Multivariate Higher Order Monotonicity – and its Preservation

Paul Ressel

Katholische Universität Eichstätt-Ingolstadt

ICMS, Edinburgh Applied Matrix Positivity II

4th - 8th November 2024

୬ < ୍ 1

$$I_1, \ldots, I_d \subseteq \mathbb{R}$$
 intervals (always non-degenerate)
 $I := I_1 \times \cdots \times I_d, f : I \to \mathbb{R}$
For $s \in I, h \in \mathbb{R}^d_+$ such that also $s + h \in I$

$$(E_h f)(s) \coloneqq f(s+h)$$

 $\Delta_h \coloneqq E_h - E_0$, i.e. $(\Delta_h f)(s) \coloneqq f(s+h) - f(s)$

Since $\{E_h \mid h \in \mathbb{R}^d_+\}$ is commutative, so is $\{\Delta_h \mid h \in \mathbb{R}^d_+\}$. For any h, $\Delta_h^0 f \coloneqq f$ (also for h = 0), but $\Delta_0 f = 0 \forall f$.

伺 ト イ ヨ ト イ ヨ ト

For
$$\mathbf{n} = (n_1, \dots, n_d) \in \mathbb{N}_0^d$$
 and $h = (h_1, \dots, h_d) \in \mathbb{R}_+^d$

$$\Delta_h^{\mathbf{n}} \coloneqq \Delta_{h_1 e_1}^{n_1} \Delta_{h_2 e_2}^{n_2} \dots \Delta_{h_d e_d}^{n_d}$$

(where e_1, \ldots, e_d are standard unit vectors), so that $(\Delta_h^n f)(s)$ is defined for $s, s + \sum_{i=1}^d n_i h_i e_i \in I$. We first consider d = 1, $\mathbf{n} = n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ and put

$$\sigma_n(x_1,\ldots,x_n) \coloneqq x_1 + \cdots + x_n.$$

伺 と く き と く き と … き

na (~ 3

Assume I = [0, 1], hence $f : [0, 1] \rightarrow \mathbb{R}$. For $t \in [0, 1[$ and h > 0, $t + nh \leq 1$,

$$\begin{aligned} \left(\Delta_h^n f\right)(t) &= f(t+nh) - \binom{n}{1} f(t+(n-1)h) \pm \dots + (-1)^n f(t) \\ &= \left[\Delta_{(h,\dots,h)}^{(1,\dots,1)} (f \circ \sigma_n)\right] \left(\frac{t}{n},\dots,\frac{t}{n}\right). \end{aligned}$$

If a univariate f is C^{∞} , then

$$\Delta_h^n(f) \ge 0 \ \forall h > 0 \quad \Leftrightarrow \quad f^{(n)} \ge 0.$$

If a multivariate f is C^{∞} , then

$$\Delta_h^{\mathbf{n}}(f) \ge 0 \ \forall h \in \mathbb{R}^d_+ \quad \Leftrightarrow \quad f_{\mathbf{n}} \coloneqq \frac{\partial^{|\mathbf{n}|} f}{\partial x_1^{n_1} \dots \partial x_d^{n_d}} \ge 0$$

Definition 1.

 $I \subseteq \mathbb{R}^d$, $\mathbf{n} \in \mathbb{N}_0^d \setminus \{0\}$, $f: I \to \mathbb{R}$ is $\mathbf{n} \cdot \uparrow$ (read "**n**-increasing") iff

$$(\Delta^{\mathbf{p}}_{h}f)\left(s
ight)\geq0\,\,orall s\in \mathit{I},\,\,h\in\mathbb{R}^{d}_{+},\,\,\mathbf{p}\in\mathbb{N}^{d}_{0},\,\,0\lneq\mathbf{p}\leq\mathbf{n}$$

such that $s_j + p_j h_j \in I_j \ \forall j \in [d] \coloneqq \{1, \ldots, d\}.$

For a C^{∞} function f then

 $f \text{ is } \mathbf{n} \cdot \uparrow \quad \Leftrightarrow \quad f_{\mathbf{p}} \geq 0 \text{ for } 0 \lneq \mathbf{p} \leq \mathbf{n}.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 For d = 1, n = n ∈ N, f is 1-↑ iff f is (weakly) increasing, and f is 2-↑ iff f is increasing and convex.

•
$$d = 2, f(s_1, s_2) := (s_1 s_2 - a)_+, a > 0$$

 $f \text{ is } (1,0) -\uparrow, (0,1) -\uparrow, (1,1) -\uparrow \text{ (will be shown later), but not}$
 $(2,2) -\uparrow:$
 $\left(\Delta^{(2,2)}_{(\sqrt{a},\sqrt{a})}f\right)(0) = -a.$

伺 と く ヨ と く ヨ と

3

√ < C < 6</p>

Theorem 1.

 $f: [0,1[\rightarrow \mathbb{R}_+ \text{ is } n \ \uparrow (n \ge 2) \text{ iff } \exists ! a_0, \dots, a_{n-2} \ge 0 \text{ and a}$ measure μ on [0,1[such that

$$f(t) = a_0 + a_1t + \dots + a_{n-2}t^{n-2} + \int (t-a)_+^{n-1} d\mu(a).$$

f is continuous and for n > 2 (n - 2) times continuously differentiable.

伺 ト イヨ ト イヨ ト

Let
$$K_n := \{f : [0,1] \to \mathbb{R}_+ | f \text{ is } n \uparrow f(1) = 1\}$$
, and
 $f_a(t) := (t-a)_+/(1-a) \text{ for } 0 \le a < 1, f_1 := \mathbf{1}_{\{1\}},$
 $E_n := \{1, t, \dots, t^{n-2}\} \cup \{f_a^{n-1} | a \in [0,1]\}, n \ge 2$

Corollary 1.

$$K_n$$
 is a Bauer simplex, $ex(K_n) = E_n$ for $n \ge 2$.

Corollary 2.

If $f:[0,1[\to\mathbb{R}_+ \text{ is "absolutely monotone", i.e. }n\ -\uparrow\ \forall\ n\in\mathbb{N},$ then

$$f(t) = \sum_{j \ge 0} a_j t^j$$
 where $a_j \ge 0 \,\, orall j.$

Corollary 3.

$$\begin{split} & \mathcal{K}_{\infty} \coloneqq \bigcap_{n \ge 1} \mathcal{K}_n \text{ is a Bauer simplex with} \\ & \mathsf{ex}(\mathcal{K}_{\infty}) = \{1, t, t^2, \ldots\} \cup \{\mathbf{1}_{\{1\}}\}. \end{split}$$

First some special situations and examples.

•
$$f_j: I_j \to \mathbb{R}, \ 1 \le j \le d, \ f := f_1 \otimes \cdots \otimes f_d$$
, i.e.
 $f(s) = \prod_{i=1}^d f_i(s_i)$

Then

$$\left(\Delta_{h}^{\mathbf{p}}f\right)(s)=\prod_{j=1}^{d}\left(\Delta_{h_{j}}^{p_{j}}f_{j}\right)(s_{j})$$

for $\mathbf{p} \in \mathbb{N}_0^d$, $h \in \mathbb{R}_+^d$, implying for $f_j \geq 0$

$$f$$
 is **n**- \uparrow \Leftrightarrow f_j is n_j - \uparrow $\forall j$.

伺下 イヨト イヨト

•
$$f(s) := \sum_{j=1}^{d} f_j(s_j)$$
 (a "tensor sum")
Then

$$\Delta_h^{\mathbf{p}} f(s) = egin{cases} \Delta_{h_i}^{p_i} f_i(s_i) & ext{if } \mathbf{p} = p_i e_i, p_i \geq 1 \\ = 0 & ext{if } \mathbf{p} ext{ has more than one positive entry.} \end{cases}$$

$$f$$
 is \mathbf{n} - $\uparrow \Leftrightarrow f_j$ is n_j - $\uparrow \forall j$

 $(f_j \ge 0 \text{ not } necessary)$

$$\mathbf{0} \quad d = 2,$$

$$f(s,t) \coloneqq \int_0^\infty \underbrace{\mathbf{1}_{[a,\infty[(s)]}(t-a)_+}_{(1,2)\uparrow} da \text{ on } \mathbb{R}^2_+$$

$$= \int_0^{s \wedge t} (t-a)_+ da = (s \wedge t) \cdot \left(t - \frac{1}{2}(s \wedge t)\right)$$

$$f \text{ is } (1,2) \uparrow (\text{ and not more!})$$

$$f(s,t) \coloneqq (s \wedge t) \cdot \left(t - \frac{1}{2}(s \wedge t)\right)$$

< □ > < @ > < E > < E > ● 2 の Q 0 12

For $\mathbf{n} \in \mathbb{N}^d$, $\mathbf{n} \geq \mathbf{2}_d$ we consider

$$\mathcal{K}_{\mathbf{n}} \coloneqq \{ f : [0,1]^d \to \mathbb{R}_+ \, | \, f \text{ is } \mathbf{n} \, \text{-} \, \uparrow, f(\mathbf{1}_d) = 1 \},$$

obviously convex and compact, and

$$E_{\mathbf{n}} \coloneqq E_{n_1} \otimes \cdots \otimes E_{n_d} = \{f_1 \otimes \cdots \otimes f_d \mid f_i \in E_{n_i} \,\forall i\}.$$

Theorem 2.

For $\mathbf{n} \geq \mathbf{2}_d$ $K_{\mathbf{n}}$ is a Bauer simplex, and $ex(K_{\mathbf{n}}) = E_{\mathbf{n}}$.

・ 「 ・ ・ 」 ・ ・ ヨ ・ ・ ヨ ・

For example, if d = 2, any $f : [0,1]^2 \to \mathbb{R}_+$ which is (2,2)- \uparrow , has the form

$$f(s,t) = \int_{E_2 \times E_2} \rho_1(s) \rho_2(t) d\mu(\rho_1,\rho_2),$$

hence in case $f(s,0) = f(0,t) = 0 \ \forall s,t$,

$$f(s,t) = \int_{[0,1]^2} f_a(s) f_b(t) \, d\mu(a,b)$$

for some measure μ on $[0,1]^2$.

୬ ର ୲୰ 14

Let us now consider the special important case

$$\mathbf{n} = \mathbf{1}_{d} = (1, \dots, 1).$$

For $d = 2, h = (h_{1}, h_{2}) \in \mathbb{R}^{2}_{+}$
$$\left(\Delta_{h}^{(1,1)}f\right)(s, t) = f(s + h_{1}, t + h_{2}) - f(s, t + h_{2}) - f(s, t + h_{2}) - f(s + h_{1}, t) + f(s, t) \right)$$
$$\left(\Delta_{h}^{(1,0)}f\right)(s, t) = f(s + h_{1}, t) - f(s, t) - f(s, t) + \left(\Delta_{h}^{(0,1)}f\right)(s, t) = f(s, t + h_{2}) - f(s, t).$$

・部・・モン・モン・

æ

୬ < ଙ 15

For general $d \in \mathbb{N}$, $h \in \mathbb{R}^d_+$

$$\begin{split} \left(\Delta_{h}^{1_{d}}f\right)(s) &= f(s+h) - f(s_{1},s_{2}+h_{2},\ldots,s_{d}+h_{d}) - \cdots \\ &- f(s_{1}+h_{1},\ldots,s_{d-1}+h_{d-1},s_{d}) \\ &+ f(s_{1},s_{2},s_{3}+h_{3},\ldots,s_{d}+h_{d}) + \cdots \\ &\cdots + (-1)^{d}f(s). \end{split}$$

If f is the distribution function ("d.f.") of some measure μ , say on \mathbb{R}^d_+ , i.e.

$$f(s) = \mu([0,s]),$$

then

$$\left(\Delta_h^{\mathbf{1}_d}f\right)(s)=\mu(]s,s+h])\geq 0.$$

∽ ⊂ 16

Theorem 3.

Let $\emptyset \neq I_j \subseteq \mathbb{R}$ be arbitrary (not necessarily intervals), $j \leq d$, $I = I_1 \times \cdots \times I_d$, $f : I \to \mathbb{R}_+$. Then f is the d.f. of some measure on \overline{I}

 \Leftrightarrow f is $\mathbf{1}_d$ - \uparrow and right-continuous.

The proof relies on the fact, that $f(\geq 0)$ is $\mathbf{1}_d \uparrow \inf f$ is completely monotone on the semigroup (I, \wedge) iff f is positive definite on (I, \wedge) .

イボト イラト イラト ニラー

In dimension one any $2 - \uparrow$ function is right-continuous; if a multivariate f is (only) $\mathbf{1}_d - \uparrow$, this need **not** be the case:

 $f = \mathbf{1}_{[0,1]^2}$ on $[0,1]^2$.

However, for $\mathbf{n} \in \mathbb{N}^d$ each $\mathbf{n} \uparrow f$ is the pointwise limit of some net of $\mathbf{n} \uparrow \uparrow$ right-continuous functions.

(If $\mathbf{n} \geq \mathbf{2}_d$, then f itself is right-continuous.)

√ ⊂ 18

Application. Mean values as distribution functions

For $x \in]0, \infty[^d \text{ and } t \in \mathbb{R}$ consider

$$M_t(x) \coloneqq \left(\frac{1}{d}\sum_{i=1}^d x_i^t\right)^{\frac{1}{t}} \qquad \text{for } t \neq 0$$

$$M_0(x) \coloneqq \left(\prod_{i=1}^d x_i\right)^{\frac{1}{d}} \qquad \left(=\lim_{t\to 0} M_t(x)\right)$$

$$M_{\infty}(x) \coloneqq \max_{i\leq d} x_i \qquad \left(=\lim_{x\to\infty} M_t(x)\right)$$

$$M_{-\infty}(x) \coloneqq \min_{i\leq d} x_i \qquad \left(=\lim_{t\to -\infty} M_t(x)\right).$$

(日本) (日本) (日本) (日本)

√ ((19

(If t < 0 and $x_i = 0$ for some *i*, then $M_t(x) = 0$.)

The function $\mathbb{R} \ni t \mapsto M_t(x)$ (for non-constant x) is continuous and strictly increasing from min x_i to max x_i . Since $M_t(1, \ldots, 1) = 1$, these mean values are candidates for d.f.s of probability measures on $[0, 1]^d$.

伺 と く ヨ と く ヨ と ニヨー

Theorem 4.

$$\begin{split} & M_t|_{[0,1]^d} \text{ is a } d.f. \Leftrightarrow t \in [-\infty, \frac{1}{d-1}] \cup \{\frac{1}{d-2}, \dots, \frac{1}{2}, 1\} \\ & (t \in [-\infty, 1] \text{ for } d = 2) \end{split}$$

How to prove this?

$$M_t = f_t \circ \left(rac{1}{d}\sum_{i=1}^d x_i^t
ight), \quad f_t(s) \coloneqq s^{1/t} ext{ on }]0,\infty[$$

For t > 0, $\sum_{i=1}^{d} x_i^t$ is a tensor sum of increasing functions, hence $\mathbf{1}_d - \uparrow$.

We need to know which functions on \mathbb{R}_+ preserve this property!

<ロ> < 同> < 同> < 目> < 目> < 目> 目 の (? 21)

3. The multivariate case

The following result was essentially shown by P. M. Morillas (2005):

Theorem 5.

Let $I \subseteq \mathbb{R}^d$ and $J \subseteq \mathbb{R}$ be intervals, $g : I \to J$, $f : J \to \mathbb{R}$. Then, if g is $\mathbf{1}_d \cdot \uparrow$ and f is $d \cdot \uparrow$, $f \circ g$ is again $\mathbf{1}_d \cdot \uparrow$.

イロト イポト イヨト イヨト ニヨー

√ Q (~ 22

Theorem 5.

Let $I \subseteq \mathbb{R}^d$ and $J \subseteq \mathbb{R}$ be intervals, $g : I \to J$, $f : J \to \mathbb{R}$. Then, if g is $\mathbf{1}_d \cdot \uparrow$ and f is $d \cdot \uparrow$, $f \circ g$ is again $\mathbf{1}_d \cdot \uparrow$.

Let's apply this to the mean values M_t (for t > 0):

• for $t \in \{1, \frac{1}{2}, \frac{1}{3}, ...\}$ we have $f_t(s) = s^k$ for some $k \in \mathbb{N}$, hence f_t is absolutely monotone, and M_t a d.f.

Theorem 5.

Let $I \subseteq \mathbb{R}^d$ and $J \subseteq \mathbb{R}$ be intervals, $g : I \to J$, $f : J \to \mathbb{R}$. Then, if g is $\mathbf{1}_d \cdot \uparrow$ and f is $d \cdot \uparrow$, $f \circ g$ is again $\mathbf{1}_d \cdot \uparrow$.

Let's apply this to the mean values M_t (for t > 0):

- for $t \in \{1, \frac{1}{2}, \frac{1}{3}, ...\}$ we have $f_t(s) = s^k$ for some $k \in \mathbb{N}$, hence f_t is absolutely monotone, and M_t a d.f.
- for $t \in]0,1] \setminus \{1,\frac{1}{2},\frac{1}{3},\ldots\}$:

$$\left(x^{\frac{1}{t}}\right)^{(k)} = \frac{1}{t} \left(\frac{1}{t} - 1\right) \cdots \left(\frac{1}{t} - (k-1)\right) x^{\frac{1}{t}-k}$$
$$\frac{1}{t} > k-1 \implies \ldots > 0$$
$$\Leftrightarrow t < \frac{1}{k-1}$$

hence $t < \frac{1}{d-1}$ is sufficient for f_t to be $d - \uparrow$. (in fact also necessary; t > 1 will be dealt with later)

Before considering M_t for t < 0, this remark: Let $\alpha, \beta > 0$

then
$$x_i \mapsto -x_i^{-\alpha}$$
 is increasing on $]0, \infty[$
 $\Rightarrow x \mapsto -\sum x_i^{-\alpha}$ is $\mathbf{1}_d \uparrow \mathbf{n}]0, \infty[^d$
 $s \mapsto s^{-\beta}$ is completely monotone on $]0, \infty[$
 $\Leftrightarrow s \mapsto (-s)^{-\beta}$ is absolutely monotone on $]-\infty, 0[$

Now let t < 0, $\alpha \coloneqq -t$, $\beta \coloneqq -\frac{1}{t}$

$$\Rightarrow M_t(x) = d^{-1/t} \left[-\left(-\sum x_i^{-\alpha}\right) \right]^{-\beta} \text{ is } \mathbf{1}_d \cdot \uparrow,$$

again by Theorem 5.

An important supplement to Theorem 5:

Theorem 6.

Let $I \subseteq \mathbb{R}^d$ be an interval (always non-degenerate), $\sigma_d(x) \coloneqq \sum_{i=1}^d x_i, \ J \coloneqq \sigma_d(I), \ f : J \to \mathbb{R}.$ Then $f \text{ is } d \uparrow \Leftrightarrow f \circ \sigma_d \text{ is } \mathbf{1}_d \uparrow \uparrow.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

An important supplement to Theorem 5:

Theorem 6.

Let
$$I \subseteq \mathbb{R}^d$$
 be an interval (always non-degenerate),
 $\sigma_d(x) \coloneqq \sum_{i=1}^d x_i, \ J \coloneqq \sigma_d(I), \ f : J \to \mathbb{R}.$ Then
 $f \text{ is } d \text{ -} \uparrow \Leftrightarrow f \circ \sigma_d \text{ is } \mathbf{1}_d \text{ -} \uparrow.$

Here " \Rightarrow " follows from Theorem 5. For " \Leftarrow " it is sufficient to consider $I = [0, \frac{1}{d}]^d$ and J = [0, 1]. Then for $t \in [0, 1[, h > 0, t + k \cdot h \le 1 \ (k \le d)$

$$\left(\Delta_h^k f\right)(t) = f(t+kh) - \binom{k}{1} f(t+(k-1)h) + \dots + (-1)^k f(t)$$
$$= \left(\Delta_{(h,\dots,h)}^{\mathbf{1}_k,\mathbf{0}_{d-k}}(f \circ \sigma_d)\right) \left(\frac{t}{d},\dots,\frac{t}{d}\right)$$

However: attention!

We'd need $\frac{t}{d} + h \leq \frac{1}{d}$, or $t + dh \leq 1$, but only know $t + kh \leq 1$.

Lemma 1.

 $J \subseteq \mathbb{R}$ interval, $f : J \to \mathbb{R}$, $k \in \mathbb{N}$. If $\exists h_0 > 0$ such that $\left(\Delta_h^k f\right)(t) \ge 0 \ \forall t \in J$, $h \in]0, h_0]$ with $t + kh \in J$, then the same holds $\forall h > 0$ such that $t + kh \in J$.

To finish the proof of Theorem 6, choose $h_0 := \frac{1-t}{d}$.

However: attention!

We'd need $\frac{t}{d} + h \leq \frac{1}{d}$, or $t + dh \leq 1$, but only know $t + kh \leq 1$.

Lemma 1.

 $J \subseteq \mathbb{R}$ interval, $f : J \to \mathbb{R}$, $k \in \mathbb{N}$. If $\exists h_0 > 0$ such that $\left(\Delta_h^k f\right)(t) \ge 0 \ \forall t \in J$, $h \in]0, h_0]$ with $t + kh \in J$, then the same holds $\forall h > 0$ such that $t + kh \in J$.

To finish the proof of Theorem 6, choose $h_0 := \frac{1-t}{d}$.

Corollary 4.

 $f:[0,1] \rightarrow \mathbb{R}$ is $d \uparrow f \circ M_1$ is $\mathbf{1}_d \uparrow$.

くロ とく得 とくき とくき とうきょう

A natural question:

Suppose F is a two-dimensional d.f., G a three-dimensional d.f., for which functions f on $[0,1]^2$ is then always $f \circ (F \times G)$ a five-dimensional d.f.?

Apart from normalisation, when is $f(F(x), G(y)) \mathbf{1}_5 - \uparrow$?

4 B b 4 B b

Theorem 7.

Let $I_1 \subseteq \mathbb{R}^{n_1}, \ldots, I_d \subseteq \mathbb{R}^{n_d}$ be intervals, $g_1 : I_1 \to [0,1]$ $\mathbf{1}_{n_1} - \uparrow, \ldots, g_d : I_d \to [0,1]$ $\mathbf{1}_{n_d} - \uparrow, \mathbf{n} := (n_1, \ldots, n_d)$. If $f : [0,1]^d \to \mathbb{R}_+$ is $\mathbf{n} - \uparrow$, then $f \circ (g_1 \times \cdots \times g_d)$ is $\mathbf{1}_{|\mathbf{n}|} - \uparrow$.

<ロ><□><同><同><目><日><日><日><日><日><日><10</td>

Theorem 7.

Let
$$I_1 \subseteq \mathbb{R}^{n_1}, \ldots, I_d \subseteq \mathbb{R}^{n_d}$$
 be intervals, $g_1 : I_1 \to [0,1]$ $\mathbf{1}_{n_1} - \uparrow, \ldots, g_d : I_d \to [0,1]$
 $\mathbf{1}_{n_d} - \uparrow, \mathbf{n} := (n_1, \ldots, n_d)$. If $f : [0,1]^d \to \mathbb{R}_+$ is $\mathbf{n} - \uparrow$, then $f \circ (g_1 \times \cdots \times g_d)$ is $\mathbf{1}_{|\mathbf{n}|} - \uparrow$.

Proof.

We may assume $f(\mathbf{1}_d) = 1$, and also $\mathbf{n} \geq \mathbf{2}_d$. Then (Theorem 2)

$$f(s) = \int_{E_n} \prod_{i=1}^d \rho_i(s_i) d\mu(\rho_1, \ldots, \rho_d)$$

for some probability measure μ on E_n . So

$$f \circ (g_1 \times \cdots \times g_d) = \int \bigotimes_{i=1}^d (\rho_i \circ g_i) d\mu(\rho_1, \ldots, \rho_d)$$

where each $\rho_i \circ g_i$ is $\mathbf{1}_{n_i} \uparrow \uparrow$ (Theorem 5), therefore $\bigotimes_{i=1}^d (\rho_i \circ g_i)$ is $\mathbf{1}_{|\mathbf{n}|} \uparrow \uparrow$, and so is then $f \circ (g_1 \times \cdots \times g_d)$ as a mixture of those.

A special case would be $g_i = \sigma_{n_i}$ ($\forall i$) on suitable n_i -dimensional intervals. As a generalisation of Theorem 6 we have

$$(\sigma_{\mathbf{n}} := \sigma_{n_1} \times \cdots \times \sigma_{n_d})$$

Theorem 8.

Let $I_1 \subseteq \mathbb{R}^{n_1}, \ldots, I_d \subseteq \mathbb{R}^{n_d}$ be non-degenerate intervals,

$$J_i := \sigma_{n_i}(I_i), J := J_1 \times \cdots \times J_d$$
 and $f : J \to \mathbb{R}$. Then

$$f \text{ is } \mathbf{n} - \uparrow \quad \Leftrightarrow \quad f \circ \sigma_{\mathbf{n}} \text{ is } \mathbf{1}_{|\mathbf{n}|} - \uparrow$$

(similar proof!)

(日)

Finally, we get a natural generalisation of Theorem 5, our **first main result**:

Theorem 9.

Let $g_i : I_i \to [0, 1]$ be $\mathbf{m}_i \cdot \uparrow$, where $\mathbf{m}_i \in \mathbb{N}^{n_i}$. Put $g := g_1 \times \cdots \times g_d : I_1 \times \cdots \times I_d \to [0, 1]^d$. If $f : [0, 1]^d \to \mathbb{R}$ is $(|\mathbf{m}_1|, \ldots, |\mathbf{m}_d|) \cdot \uparrow$ then $f \circ g$ is $(\mathbf{m}_1, \ldots, \mathbf{m}_d) \cdot \uparrow$.

Finally, we get a natural generalisation of Theorem 5, our **first main result**:

Theorem 9.

Let $g_i : I_i \to [0, 1]$ be $\mathbf{m}_i \uparrow \uparrow$, where $\mathbf{m}_i \in \mathbb{N}^{n_i}$. Put $g := g_1 \times \cdots \times g_d : I_1 \times \cdots \times I_d \to [0, 1]^d$. If $f : [0, 1]^d \to \mathbb{R}$ is $(|\mathbf{m}_1|, \dots, |\mathbf{m}_d|) \uparrow \uparrow$ then $f \circ g$ is $(\mathbf{m}_1, \dots, \mathbf{m}_d) \uparrow \uparrow$.

Example.

 $d = 2, n_1 = 2, n_2 = 3, m_1 = (2, 4), m_2 = (3, 3, 2).$ If g_1 (bivariate) is $(2, 4) - \uparrow, g_2$ (trivariate) is $(3, 3, 2) - \uparrow$, and f is $(6, 8) - \uparrow$, then $f \circ (g_1 \times g_2)$ is $(2, 4, 3, 3, 2) - \uparrow$ (as a function of 5 variables).

Proof.

$$f(s) = \int \bigotimes_{i=1}^{d} \rho_i(s_i) d\mu(\rho)$$

$$\mu \text{ on } E_{(|\mathbf{m}_1|,...,|\mathbf{m}_d|)}$$

$$\Rightarrow f \circ g = \int \bigotimes_{i=1}^{d} \rho_i \circ g_i d\mu(\rho)$$

$$g_i \text{ is } \mathbf{m}_i - \uparrow, \text{ equiv. } g_i \circ \sigma_{\mathbf{m}_i} \text{ is } \mathbf{1}_{|\mathbf{m}_i|} - \uparrow$$

$$f \circ g \circ \sigma_{(\mathbf{m}_1,...,\mathbf{m}_d)} = \int \bigotimes_{i=1}^{d} \rho_i \circ g_i \circ \sigma_{\mathbf{m}_i} d\mu(\rho)$$

$$\xrightarrow{i \text{ s } \mathbf{1}_{|\mathbf{m}_1|+\dots+|\mathbf{m}_d|} \uparrow}$$

$$\Rightarrow f \circ g \text{ is } (\mathbf{m}_1, \dots, \mathbf{m}_d) - \uparrow.$$

<ロト < 回 > < 三 > < 三 > 、 三 の へ C 30
Special cases:

$$g \mathbf{n} - \uparrow, f |\mathbf{n}| - \uparrow \Rightarrow f \circ g \mathbf{n} - \uparrow$$
$$g n - \uparrow, f n - \uparrow \Rightarrow f \circ g n - \uparrow$$

(if defined...)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

2

୬ ବ ୧୦ 31

Let
$$I \subseteq \mathbb{R}$$
, $f: I \to \mathbb{R}$ continuous, $k \in \mathbb{N}$. Then
 $\Delta_h^k(f)(t) \ge 0 \quad \forall t \in I, h > 0, t + kh \in I$

is equivalent with

$$(\Delta_{h_1}\Delta_{h_2}\dots\Delta_{h_k}f)(t) \ge 0 \quad \forall t \in I, \ h_i > 0, \ t + \sum_{i=1}^n h_i \in I.$$

(Boas-Widder (1940), easy to see)

The following notion now seems natural:

Definition 2.

 $I \subseteq \mathbb{R}^d$ interval, $f : I \to \mathbb{R}$, $k \in \mathbb{N}$. Then f is called *k*-increasing ("k- \uparrow ") iff $\forall j \in [k], \forall h^{(1)}, \dots, h^{(j)} \in \mathbb{R}^d_+, \forall s \in I$ such that $s + h^{(1)} + \dots + h^{(j)} \in I$

 $\left(\Delta_{h^{(1)}}\ldots\Delta_{h^{(j)}}f\right)(s)\geq 0.$

- (日) (日) (日) 日

32

k

- For k = 2 these functions are known as *ultramodular*.
- For d = 1 this definition is the known one.
- Already for d = 2 increasing convexity and being 2 -↑ are incomparable properties: on ℝ²₊ the product is 2 -↑, but not convex; and the Euclidean norm is convex, however not 2 -↑:

$$\left(\Delta_{e_1}\Delta_{e_2}\sqrt{x^2+y^2}\right)(0)=\sqrt{2}-2$$

There is a surprisingly close connection to $\mathbf{n} - \uparrow$ functions:

伺 とう きょう とう しょう

Theorem 10.

Let $I \subseteq \mathbb{R}^d$ be an interval, $d, k \in \mathbb{N}$, $f : I \to \mathbb{R}$. Then $f \text{ is } k \uparrow \Leftrightarrow f \text{ is } \mathbf{n} \uparrow \forall \mathbf{n} \in \mathbb{N}_0^d \text{ with } 0 < |\mathbf{n}| \le k$. Furthermore:

 $\forall m \in \mathbb{N}, \ \forall \text{ interval } J \subseteq \mathbb{R}^m, \ \forall \text{ positive affine } \varphi : \mathbb{R}^m \to \mathbb{R}^d$ such that $\varphi(J) \subseteq I$, also $f \circ \varphi$ is $k \uparrow \uparrow$.

- (日) (日) (日) 日

Theorem 10.

Let $I \subseteq \mathbb{R}^d$ be an interval, $d, k \in \mathbb{N}$, $f : I \to \mathbb{R}$. Then

$$f$$
 is k - $\uparrow \quad \Leftrightarrow \quad f$ is $\mathbf{n} \cdot \uparrow \quad \forall \, \mathbf{n} \in \mathbb{N}_0^d$ with $0 < |\mathbf{n}| \le k$.

Furthermore:

 $\forall m \in \mathbb{N}, \ \forall \text{ interval } J \subseteq \mathbb{R}^m, \ \forall \text{ positive affine } \varphi : \mathbb{R}^m \to \mathbb{R}^d$

such that $\varphi(J) \subseteq I$, also $f \circ \varphi$ is $k \uparrow$.

Corollary 5.

 $I \subseteq \mathbb{R}^d$, $B \subseteq \mathbb{R}$ intervals, $g : I \to B$ and $f : B \to \mathbb{R}$ both $k \uparrow$, then so is $f \circ g$.

Because: $0 < |\mathbf{n}| \le k \Rightarrow f |\mathbf{n}| - \uparrow, g \mathbf{n} - \uparrow \Rightarrow f \circ g \mathbf{n} - \uparrow$.

・ロト (母) (ヨ) (ヨ) (ヨ) (つ)

Lemma 2.

 $I \subseteq \mathbb{R}^{d_1}$, $J \subseteq \mathbb{R}^{d_2}$ intervals, $f: I \to \mathbb{R}_+$, $g: J \to \mathbb{R}_+$ both k - \uparrow

 $\Rightarrow f \otimes g \ k \ \uparrow \ on \ I \times J. \ In \ case \ I = J \ the \ product \ f \ \cdot g \ is \ also \ k \ \uparrow \uparrow.$

イロト イポト イヨト ・ヨー

 $\mathcal{O} \mathcal{Q} \mathcal{O} = 35$

Lemma 2.

$$I \subseteq \mathbb{R}^{d_1}$$
, $J \subseteq \mathbb{R}^{d_2}$ intervals, $f: I \to \mathbb{R}_+$, $g: J \to \mathbb{R}_+$ both k -

 $\Rightarrow f \otimes g \ k \ \uparrow \ on \ I \times J$. In case I = J the product $f \cdot g$ is also $k \ \uparrow \uparrow$.

Proof.

 $\begin{bmatrix} \Delta_{(h^{(1)},h^{(2)})}^{\mathbf{m},\mathbf{n}}(f \otimes g) \end{bmatrix} (x,y) = \left(\Delta_{h^{(1)}}^{\mathbf{m}}f \right) (x) \cdot \left(\Delta_{h^{(2)}}^{\mathbf{n}}g \right) (y).$ For $|(\mathbf{m},\mathbf{n})| = |\mathbf{m}| + |\mathbf{n}| \le k$ both factors are ≥ 0 ($\mathbf{m} = 0$ or $\mathbf{n} = 0$ is possible, therefore $f \ge 0, g \ge 0$). For I = J, let $\varphi : \mathbb{R}^d \to \mathbb{R}^{2d}$ be given by $\varphi(x) \coloneqq (x,x)$, a linear positive map, with $\varphi(I) \subseteq I \times I$. Therefore $(f \otimes g) \circ \varphi = f \cdot g$ is also $k \cdot \uparrow$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

• Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k \to \uparrow$ on $\mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^{d} x^{c_i}$ $(c_i > 0)$ is $k \to \uparrow$ on \mathbb{R}^d_+ at least for $k \le c_i + 1 \ \forall i$.

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i} \ (n_i \in \mathbb{N})$ is $k \uparrow n \mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^{d} x^{c_i} \ (c_i > 0)$ is $k \uparrow n \mathbb{R}^d_+$ at least for $k \le c_i + 1 \ \forall i$.
- For a > 0 the function $f(x, y) := (xy a)_+$ is $2 \uparrow$, since $(t a)_+$ is $2 \uparrow$ on \mathbb{R}_+ . So, by Theorem 10, f is $(1, 1) \uparrow$, but not $(2, 2) \uparrow$ as we saw earlier. It is even not $(1, 2) \uparrow$: $\left(\Delta_{\frac{1}{2}, 1}^{(1,2)} f\right) \left(\frac{1}{2}, 1\right) = -\frac{1}{2}$, for a = 1.

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i} \ (n_i \in \mathbb{N})$ is $k \uparrow n \mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^{d} x^{c_i} \ (c_i > 0)$ is $k \uparrow n \mathbb{R}^d_+$ at least for $k \le c_i + 1 \ \forall i$.
- For a > 0 the function $f(x, y) := (xy a)_+$ is $2 \uparrow$, since $(t a)_+$ is $2 \uparrow$ on \mathbb{R}_+ . So, by Theorem 10, f is $(1, 1) \uparrow$, but not $(2, 2) \uparrow$ as we saw earlier. It is even not $(1, 2) \uparrow$: $\left(\Delta_{\frac{1}{2}, 1}^{(1, 2)} f\right) \left(\frac{1}{2}, 1\right) = -\frac{1}{2}$, for a = 1.
- The tensor product g(x, y) := (x − a)₊ · (y − b)₊, where a, b > 0, is (2, 2) -↑, hence certainly 2 -↑, but not 3 -↑, since x ↦ (x − a)₊ is not.

(日) (四) (日) (日) (日) (日)

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i} \ (n_i \in \mathbb{N})$ is $k \uparrow n \mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^{d} x^{c_i} \ (c_i > 0)$ is $k \uparrow n \mathbb{R}^d_+$ at least for $k \le c_i + 1 \ \forall i$.
- For a > 0 the function $f(x, y) := (xy a)_+$ is $2 \uparrow$, since $(t a)_+$ is $2 \uparrow$ on \mathbb{R}_+ . So, by Theorem 10, f is $(1, 1) \uparrow$, but not $(2, 2) \uparrow$ as we saw earlier. It is even not $(1, 2) \uparrow$: $\left(\Delta_{\frac{1}{2}, 1}^{(1,2)} f\right) \left(\frac{1}{2}, 1\right) = -\frac{1}{2}$, for a = 1.
- The tensor product g(x, y) := (x − a)₊ · (y − b)₊, where a, b > 0, is (2, 2) -↑, hence certainly 2 -↑, but not 3 -↑, since x ↦ (x − a)₊ is not.
- $(xyz a)^2_+$ is $3 \uparrow n \mathbb{R}^3_+$, $(xy a)^2_+ 3 \uparrow n \mathbb{R}^2_+$.

- Each monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i} \ (n_i \in \mathbb{N})$ is $k \uparrow n \mathbb{R}^d_+ \ \forall k \in \mathbb{N}$. $\prod_{i=1}^{d} x^{c_i} \ (c_i > 0)$ is $k \uparrow n \mathbb{R}^d_+$ at least for $k \le c_i + 1 \ \forall i$.
- For a > 0 the function $f(x, y) := (xy a)_+$ is $2 \uparrow$, since $(t a)_+$ is $2 \uparrow$ on \mathbb{R}_+ . So, by Theorem 10, f is $(1, 1) \uparrow$, but not $(2, 2) \uparrow$ as we saw earlier. It is even not $(1, 2) \uparrow$: $\left(\Delta_{\frac{1}{2}, 1}^{(1,2)} f\right) \left(\frac{1}{2}, 1\right) = -\frac{1}{2}$, for a = 1.
- The tensor product g(x, y) := (x − a)₊ · (y − b)₊, where a, b > 0, is (2, 2) -↑, hence certainly 2 -↑, but not 3 -↑, since x ↦ (x − a)₊ is not.
- $(xyz a)^2_+$ is $3 \uparrow n \mathbb{R}^3_+$, $(xy a)^2_+ 3 \uparrow n \mathbb{R}^2_+$.
- f(x, y, z) := xy + xz + yz xyz on $[0, 1]^3$ Then $f_1 = y + z - yz \ge 0$, $f_{(1,1)} = 0$, $f_{(1,2)} = 1 - z \ge 0$, $f_{(1,2,3)} = -1$ i.e. f is 2- \uparrow , but not 3- \uparrow .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intermezzo: Bernstein polynomials

$$b_{i,r}(t) \coloneqq {r \choose i} t^i (1-t)^{r-i}, \quad r \in \mathbb{N}, \ i \in \{0, 1, \dots, r\}, \ t \in \mathbb{R}$$

For $\mathbf{i} = (i_1, ..., i_d) \in \{0, 1, ..., r\}^d$

$$B_{\mathbf{i},r} \coloneqq b_{i_1} \otimes \ldots \otimes b_{i_d}.$$

For any $f:[0,1]^d \to \mathbb{R}$ the associated Bernstein polynomials $f^{(1)}, f^{(2)}, \ldots$ are defined by

$$f^{(r)} := \sum_{\mathbf{0} \le \mathbf{i} \le \mathbf{r}_d} f\left(\frac{\mathbf{i}}{r}\right) B_{\mathbf{i},r}$$

/∄ ▶ ▲ 耳 ▶ ▲ 耳 ▶ ▲ ヨ → 의 Q (~ 37)

For each continuity point x of f we have

$$f^{(r)}(x) \to f(x), \quad r \to \infty.$$

• • • • • • • •

ъ

For each continuity point x of f we have

$$f^{(r)}(x) \to f(x), \quad r \to \infty.$$

In the following, the "upper right boundary" of $[0,1]^d$ will play a role.

For
$$\alpha \subseteq [d]$$
 let $T_{\alpha} \coloneqq \{x \in [0,1]^d \mid x_i < 1 \Leftrightarrow i \in \alpha\}$. Then

$$egin{aligned} [0,1]^d &= igcup_{lpha \subseteq [d]} \mathcal{T}_lpha ext{ is a disjoint union} \ \mathcal{T}_\emptyset &= \{\mathbf{1}_d\}, \ \mathcal{T}_{[d]} = [0,1[^d] \end{aligned}$$

and $\bigcup_{\alpha \subsetneqq [d]} T_{\alpha}$ is called the *upper right boundary* of $[0,1]^d$.

御 と く き と く き と … き …

It is easy to show, that on each part T_{α} ($\alpha \subseteq [d]$) of this boundary the restriction $f|T_{\alpha}$ has as its Bernstein polynomials the restrictions $f^{(r)}|T_{\alpha}$. Thus we have the

Lemma 3.

Let $f : [0,1]^d \to \mathbb{R}$ have the property that each restriction $f | T_\alpha$ for $\emptyset \neq \alpha \subseteq [d]$ is continuous. Then $\lim_{r\to\infty} f^{(r)}(x) = f(x) \ \forall x \in [0,1]^d$, i.e. $f^{(r)}$ converges pointwise to f.

(Note that $f^{(r)}(\mathbf{1}_d) = f(\mathbf{1}_d) \ \forall r$.)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

It is easy to show, that on each part T_{α} ($\alpha \subseteq [d]$) of this boundary the restriction $f|T_{\alpha}$ has as its Bernstein polynomials the restrictions $f^{(r)}|T_{\alpha}$. Thus we have the

Lemma 3.

Let $f : [0,1]^d \to \mathbb{R}$ have the property that each restriction $f | T_\alpha$ for $\emptyset \neq \alpha \subseteq [d]$ is continuous. Then $\lim_{r\to\infty} f^{(r)}(x) = f(x) \ \forall x \in [0,1]^d$, i.e. $f^{(r)}$ converges pointwise to f.

(Note that $f^{(r)}(\mathbf{1}_d) = f(\mathbf{1}_d) \ \forall r.$)

Lemma 4.

Let $f : [0,1]^d \to \mathbb{R}$ be $2 \ \uparrow$. Then

- () f is continuous iff f is continuous in $\mathbf{1}_d$.
 - *f* is right-continuous and on $[0, 1[^d \text{ continuous.}]$

(口) (同) (ヨ) (ヨ) 三日

Theorem 11.

 $f: [0,1]^d \rightarrow \mathbb{R}, \ \mathbf{2}_d \leq \mathbf{n} \in \mathbb{N}_0^d, \ 2 \leq k \in \mathbb{N}.$

$$0 f \mathbf{n} - \uparrow \Rightarrow each f^{(r)} is \mathbf{n} - \uparrow and f^{(r)} \rightarrow f pointwise$$

(i) $f \ k \ \uparrow \Rightarrow$ each $f^{(r)}$ is $k \ \uparrow \uparrow$ and $f^{(r)} \rightarrow f$ pointwise

Theorem 11.

$$f: [0,1]^{d} \to \mathbb{R}, \mathbf{2}_{d} \le \mathbf{n} \in \mathbb{N}_{0}^{d}, 2 \le k \in \mathbb{N}.$$

$$(\mathbf{0} \quad f \ \mathbf{n} \ -\uparrow \ \Rightarrow \ each \ f^{(r)} \ is \ \mathbf{n} \ -\uparrow \ and \ f^{(r)} \to f \ pointwise$$

$$(\mathbf{0} \quad f \ k \ -\uparrow \ \Rightarrow \ each \ f^{(r)} \ is \ k \ -\uparrow \ and \ f^{(r)} \to f \ pointwise$$

We can now tackle another natural question on the preservation of monotonicity, related but different to the previous one.

If $g_1, \ldots, g_m : I \to [0, 1]$ are d.f.s on some *d*-dimensional interval,

$$g=(g_1,\ldots,g_m):I
ightarrow \left[0,1
ight]^m$$
, i.e. $g(s)=(g_1(s),g_2(s),\ldots),$

for which functions f on $[0, 1]^m$ is $f \circ g$ again a d.f.?

Theorem 11.

$$\begin{aligned} f: [0,1]^d \to \mathbb{R}, \ \mathbf{2}_d &\leq \mathbf{n} \in \mathbb{N}_0^d, \ 2 \leq k \in \mathbb{N}. \\ & \textcircled{0} \quad f \ \mathbf{n} \ -\uparrow \ \Rightarrow \quad each \ f^{(r)} \ is \ \mathbf{n} \ -\uparrow \ and \ f^{(r)} \to f \ pointwise \\ & \textcircled{0} \quad f \ k \ -\uparrow \ \Rightarrow \quad each \ f^{(r)} \ is \ k \ -\uparrow \ and \ f^{(r)} \to f \ pointwise \end{aligned}$$

We can now tackle another natural question on the preservation of monotonicity, related but different to the previous one.

If $g_1, \ldots, g_m : I \to [0,1]$ are d.f.s on some *d*-dimensional interval,

$$g=(g_1,\ldots,g_m):I
ightarrow \left[0,1
ight]^m$$
, i.e. $g(s)=(g_1(s),g_2(s),\ldots),$

for which functions f on $[0, 1]^m$ is $f \circ g$ again a d.f.? For d = 1 f has just to be increasing (and right-cont.), for d = 2 this is not sufficient:

$$egin{aligned} g_1(s,t) &\coloneqq rac{s+t}{2}, \; g_2(s,t) \coloneqq st, \; f = \mathbbm{1}_{[(rac{1}{2},rac{1}{2}),(1,1)]} \ &\Rightarrow \left[\Delta^{(1,1)}_{(rac{1}{2},rac{1}{2})}f \circ (g_1,g_2)
ight] \left(rac{1}{2},rac{1}{2}
ight) = -1. \end{aligned}$$

(日) (得) (日) (日) (日)

∽ ⊂ ~ 40

Here is our second main result:

Theorem 12.

Let $f : [0,1]^m \to \mathbb{R}_+$ be $d \uparrow (d \ge 2)$, and let $g_1, \ldots, g_m : \mathbb{R}^d \to [0,1]$ be d.f.s of (subprobability) measures. Then, also $f \circ (g_1, \ldots, g_m)$ is a d.f. on \mathbb{R}^d .

(ロ) (型) (三) (三) (三) (2) (2) (41)

Here is our second main result:

Theorem 12.

Let $f : [0,1]^m \to \mathbb{R}_+$ be $d \uparrow (d \ge 2)$, and let $g_1, \ldots, g_m : \mathbb{R}^d \to [0,1]$ be d.f.s of (subprobability) measures. Then, also $f \circ (g_1, \ldots, g_m)$ is a d.f. on \mathbb{R}^d .

Idea of proof:

$$g \coloneqq (g_1, \ldots, g_m), \ h \coloneqq f \circ g$$

h is right-continuous (since f is by Lemma 1).

To show: h is $\mathbf{1}_d - \uparrow !$

Because of Theorem 11 we may assume f to be C^{∞} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Idea of proof:

• Also g_1, \ldots, g_d are C^{∞} .

An explicite and rather complicated generalization of the usual multivariate chain rule and of Faà di Bruno's formula leads to the result (Constantine & Savits, TAMS 1996).

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Idea of proof:

• Also g_1, \ldots, g_d are C^{∞} .

An explicite and rather complicated generalization of the usual multivariate chain rule and of Faà di Bruno's formula leads to the result (Constantine & Savits, TAMS 1996).

• To show: for
$$x \in \mathbb{R}^d$$
 and $\xi \in \mathbb{R}^d_+$
 $\left(\Delta_{\xi}^{\mathbf{1}_d}h\right)(x) = h(x+\xi) \mp \ldots + (-1)^d h(x) \ge 0$
 $\exists C^{\infty} \text{ d.f.s } \tilde{g}_1, \ldots, \tilde{g}_m \text{ such that } \tilde{g}_i | B = g_i | B \ \forall i \le d, \text{ where}$
 $B := \{x + \sum_{i \in \alpha} \xi_i e_i | \alpha \subseteq [d]\}.$
 $\Rightarrow 0 \le \Delta_{\xi}^{\mathbf{1}_d}(f \circ \tilde{g})(x) = \left(\Delta_{\xi}^{\mathbf{1}_d}h\right)(x).$

For d = 2 this result was proved in 2011 (Klement et al., Inf. Sc.).

≡ ∽ < ભ 42

Corollary 6.

Let
$$m, d, k \in \mathbb{N}$$
, $J \subseteq \mathbb{R}^m$ and $I \subseteq \mathbb{R}^d$ intervals,

$$g=(g_1,\ldots,g_m):I o J,\ f:J o\mathbb{R},\ {f n}\in\mathbb{N}^d.$$

- **()** If each g_i is $\mathbf{n} \cdot \uparrow$, and f is $|\mathbf{n}| \cdot \uparrow$, then $f \circ g$ is $\mathbf{n} \cdot \uparrow$
- **(**) If each g_i and f are $k \uparrow$, then so is $f \circ g$.

イロト イポト イヨト イヨト ニヨー

Corollary 6.

Let
$$m, d, k \in \mathbb{N}$$
, $J \subseteq \mathbb{R}^m$ and $I \subseteq \mathbb{R}^d$ intervals,

$$g=(g_1,\ldots,g_m):I o J,\ f:J o\mathbb{R},\ {f n}\in\mathbb{N}^d.$$

- **(**) If each g_i is $\mathbf{n} \cdot \uparrow$, and f is $|\mathbf{n}| \cdot \uparrow$, then $f \circ g$ is $\mathbf{n} \cdot \uparrow$
- If each g_i and f are $k \uparrow$, then so is $f \circ g$.

Proof.

(i) By Theorem 8 each $g_i \circ \sigma_n$ is $\mathbf{1}_{|n|} \uparrow \uparrow$, hence so is by Theorem 12

$$f \circ (g_1 \circ \sigma_{\mathbf{n}}, \ldots, g_m \circ \sigma_{\mathbf{n}}) = (f \circ g) \circ \sigma_{\mathbf{n}},$$

and again Theorem 8 shows $f \circ g$ to be $\mathbf{n} \cdot \uparrow$.(ii) For any $\mathbf{n} \in \mathbb{N}^d$ with $|\mathbf{n}| \leq k$ each g_i is $\mathbf{n} \cdot \uparrow$,hence $f \circ g$ is $\mathbf{n} \cdot \uparrow$. By Theorem 10 $f \circ g$ is $k \cdot \uparrow$.

くロ とくぼ とくほ とく ほうしょ

÷

$$\nabla f \coloneqq -\Delta f$$
, i.e. $(\nabla_h f)(s) \coloneqq f(s) - f(s+h)$

Definition 3.

 $f: I \rightarrow \mathbb{R}$ is $\mathbf{n} \downarrow$ ("**n**-decreasing") iff

$$\left(
abla _{h}^{\mathbf{p}}f
ight) \left(s
ight) \geq$$
 0 $orall s\in$ $l,\;h\in \mathbb{R}_{+}^{d},\;0\lneq$ $\mathbf{p}\leq$ $\mathbf{n}.$

And f is \mathbf{n} - \uparrow (" \mathbf{n} -alternating") iff

 $\left(\nabla^{\mathbf{p}}_{h}f
ight)(s) \leq 0 \,\, orall s \in I, \,\, h \in \mathbb{R}^{d}_{+}, \,\, 0 \lneq \mathbf{p} \leq \mathbf{n}.$

(4月) (日) (日) 日

Remarks.

a f is $\mathbf{n} \rightarrow 0$ on $I \Leftrightarrow f(-\cdot)$ is $\mathbf{n} \rightarrow 0$ on -I

• A C^{∞} function f is $\mathbf{n} \to \downarrow$ iff $(-1)^{|\mathbf{p}|} f_{\mathbf{p}} \ge 0 \ \forall 0 \lneq \mathbf{p} \le \mathbf{n}$, and f is $\mathbf{n} \to \downarrow$ iff $(-1)^{|\mathbf{p}|} f_{\mathbf{p}} \le 0$ instead.

Remarks.

a f is $\mathbf{n} \rightarrow 0$ on $I \Leftrightarrow f(-\cdot)$ is $\mathbf{n} \rightarrow 0$ on -I

• A C^{∞} function f is $\mathbf{n} \to \downarrow$ iff $(-1)^{|\mathbf{p}|} f_{\mathbf{p}} \ge 0 \ \forall 0 \lneq \mathbf{p} \le \mathbf{n}$, and f is $\mathbf{n} \to \downarrow$ iff $(-1)^{|\mathbf{p}|} f_{\mathbf{p}} \le 0$ instead.

For d = 1:

 $f \text{ is } 2 - \uparrow \Leftrightarrow f \text{ is increasing and convex}$ $f \text{ is } 2 - \downarrow \Leftrightarrow f \text{ is decreasing and convex}$

f is 2- $\updownarrow \Leftrightarrow f$ is increasing and concave

・ロト (局) (日) (日) (日) (日) (の)

Remarks.

 $\begin{array}{l} \bigcirc \quad \mathsf{A} \ C^{\infty} \ \text{function} \ f \ \text{is} \ \mathbf{n} \ -1 \ |\mathbf{p}| \ f_{\mathbf{p}} \geq 0 \ \forall 0 \gneqq \mathbf{p} \leq \mathbf{n}, \ \text{and} \ f \\ \\ \text{is} \ \mathbf{n} \ -1 \ \text{iff} \ (-1)^{|\mathbf{p}|} \ f_{\mathbf{p}} \leq 0 \ \text{instead.} \end{array}$

For d = 1:

f is 2- $\uparrow \Leftrightarrow f$ is increasing and convex

f is 2- $\downarrow \Leftrightarrow f$ is decreasing and convex

f is 2- $\updownarrow \Leftrightarrow f$ is increasing and concave

 $f \ge 0$ is $n - \updownarrow \forall n \in \mathbb{N} (``\infty - \updownarrow ``) \Leftrightarrow f$ is a Bernstein function

An easy consequence of Theorem 1 is

Williamson's theorem.

If $f:]0,\infty[o \mathbb{R}_+$ is n -1, $n \ge 2$, then $f(s) = \int (1-cs)^{n-1}_+ \, d\mu(c)$

where μ is a measure on \mathbb{R}_+ .

(*n*-↓ functions are often called "*n*-monotone")A (more recent) generalization reads:

If
$$f:]0, \infty[^d \rightarrow \mathbb{R}_+ \text{ is } \mathbf{n} - \downarrow, \mathbf{n} \ge \mathbf{2}_d$$
, then
$$f(s) = \int \prod_{i=1}^d (1 - c_i s_i)_+^{n_i - 1} d\mu(c)$$

with μ a measure on \mathbb{R}^d_+ .

An interesting appearance of $3 - \updownarrow$ functions: For $x, y, z \in \mathbb{R}$ we have always

 $|x + y| + |y + z| + |z + x| \le |x| + |y| + |z| + |x + y + z|$

the socalled *Hornich-Hlawka inequality*. This can be generalized as follows:

Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be 3- \ddagger , then $\forall x, y, z \in \mathbb{R}$

 $f(|x+y|) + f(|y+z|) + f(|z+x|) \le f(|x|) + f(|y|) + f(|z|) + f(|x+y+z|).$

f = id gives the original inequality, which also holds for vectors x, y, z. The above generalization for $x, y, z \in \mathbb{R}^d$ can be shown for $f(t) = \sqrt{t}$, $f(t) = \sqrt[4]{t}$, $f(t) = \sqrt[8]{t}$, ..., but is open for other (Bernstein) functions.

・ロト (局) (日) (日) (日) (日) (の)

The remarks given before are useful even in dimension one, as shown in the following

Example.

$$arphi(t)\coloneqq -\log(1-e^{-t}), \quad t\in]0,\infty[$$

Then φ is *completely montone*, i.e. $n \rightarrow \downarrow$ for each $n \in \mathbb{N}$, and this was shown in an article from 2018 by using so-called Eulerian numbers (of permutations). It follows also from

$$\varphi(-\cdot) = \underbrace{\left[-\log(1-\cdot)\right]}_{n\uparrow} \circ \underbrace{\exp}_{n\uparrow} \quad (\text{on }]-\infty, 0[)$$

using the Bernstein function log(1 + t):

 $\varphi(-\cdot)$ is $n \cdot \uparrow$ as composition of two such functions, hence φ is $n \cdot \downarrow \forall n \in \mathbb{N}$.

《曰》《御》《曰》《曰》 [] [] []

Of special importance is again $\mathbf{n} = \mathbf{1}_d$. Non-negative $\mathbf{1}_d \cdot \downarrow$ functions are (essentially) *survival-functions*, i.e. of the form $\mu([s, \infty])$ for some measure μ . Non-negative $\mathbf{1}_d \cdot \uparrow$ are (essentially) *co-survival functions*, i.e. of the form $\mu([s, \infty]^{\complement})$ for some μ .

Of special importance is again $\mathbf{n} = \mathbf{1}_d$. Non-negative $\mathbf{1}_d \downarrow$ functions are (essentially) *survival-functions*, i.e. of the form $\mu([s, \infty])$ for some measure μ .

Non-negative $\mathbf{1}_d$ - \updownarrow are (essentially) *co-survival functions*, i.e. of the form $\mu([s, \infty]^{\complement})$ for some μ .

A particular subclass of the latter is of special interest:

A d.f. *F* on \mathbb{R}^d_+ is called a *simple multivariate extreme value distribution* iff

$$(F(tx))^t = F(x) \quad \forall x \in \mathbb{R}^d_+, \ \forall t > 0$$

and if *F* has *standard Fréchet margins*, defined by the (one-dimensional) d.f. $\exp\left(-\frac{1}{u}\right)$ for u > 0. Then F(x) = 0 if $x_i = 0$ for some *i*, and 0 < F(x) < 1 else.

$$f(x) \coloneqq -\log F\left(rac{1}{x}
ight)$$
 where $rac{1}{x} \coloneqq \left(rac{1}{x_1}, rac{1}{x_2}, \ldots\right)$

is called a *stable tail dependence function* (STDF). It is a function $f : \mathbb{R}^d_+ \to \mathbb{R}_+$ with the properties

() f is homogeneous, i.e. $f(tx) = tf(x) \ \forall t > 0, \ \forall x$

$$f(e_i) = 1 \ \forall i = 1, \dots, d$$

$$max_{i \leq d} x_i \leq f(x) \leq \sum_{i=1}^d x_i$$

f is convex

but this is a full characterization of STDFs only for d = 2. In higher dimensions, this had been an open problem for some time.

伺い イラト イラト ニラ
The answer I could give is as follows:

Theorem 13.

A function $f : \mathbb{R}^d_+ \to \mathbb{R}$ is a STDF if and only if f is homogeneous, $\mathbf{1}_d \ \uparrow \uparrow$, and $f(e_1) = \cdots = f(e_d) = 1$. In this case f is the co-survival function of a homogeneous Radon measure μ on $[0, \infty]^d \setminus \{\infty\}$, i.e.

$$f(x) = \mu\left([x,\infty]^\complement
ight) \quad, \ x \in \mathbb{R}^d_+.$$

The answer I could give is as follows:

Theorem 13.

A function $f : \mathbb{R}^d_+ \to \mathbb{R}$ is a STDF if and only if f is homogeneous, $\mathbf{1}_d \ \uparrow \uparrow$, and $f(e_1) = \cdots = f(e_d) = 1$. In this case f is the co-survival function of a homogeneous Radon measure μ on $[0, \infty]^d \setminus \{\infty\}$, i.e.

$$f(x) = \mu\left([x,\infty]^{\complement}\right) \quad , \ x \in \mathbb{R}^d_+.$$

In this case f has the unique integral representation

$$f(x) = f(\mathbf{1}_d) \cdot \int \max_{i \leq d} (c_i x_i) \, d\nu(c),$$

u being a probability measure on $\{c \in \mathbb{R}^d_+ \mid \max_{i \leq d} c_i = 1\}$.

Examples.

• The classical norms $f_p(x) := \left(\sum_{i=1}^d x_i^p\right)^{\overline{p}}$ for $p \ge 1$, up to $f_{\infty}(x) := \max_{i \le d} x_i$ (GUMBEL)

•
$$f(x,y) = \frac{x^2 + xy + y^2}{x+y}$$
 on \mathbb{R}^2_+

• $\sum_{i} x_{i} - \sum_{i < j} (x_{i}^{p} + x_{j}^{p})^{\frac{1}{p}} \pm \dots + (-1)^{d-1} (\sum_{i} x_{i}^{p})^{\frac{1}{p}}$ for p < 0 (GALAMBOS)

▲冊▶▲≡▶▲≡▶ ≡ ∽♀♀

Examples.

• The classical norms $f_p(x) := \left(\sum_{i=1}^d x_i^p\right)^{\overline{p}}$ for $p \ge 1$, up to $f_{\infty}(x) := \max_{i \le d} x_i$ (GUMBEL)

•
$$f(x,y) = \frac{x^2 + xy + y^2}{x+y}$$
 on \mathbb{R}^2_+

• $\sum_{i} x_{i} - \sum_{i < j} (x_{i}^{p} + x_{j}^{p})^{\frac{1}{p}} \pm \dots + (-1)^{d-1} (\sum_{i} x_{i}^{p})^{\frac{1}{p}}$ for p < 0 (GALAMBOS)

Which (univariate) functions preserve $\mathbf{n} \rightarrow \downarrow$ (multivariate) functions? Answer: exactly those preserving $\mathbf{n} \rightarrow \uparrow$ ones, because of Remark (a). And which ones preserve $\mathbf{n} \rightarrow \downarrow$ functions:

•
$$g \mathbf{n} \uparrow f |\mathbf{n}| \uparrow f \circ g \text{ is } \mathbf{n} \uparrow$$

since $-(f \circ g)(-\cdot) = [-f(-\cdot)] \circ [-g(-\cdot)],$

•
$$g \mathbf{n} \cdot \uparrow, f |\mathbf{n}| \cdot \downarrow \Rightarrow f \circ g \text{ is } \mathbf{n} \cdot \downarrow$$

since $f \circ g(-\cdot) = [f(-\cdot)] \circ [-g(-\cdot)].$

An open problem:

$$\mathcal{K} \coloneqq \{f: [0,1]^2 \to \mathbb{R}_+ \mid f \text{ is } 2 \text{-}\uparrow, f(1,1) = 1\}$$

Then K is compact and convex, multiplicatively stable.

- Is K a Bauer simplex?
- Determine ex(K)!

I could prove that

$$f_c \circ (f_a \otimes f_b) \in ex(K)$$

 $\forall a, b, c \in [0, 1] \ (f_a(t) = (t - a)_+ / (1 - a), \ f_1 \coloneqq 1_{\{1\}}).$

Are there other extreme points?

A I > A I > A