ヨ > 4 ヨ > - ヨ - 9 Q (^ -

Finally, we get a natural generalisation of Theorem 5, our **first main result:**

Theorem 9.

Let $g_i: I_i \to [0,1]$ be $m_i \cdot \uparrow$, where $m_i \in \mathbb{N}^{n_i}$. Put $g\coloneqq g_1\times\dots\times g_d: I_1\times\dots\times I_d\to[0,1]^d$. If $f:[0,1]^d\to\mathbb{R}$ is $(|m_1|, \ldots, |m_d|)$ - \uparrow then $f \circ g$ is (m_1, \ldots, m_d) - \uparrow .

→ 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ │

29

 $2QQ$

Finally, we get a natural generalisation of Theorem 5, our **first main result:**

Theorem 9.

Let $g_i: I_i \to [0,1]$ be $m_i \cdot \uparrow$, where $m_i \in \mathbb{N}^{n_i}$. Put $g\coloneqq g_1\times\dots\times g_d: I_1\times\dots\times I_d\to[0,1]^d$. If $f:[0,1]^d\to\mathbb{R}$ is $(|m_1|, \ldots, |m_d|)$ *-*↑ then $f \circ g$ is (m_1, \ldots, m_d) -↑.

Example.

 $d = 2$, $n_1 = 2$, $n_2 = 3$, $m_1 = (2, 4)$, $m_2 = (3, 3, 2)$. If g_1 (bivariate) is $(2, 4)$ -↑, g_2 (trivariate) is $(3, 3, 2)$ -↑, and f is $(6, 8)$ -↑, then $f \circ (g_1 \times g_2)$ is $(2, 4, 3, 3, 2)$ - \uparrow (as a function of 5 variables).

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニヨー つ Q (V)

Proof.

$$
f(s) = \int \bigotimes_{i=1}^{d} \rho_{i}(s_{i}) d\mu(\rho)
$$

\n
$$
\mu \text{ on } E_{(|m_{1}|,...,|m_{d}|)}
$$

\n
$$
\Rightarrow f \circ g = \int \bigotimes_{i=1}^{d} \rho_{i} \circ g_{i} d\mu(\rho)
$$

\n
$$
g_{i} \text{ is } m_{i} - \uparrow, \text{ equiv. } g_{i} \circ \sigma_{m_{i}} \text{ is } 1_{|m_{i}|} - \uparrow
$$

\n
$$
f \circ g \circ \sigma_{(m_{1},...,m_{d})} = \int \bigotimes_{i=1}^{d} \rho_{i} \circ g_{i} \circ \sigma_{m_{i}} d\mu(\rho)
$$

\n
$$
\Rightarrow f \circ g \text{ is } (m_{1},...,m_{d}) - \uparrow.
$$

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q O + 30
Special cases:

$$
g \mathbf{n} - \uparrow, f |\mathbf{n}| - \uparrow \Rightarrow f \circ g \mathbf{n} - \uparrow
$$

$$
g \mathbf{n} - \uparrow, f \mathbf{n} - \uparrow \Rightarrow f \circ g \mathbf{n} - \uparrow
$$

(if defined...)

- 御 ▶ (/ 唐 ▶ (/ 唐 ▶)

 \leftarrow \Box \rightarrow

 $\begin{array}{cc} \textcircled{1} & \textcircled{1} & \textcircled{3}1 \end{array}$

■■

4. *k*-increasing functions ($k \in \mathbb{N}$!) in any dimension

Let $I \subseteq \mathbb{R}$, $f : I \rightarrow \mathbb{R}$ continuous, $k \in \mathbb{N}$. Then $\Delta_h^k(f)(t) \geq 0 \quad \forall t \in I, h > 0, t + kh \in I$ is equivalent with $(\Delta_{h_1}\Delta_{h_2}\dots\Delta_{h_k}f)(t) \geq 0 \quad \forall t \in I, h_i > 0, t + \sum_{k=1}^{k}$ $i=1$ $h_i \in I$. (Boas-Widder (1940), easy to see)

The following notion now seems natural:

Definition 2.

 $I\subseteq \mathbb{R}^d$ interval, $f:I\to \mathbb{R},\ k\in \mathbb{N}.$ Then f is called k -increasing $(``k-\'')`$ iff $\forall j \in [\mathsf{k}], \; \forall \, \mathsf{h}^{(1)}, \ldots, \mathsf{h}^{(j)} \in \mathbb{R}_+^d, \; \forall \, s \in \mathsf{I}$ such that $s + h^{(1)} + \ldots + h^{(j)} \in I$

 $\left(\Delta_{h^{(1)}}\ldots\Delta_{h^{(j)}}f\right)(s)\geq 0.$

KID KAPIKIEIKIEI YA GA

- For $k = 2$ these functions are known as ultramodular.
- For $d = 1$ this definition is the known one.
- Already for $d = 2$ increasing convexity and being 2 \uparrow are incomparable properties: on \mathbb{R}_+^2 the product is 2 - \uparrow , but not convex; and the Euclidean norm is convex, however not 2 -↑:

$$
\left(\Delta_{e_1}\Delta_{e_2}\sqrt{x^2+y^2}\right)(0)=\sqrt{2}-2
$$

There is a surprisingly close connection to **n** -↑ functions:

押 トイヨ トイヨ トー ヨー

Theorem 10.

Let $I \subseteq \mathbb{R}^d$ be an interval, $d, k \in \mathbb{N}$, $f: I \to \mathbb{R}$. Then

 f is $k - \uparrow \iff f$ is $n - \uparrow \forall n \in \mathbb{N}_0^d$ with $0 < |n| \leq k$.

Furthermore:

 \forall m \in $\mathbb{N},\; \forall$ interval $J \subseteq \mathbb{R}^m,\; \forall$ positive affine $\varphi:\mathbb{R}^m \to \mathbb{R}^d$

such that $\varphi(J) \subseteq I$, also $f \circ \varphi$ is $k - \uparrow$.

(□) (母) (月) (月) (月) 日 | 900 34

Theorem 10.

Let $I \subseteq \mathbb{R}^d$ be an interval, $d, k \in \mathbb{N}$, $f: I \to \mathbb{R}$. Then

$$
f \text{ is } k - \uparrow \quad \Leftrightarrow \quad f \text{ is } \mathbf{n} - \uparrow \ \forall \, \mathbf{n} \in \mathbb{N}_0^d \text{ with } 0 < |\mathbf{n}| \leq k.
$$

Furthermore:

 \forall m \in $\mathbb{N},\; \forall$ interval $J \subseteq \mathbb{R}^m,\; \forall$ positive affine $\varphi:\mathbb{R}^m \to \mathbb{R}^d$

such that $\varphi(J) \subseteq I$, also $f \circ \varphi$ is $k - \uparrow$.

Corollary 5.

 $I\subseteq \mathbb{R}^d$, $B\subseteq \mathbb{R}$ intervals, $g:I\to B$ and $f:B\to \mathbb{R}$ both k - \uparrow , then so is $f \circ g$.

Because: $0 < |\mathbf{n}| \leq k \Rightarrow f |\mathbf{n}| - \uparrow$, g $\mathbf{n} - \uparrow \Rightarrow f \circ g \mathbf{n} - \uparrow$.

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニヨー つ Q (V)

Lemma 2.

 $I\subseteq \mathbb{R}^{d_1}$, $J\subseteq \mathbb{R}^{d_2}$ intervals, $f:I\to \mathbb{R}_+$, $g:J\to \mathbb{R}_+$ both k - \uparrow

 \Rightarrow f \otimes g k - \uparrow on $I \times J$. In case $I = J$ the product f \cdot g is also k - \uparrow .

する イヨン オミット ミー

 Ω ³⁵

Lemma 2.

$$
I\subseteq \mathbb{R}^{d_1}, J\subseteq \mathbb{R}^{d_2} \text{ intervals, } f: I\to \mathbb{R}_+, g: J\to \mathbb{R}_+ \text{ both } k \cdot \uparrow
$$

 \Rightarrow f \otimes g k - \uparrow on $I \times J$. In case $I = J$ the product f \cdot g is also k - \uparrow .

Proof.

 $\left[\Delta^{m,n}_{\ell} \right]$ $_{(h^{(1)},h^{(2)})}(f\otimes g)\Bigr]$ $(x,y)=\left(\Delta_{h^{(1)}}^{\mathsf{m}}f\right)(x)\cdot\left(\Delta_{h^{(2)}}^{\mathsf{n}}g\right)(y).$ For $|(\mathbf{m}, \mathbf{n})| = |\mathbf{m}| + |\mathbf{n}| \le k$ both factors are ≥ 0 ($\mathbf{m} = 0$ or $\mathbf{n} = 0$ is possible, therefore $f \geq 0$, $g \geq 0$). For $I=J$, let $\varphi:\mathbb{R}^d\to\mathbb{R}^{2d}$ be given by $\varphi(x)\coloneqq (x,x)$, a linear positive map, with $\varphi(I) \subseteq I \times I$. Therefore $(f \otimes g) \circ \varphi = f \cdot g$ is also $k - \uparrow$.

4 ロ > 4 何 > 4 ヨ > 4 ヨ > - ヨ - 9 Q (2)

4. *k*-increasing functions ($k \in \mathbb{N}$!) in any dimension

Examples.

Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k-\uparrow$ on $\mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^d x^{c_i}$ $(c_i > 0)$ is k - \uparrow on \mathbb{R}^d_+ at least for $k \leq c_i + 1 \; \forall i$.

イロン イ母ン イヨン イヨン・ヨー

36

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k-\uparrow$ on $\mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^d x^{c_i}$ $(c_i > 0)$ is k - \uparrow on \mathbb{R}^d_+ at least for $k \leq c_i + 1 \; \forall i$.
- **•** For $a > 0$ the function $f(x, y) := (xy a)_+$ is 2 ↑, since $(t a)_+$ is 2 -↑ on R+. So, by Theorem 10, f is (1*,* 1)-↑, but not (2*,* 2)-↑ as we saw earlier. It is even not $(1,2)$ - ↑: $\left(\Delta_{\frac{1}{2},1}^{(1,2)}f\right)(\frac{1}{2},1)=-\frac{1}{2}$, for $a=1.$ 2

イロト イ伊 トイヨト イヨト ニヨー

36

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k-\uparrow$ on $\mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^d x^{c_i}$ $(c_i > 0)$ is k - \uparrow on \mathbb{R}^d_+ at least for $k \leq c_i + 1 \; \forall i$.
- **•** For $a > 0$ the function $f(x, y) := (xy a)_+$ is 2-↑, since $(t a)_+$ is 2 -↑ on R+. So, by Theorem 10, f is (1*,* 1)-↑, but not (2*,* 2)-↑ as we saw earlier. It is even not $(1,2)$ - ↑: $\left(\Delta_{\frac{1}{2},1}^{(1,2)}f\right)(\frac{1}{2},1)=-\frac{1}{2}$, for $a=1.$ 2
- **•** The tensor product $g(x, y) := (x a)_+ \cdot (y b)_+$, where $a, b > 0$, is $(2, 2)$ - \uparrow , hence certainly 2 - \uparrow , but not 3 - \uparrow , since $x \mapsto (x - a)_+$ is not.

キロメ 不得 メモンス ヨンド ヨー

36

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k-\uparrow$ on $\mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^d x^{c_i}$ $(c_i > 0)$ is k - \uparrow on \mathbb{R}^d_+ at least for $k \leq c_i + 1 \; \forall i$.
- **•** For $a > 0$ the function $f(x, y) := (xy a)_+$ is 2-↑, since $(t a)_+$ is 2 -↑ on R+. So, by Theorem 10, f is (1*,* 1)-↑, but not (2*,* 2)-↑ as we saw earlier. It is even not $(1,2)$ - ↑: $\left(\Delta_{\frac{1}{2},1}^{(1,2)}f\right)(\frac{1}{2},1)=-\frac{1}{2}$, for $a=1.$ 2
- **•** The tensor product $g(x, y) := (x a)_+ \cdot (y b)_+$, where $a, b > 0$, is $(2, 2)$ - \uparrow , hence certainly 2 - \uparrow , but not 3 - \uparrow , since $x \mapsto (x - a)_+$ is not.
- $(xyz a)_+^2$ is 3 \uparrow on \mathbb{R}^3_+ , $(xy a)_+^2$ 3 \uparrow on \mathbb{R}^2_+ .

イロン イ母ン イヨン イヨン・ヨー

36

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k-\uparrow$ on $\mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^d x^{c_i}$ $(c_i > 0)$ is k - \uparrow on \mathbb{R}^d_+ at least for $k \leq c_i + 1 \; \forall i$.
- **•** For $a > 0$ the function $f(x, y) := (xy a)_+$ is 2-↑, since $(t a)_+$ is 2 -↑ on R+. So, by Theorem 10, f is (1*,* 1)-↑, but not (2*,* 2)-↑ as we saw earlier. It is even not $(1,2)$ - ↑: $\left(\Delta_{\frac{1}{2},1}^{(1,2)}f\right)(\frac{1}{2},1)=-\frac{1}{2}$, for $a=1.$ 2
- **•** The tensor product $g(x, y) := (x a)_+ \cdot (y b)_+$, where $a, b > 0$, is $(2, 2)$ - \uparrow , hence certainly 2 - \uparrow , but not 3 - \uparrow , since $x \mapsto (x - a)_+$ is not.
- $(xyz a)_+^2$ is 3 \uparrow on \mathbb{R}^3_+ , $(xy a)_+^2$ 3 \uparrow on \mathbb{R}^2_+ .
- $f(x, y, z) \coloneqq xy + xz + yz xyz$ on $[0, 1]^3$ Then $f_1 = y + z - yz \ge 0$, $f_{(1,1)} = 0$, $f_{(1,2)} = 1 - z \ge 0$, $f_{(1,2,3)} = -1$ i.e. f is 2 - \uparrow , but not 3 - \uparrow .

イロト イ伊 トイヨト イヨト ニヨー

36

Intermezzo: **Bernstein polynomials**

$$
b_{i,r}(t) := {r \choose i} t^{i} (1-t)^{r-i}, \quad r \in \mathbb{N}, \ i \in \{0,1,\ldots,r\}, \ t \in \mathbb{R}
$$

 $\mathsf{For} \,\, \mathbf{i} = (i_1, \ldots, i_d) \in \{0, 1, \ldots, r\}^d$

$$
B_{\mathbf{i},r}:=b_{i_1}\otimes\ldots\otimes b_{i_d}.
$$

For any $f:[0,1]^d \to \mathbb{R}$ the associated Bernstein polynomials $f^{(1)}, f^{(2)}, \ldots$ are defined by

$$
f^{(r)} := \sum_{0 \leq i \leq r_d} f\left(\frac{i}{r}\right) B_{i,r}
$$

同→ K ヨ > K ヨ > Ⅰ = Ⅰ + 9 Q (2 37

For each continuity point x of f we have

$$
f^{(r)}(x) \to f(x), \quad r \to \infty.
$$

4 0 8

 $\overline{f}(\overline{f})$ \rightarrow \overline{f} \rightarrow \overline{f} \rightarrow \overline{f} \rightarrow \overline{f} \rightarrow \overline{f}

38

Þ

For each continuity point x of f we have

$$
f^{(r)}(x) \to f(x), \quad r \to \infty.
$$

In the following, the "upper right boundary" of $[0,1]^d$ will play a role.

For
$$
\alpha \subseteq [d]
$$
 let $T_{\alpha} := \{x \in [0,1]^d | x_i < 1 \Leftrightarrow i \in \alpha\}$. Then

$$
[0,1]^d = \bigcup_{\alpha \subseteq [d]} T_{\alpha} \text{ is a disjoint union}
$$

$$
T_{\emptyset} = \{\mathbf{1}_d\}, \ T_{[d]} = [0,1]^d
$$

and $\bigcup_{\alpha \subsetneq [d]} \mathcal{T}_\alpha$ is called the *upper right boundary* of $[0,1]^d$.

押す メミメメミメーキー

38

It is easy to show, that on each part T_α ($\alpha \subsetneq d$) of this boundary the restriction $f|T_\alpha$ has as its Bernstein polynomials the restrictions $f^{(r)}|T_\alpha.$ Thus we have the

Lemma 3.

Let $f:[0,1]^d \rightarrow \mathbb{R}$ have the property that each restriction $f|T_\alpha$ for $\emptyset\neq\alpha\subseteq[d]$ is continuous. Then $\lim_{r\to\infty}f^{(r)}(\mathsf{x})=f(\mathsf{x})$ $\forall\mathsf{x}\in[0,1]^d$, i.e. $f^{(r)}$ converges pointwise to f.

 $($ Note that $f^{(r)}(\mathbf{1}_d) = f(\mathbf{1}_d) \ \forall r$. $)$

イ母 トメミ メミメーミー

39

It is easy to show, that on each part T_α ($\alpha \subsetneq [d]$) of this boundary the restriction $f|T_\alpha$ has as its Bernstein polynomials the restrictions $f^{(r)}|T_\alpha.$ Thus we have the

Lemma 3.

Let $f:[0,1]^d \rightarrow \mathbb{R}$ have the property that each restriction $f|T_\alpha$ for $\emptyset\neq\alpha\subseteq[d]$ is continuous. Then $\lim_{r\to\infty}f^{(r)}(\mathsf{x})=f(\mathsf{x})$ $\forall\mathsf{x}\in[0,1]^d$, i.e. $f^{(r)}$ converges pointwise to f.

 $($ Note that $f^{(r)}(\mathbf{1}_d) = f(\mathbf{1}_d) \ \forall r$. $)$

Lemma 4.

Let $f : [0,1]^d \to \mathbb{R}$ be 2 - \uparrow . Then

- \bigcirc f is continuous iff f is continuous in $\mathbf{1}_d$.
- \bullet f is right-continuous and on $[0,1]$ ^d continuous.

4 ロ > 4 何 > 4 ヨ > ィヨ > 三王 → 9 Q (2-39)

4. *k*-increasing functions ($k \in \mathbb{N}!$) in any dimension

Theorem 11.

 $f: [0,1]^d \to \mathbb{R}, \ 2_d \leq \mathsf{n} \in \mathbb{N}_0^d, \ 2 \leq k \in \mathbb{N}.$

①
$$
f \, \mathbf{n} \, \rightarrow \, \Rightarrow
$$
 each $f^{(r)} \text{ is } \mathbf{n} \, \rightarrow \, \uparrow$ and $f^{(r)} \rightarrow f$ pointwise

 \bigcirc f k - \uparrow \Rightarrow each f^(r) is k - \uparrow and f^(r) \rightarrow f pointwise

4 ロ > 4 何 > 4 ヨ > 4 ヨ > - ヨ - 4 0 9 9 0 4 10

4. *k*-increasing functions ($k \in \mathbb{N}$!) in any dimension

Theorem 11.

 $f: [0,1]^d \to \mathbb{R}, \ 2_d \leq \mathsf{n} \in \mathbb{N}_0^d, \ 2 \leq k \in \mathbb{N}.$ \bigcirc f **n** - \uparrow \Rightarrow each f^(r) is **n** - \uparrow and f^(r) \rightarrow f pointwise \bigcirc f k - \uparrow \Rightarrow each f^(r) is k - \uparrow and f^(r) \rightarrow f pointwise

We can now tackle another natural question on the preservation of monotonicity, related but different to the previous one.

If $g_1, \ldots, g_m : I \rightarrow [0, 1]$ are d.f.s on some *d*-dimensional interval,

$$
g=(g_1,\ldots,g_m): I\to [0,1]^m, \text{ i.e. } g(s)=(g_1(s),g_2(s),\ldots),
$$

for which functions f on $[0,1]^m$ is $f \circ g$ again a d.f.?

イ母 トマミメ マミメーヨー

 Ω ⁴⁰

Theorem 11.

 $f: [0,1]^d \to \mathbb{R}, \ 2_d \leq \mathsf{n} \in \mathbb{N}_0^d, \ 2 \leq k \in \mathbb{N}.$ \bigcirc f **n** - \uparrow \Rightarrow each f^(r) is **n** - \uparrow and f^(r) \rightarrow f pointwise \bigcirc f k - \uparrow \Rightarrow each f^(r) is k - \uparrow and f^(r) \rightarrow f pointwise

We can now tackle another natural question on the preservation of monotonicity, related but different to the previous one.

If $g_1, \ldots, g_m : I \rightarrow [0, 1]$ are d.f.s on some *d*-dimensional interval,

$$
g=(g_1,\ldots,g_m): I\to [0,1]^m, \text{ i.e. } g(s)=(g_1(s),g_2(s),\ldots),
$$

for which functions f on $[0,1]^m$ is $f \circ g$ again a d.f.? For $d = 1$ f has just to be increasing (and right-cont.), for $d = 2$ this is not sufficient:

$$
g_1(s,t) \coloneqq \frac{s+t}{2}, \ g_2(s,t) \coloneqq st, \ f = 1_{[(\frac{1}{2},\frac{1}{2}),(1,1)]}
$$

$$
\Rightarrow \left[\Delta_{(\frac{1}{2},\frac{1}{2})}^{(1,1)}f \circ (g_1, g_2)\right] \left(\frac{1}{2},\frac{1}{2}\right) = -1.
$$

4 ロ > 4 何 > 4 ヨ > ィヨ > 三目 - 9 Q (2-40)

Here is our **second main result**:

Theorem 12.

Let $f : [0,1]^m \to \mathbb{R}_+$ be $d \cdot \uparrow$ $(d \geq 2)$, and let $\mathbb{g}_1,\ldots,\mathbb{g}_m:\mathbb{R}^d\to[0,1]$ be d.f.s of (subprobability) measures. Then, also $f \circ (g_1, \ldots, g_m)$ is a d.f. on \mathbb{R}^d .

4 ロ > 4 何 > 4 ヨ > 4 ヨ > - ヨ - 9 Q (2-41)

Here is our **second main result**:

Theorem 12.

Let $f : [0,1]^m \to \mathbb{R}_+$ be $d \cdot \uparrow$ $(d \geq 2)$, and let $\mathbb{g}_1,\ldots,\mathbb{g}_m:\mathbb{R}^d\to[0,1]$ be d.f.s of (subprobability) measures. Then, also $f \circ (g_1, \ldots, g_m)$ is a d.f. on \mathbb{R}^d .

Idea of proof:

$$
g\coloneqq (g_1,\ldots,g_m),\ h\coloneqq f\circ g
$$

h is right-continuous (since f is by Lemma 1).

To show: h is $\mathbf{1}_d$ - \uparrow !

Because of Theorem 11 we may assume f to be C^{∞} .

4 ロ > 4 何 > 4 ヨ > ィヨ > 三目 - 9 Q (2014)

Idea of proof:

 \bigodot Also g_1, \ldots, g_d are C^{∞} .

An explicite and rather complicated generalization of the usual multivariate chain rule and of Faà di Bruno's formula leads to the result (Constantine & Savits, TAMS 1996).

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

 Ω ⁴²

Idea of proof:

■ Also g_1, \ldots, g_d are C^{∞} .

An explicite and rather complicated generalization of the usual multivariate chain rule and of Faà di Bruno's formula leads to the result (Constantine & Savits, TAMS 1996).

2 To show: for
$$
x \in \mathbb{R}^d
$$
 and $\xi \in \mathbb{R}^d_+$

\n
$$
\left(\Delta_{\xi}^{1_d} h\right)(x) = h(x + \xi) \mp \ldots + (-1)^d h(x) \ge 0
$$
\n
$$
\exists C^{\infty} \text{ d.f.s } \tilde{g}_1, \ldots, \tilde{g}_m \text{ such that } \tilde{g}_i | B = g_i | B \forall i \le d, \text{ where}
$$
\n
$$
B := \{x + \sum_{i \in \alpha} \xi_i e_i | \alpha \subseteq [d] \}.
$$
\n
$$
\Rightarrow 0 \le \Delta_{\xi}^{1_d} (f \circ \tilde{g})(x) = \left(\Delta_{\xi}^{1_d} h\right)(x).
$$

For $d = 2$ this result was proved in 2011 (Klement et al., Inf. Sc.).

 $4E+4E+E=0.900$ 42

Corollary 6.

Let
$$
m, d, k \in \mathbb{N}
$$
, $J \subseteq \mathbb{R}^m$ and $I \subseteq \mathbb{R}^d$ intervals,

$$
g=(g_1,\ldots,g_m): I\to J,\ f:J\to\mathbb{R},\ \mathbf{n}\in\mathbb{N}^d.
$$

• If each
$$
g_i
$$
 is $n - \uparrow$, and f is $|n| - \uparrow$, then $f \circ g$ is $n - \uparrow$

① If each
$$
g_i
$$
 and f are $k - \uparrow$, then so is $f \circ g$.

Corollary 6.

Let
$$
m, d, k \in \mathbb{N}
$$
, $J \subseteq \mathbb{R}^m$ and $I \subseteq \mathbb{R}^d$ intervals,

$$
g=(g_1,\ldots,g_m): I\to J,\ f:J\to\mathbb{R},\ \mathbf{n}\in\mathbb{N}^d.
$$

- (i) If each gⁱ is **n** *-*↑, and f is |**n**| *-*↑, then f g is **n** *-*↑
- If each g_i and f are k $-\uparrow$, then so is f $\circ g$.

Proof.

(i) By Theorem 8 each $g_i \circ \sigma_{\bf n}$ is ${\bf 1}_{|{\bf n}|}$ - \uparrow , hence so is by Theorem 12

$$
f\circ (g_1\circ \sigma_{\mathbf{n}},\ldots,g_m\circ \sigma_{\mathbf{n}})=(f\circ g)\circ \sigma_{\mathbf{n}},
$$

and again Theorem 8 shows f ◦ g to be **n** -↑. (ii) For any $\mathbf{n} \in \mathbb{N}^d$ ^d with |**n**| ∈ N with $|\mathbf{n}| \leq k$ each g_i is \mathbf{n} - \uparrow , hence $f \circ g$ is $\mathbf{n} - \uparrow$. By Theorem 10 $f \circ g$ is $k - \uparrow$.

イロン イ母ン イヨン イヨン・ヨー

$$
\nabla f := -\Delta f, \text{ i.e. } (\nabla_h f)(s) := f(s) - f(s+h)
$$

Definition 3.

 $f: I \to \mathbb{R}$ is \mathbf{n} - \downarrow ("**n**-decreasing") iff

$$
\left(\nabla_h^{\mathbf{p}}f\right)(s) \geq 0 \ \forall s \in I, \ h \in \mathbb{R}_+^d, \ 0 \lneqq \mathbf{p} \leq \mathbf{n}.
$$

And f is **n** -↕ ("**n**-alternating") iff

 $(\nabla_h^{\mathbf{p}})$ $\mathbf{p}_h(\mathbf{r}) \leq 0 \ \forall \mathbf{s} \in I, \ \mathbf{h} \in \mathbb{R}_+^d, \ 0 \lneqq \mathbf{p} \leq \mathbf{n}.$

メタメ スラメスラメーラー

44

Remarks.

(a) f is **n** -↓ on I ⇔ f (− **·**) is **n** -↑ on −I

• f is
$$
n-\uparrow
$$
 on $l \Leftrightarrow -f(-\cdot)$ is $n-\uparrow$ on $-l$

(c) A C[∞] function f is **n** -↓ iff (−1) |**p**| f**^p** ≥ 0 ∀0 ≨ **p** ≤ **n**, and f is **n** - \updownarrow iff $(-1)^{|\mathbf{p}|} f_{\mathbf{p}} \le 0$ instead.

Remarks.

(a) f is **n** -↓ on I ⇔ f (− **·**) is **n** -↑ on −I

• *f* is
$$
n - \hat{f}
$$
 on $l \Leftrightarrow -f(-\cdot)$ is $n - \hat{f}$ on $-l$

(c) A C[∞] function f is **n** -↓ iff (−1) |**p**| f**^p** ≥ 0 ∀0 ≨ **p** ≤ **n**, and f is **n** - \updownarrow iff $(-1)^{|\mathbf{p}|} f_{\mathbf{p}} \le 0$ instead.

For $d = 1$:

f is 2 - $\uparrow \Leftrightarrow f$ is increasing and convex f is 2 - $\downarrow \Leftrightarrow f$ is decreasing and convex f is 2- $\uparrow \Leftrightarrow f$ is increasing and concave

4 ロ > 4 何 > 4 ヨ > ィヨ > ニヨー イクタイト 45

Remarks.

(a) f is **n** -↓ on I ⇔ f (− **·**) is **n** -↑ on −I

• *f* is
$$
n - \hat{f}
$$
 on $l \Leftrightarrow -f(-\cdot)$ is $n - \hat{f}$ on $-l$

(c) A C[∞] function f is **n** -↓ iff (−1) |**p**| f**^p** ≥ 0 ∀0 ≨ **p** ≤ **n**, and f is **n** - \updownarrow iff $(-1)^{|\mathbf{p}|} f_{\mathbf{p}} \le 0$ instead.

For $d = 1$:

f is 2 - $\uparrow \Leftrightarrow f$ is increasing and convex

f is 2 - $\downarrow \Leftrightarrow f$ is decreasing and convex

f is 2- $\uparrow \Leftrightarrow f$ is increasing and concave

 $f \geq 0$ is $n - \text{ and } y \in \mathbb{N}$ (" ∞ - $\text{ } \uparrow$ ") \Leftrightarrow f is a Bernstein function

4 ロ > 4 何 > 4 ヨ > ィヨ > 三目 - 9 Q Q - 45

An easy consequence of Theorem 1 is

Williamson's theorem.

If f : $]0,\infty[\rightarrow \mathbb{R}_+$ is $n-\downarrow$, $n \geq 2$, then

$$
f(s)=\int (1-cs)_+^{n-1} d\mu(c)
$$

where μ is a measure on \mathbb{R}_+ .

 $(n - \downarrow$ functions are often called "*n*-monotone") A (more recent) generalization reads:

If
$$
f:]0, \infty[^d \to \mathbb{R}_+
$$
 is $\mathbf{n} \cdot \downarrow$, $\mathbf{n} \geq \mathbf{2}_d$, then

$$
f(s) = \int \prod_{i=1}^d (1 - c_i s_i)^{n_i - 1}_+ d\mu(c)
$$

with μ a measure on $\mathbb{R}^d_+.$

46

An interesting appearance of $3-\hat{z}$ functions: For $x, y, z \in \mathbb{R}$ we have always

 $|x + y| + |y + z| + |z + x| < |x| + |y| + |z| + |x + y + z|$

the socalled Hornich-Hlawka inequality. This can be generalized as follows:

Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be 3- \mathbb{C} , then $\forall x, y, z \in \mathbb{R}$

 $f(|x+y|)+f(|y+z|)+f(|z+x|) \leq f(|x|)+f(|y|)+f(|z|)+f(|x+y+z|).$

 $f =$ id gives the original inequality, which also holds for vectors $x,y,z.$ The above generalization for $x,y,z\in\mathbb{R}^d$ can be shown for f(t) = \sqrt{t} , $f(t) = \sqrt[4]{t}$, $f(t) = \sqrt[8]{t}$, ..., but is open for other (Bernstein) functions.

4 ロ > 4 何 > 4 ヨ > ィヨ > 三目 - 9 Q (2014)

The remarks given before are useful even in dimension one, as shown in the following

Example.

$$
\varphi(t) \coloneqq -\log(1-e^{-t}), \quad t \in]0,\infty[
$$

Then φ is completely montone, i.e. $n - \downarrow$ for each $n \in \mathbb{N}$, and this was shown in an article from 2018 by using so-called Eulerian numbers (of permutations). It follows also from

$$
\varphi(-\cdot) = \underbrace{[-\log(1-\cdot)]}_{n\uparrow} \circ \underbrace{\exp}_{n\uparrow} \quad \text{(on }] - \infty, 0[)
$$

using the Bernstein function $log(1 + t)$:

φ(− **·**) is n -↑ as composition of two such functions, hence *φ* is $n - \downarrow \forall n \in \mathbb{N}$.

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニヨー つ Q (V)

Of special importance is again $\mathbf{n} = \mathbf{1}_d$. Non-negative $\mathbf{1}_d$ - \downarrow functions are (essentially) survival-functions, i.e. of the form $\mu([s,\infty])$ for some measure μ . Non-negative $\mathbf{1}_d$ - \updownarrow are (essentially) co-survival functions, i.e. of the form $\mu([s,\infty]^{\complement})$ for some $\mu.$

Of special importance is again $\mathbf{n} = \mathbf{1}_d$. Non-negative $\mathbf{1}_d$ - \downarrow functions are (essentially) survival-functions, i.e. of the form $\mu([s,\infty])$ for some measure μ .

Non-negative $\mathbf{1}_d$ - \updownarrow are (essentially) co-survival functions, i.e. of the form $\mu([s,\infty]^{\complement})$ for some $\mu.$

A particular subclass of the latter is of special interest:

A d.f. \digamma on \mathbb{R}^d_+ is called a *simple multivariate extreme value* distribution iff

$$
(F(tx))^t = F(x) \quad \forall x \in \mathbb{R}^d_+, \ \forall t > 0
$$

and if F has standard Fréchet margins, defined by the (one-dimensional) d.f. $\exp\left(-\frac{1}{u}\right)$ $\left(\frac{1}{u}\right)$ for $u>0$. Then $\mathit{F}(x)=0$ if $x_i = 0$ for some *i*, and $0 < F(x) < 1$ else.

(ロンマ 海 マ マ モ マ マ モ マ ニ モ

$$
f(x) \coloneqq -\log F\left(\frac{1}{x}\right) \quad \text{where } \frac{1}{x} \coloneqq \left(\frac{1}{x_1}, \frac{1}{x_2}, \ldots\right)
$$

is called a stable tail dependence function (STDF). It is a function $f:\mathbb{R}_{+}^{d}\rightarrow\mathbb{R}_{+}$ with the properties

(0) f is homogeneous, i.e. $f(tx) = tf(x) \forall t > 0, \forall x$

$$
\textcolor{red}{\bullet} \quad f(e_i) = 1 \,\, \forall i = 1, \ldots, d
$$

$$
\bullet \quad \max_{i\leq d} x_i \leq f(x) \leq \sum_{i=1}^d x_i
$$

 f is convex

but this is a full characterization of STDFs only for $d = 2$. In higher dimensions, this had been an open problem for some time.

何 → (ヨ → (ヨ → ニヨ)
The answer I could give is as follows:

Theorem 13.

A function $f:\mathbb{R}^d_+\rightarrow\mathbb{R}$ is a STDF if and only if f is homogeneous,

 $1_d - \hat{ }_s$, and $f(e_1) = \cdots = f(e_d) = 1$.

In this case f is the co-survival function of a homogeneous Radon measure μ on $[0,\infty]^d \setminus \{\infty\}$, i.e.

$$
f(x) = \mu\left([x,\infty]^{\complement}\right) \quad , \ x \in \mathbb{R}^d_+.
$$

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

51

 $2Q$

The answer I could give is as follows:

Theorem 13.

A function $f:\mathbb{R}^d_+\rightarrow\mathbb{R}$ is a STDF if and only if f is homogeneous, $1_d - \hat{ }$, and $f(e_1) = \cdots = f(e_d) = 1$. In this case f is the co-survival function of a homogeneous Radon

measure μ on $[0,\infty]^d \setminus \{\infty\}$, i.e.

$$
f(x) = \mu\left([x,\infty]^{\complement}\right) \quad , \ x \in \mathbb{R}^d_+.
$$

In this case f has the unique integral representation

$$
f(x) = f(\mathbf{1}_d) \cdot \int \max_{i \leq d} (c_i x_i) d\nu(c),
$$

 ν being a probability measure on $\{c \in \mathbb{R}^d_+ \,|\, \max_{i \leq d} c_i = 1\}.$

押す メミメメミメーキー

 Ω ⁶ 51

Examples.

- The classical norms $f_p(x) := \left(\sum_{i=1}^d x_i^p\right)^{\frac{1}{p}}$ for $p \geq 1$, up to $f_{\infty}(x) := \max_{i \leq d} x_i$ (GUMBEL) $f(x,y) = \frac{x^2 + xy + y^2}{x+y}$ $\frac{+xy+y^2}{x+y}$ on \mathbb{R}^2_+
- $\sum_i x_i \sum_{i < j} (x_i^p + x_j^p)^{\frac{1}{p}} \pm \cdots + (-1)^{d-1} \left(\sum_i x_i^p\right)^{\frac{1}{p}}$ for $p < 0$ (GALAMBOS)

 $\left(\sqrt{10} + 4\right)$ $\left(\sqrt{2} + 1\right)$ $\left(\sqrt{2} + 1\right)$

Examples.

The classical norms $f_p(x) := \left(\sum_{i=1}^d x_i^p\right)^{\frac{1}{p}}$ for $p \geq 1$, up to $f_{\infty}(x) := \max_{i \leq d} x_i$ (GUMBEL)

•
$$
f(x, y) = \frac{x^2 + xy + y^2}{x + y}
$$
 on \mathbb{R}^2_+

 $\sum_i x_i - \sum_{i < j} (x_i^p + x_j^p)^{\frac{1}{p}} \pm \cdots + (-1)^{d-1} \left(\sum_i x_i^p\right)^{\frac{1}{p}}$ for $p < 0$ (GALAMBOS)

Which (univariate) functions preserve **n** -↓ (multivariate) functions? Answer: exactly those preserving **n** -↑ ones, because of Remark (a). And which ones preserve **n** -↕ functions:

• g n-
$$
\uparrow
$$
, f |n|- \uparrow \Rightarrow f o g is n- \uparrow
since $-(f \circ g)(-\cdot) = [-f(-\cdot)] \circ [-g(-\cdot)],$

•
$$
g \mathbf{n} \cdot \hat{\mathbf{\jmath}}
$$
, $f |\mathbf{n}| \cdot \mathbf{\downarrow} \Rightarrow f \circ g$ is $\mathbf{n} \cdot \mathbf{\downarrow}$
since $f \circ g(-\cdot) = [f(-\cdot)] \circ [-g(-\cdot)].$

(□) (何) (日) (日) (日) 20 (Q 52

An open problem:

$$
K := \{f : [0,1]^2 \to \mathbb{R}_+ \mid f \text{ is } 2-\uparrow, f(1,1) = 1\}
$$

Then K is compact and convex, multiplicatively stable.

- Is K a Bauer simplex?
- Determine $ex(K)!$

I could prove that

$$
f_c\circ (f_a\otimes f_b)\in {\sf ex}(K)
$$

 \forall a, b, c $\in [0,1]$ $(f_a(t)=(t-a)_+/(1-a),\ f_1\coloneqq 1_{\{1\}}).$

Are there other extreme points?

in a money and money in the second

 OQ 53