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h,...,lqs C R intervals (always non-degenerate)
Il =hx---xlg, f:1 =R
For s € |, heRi such that also s+ h € |

(Epf)(s) =f(s+ h)
Ap = Ep — Ep, i.e. (Ahf) (5) = f(S + h) — f(S)

Since {Ep| h € R} is commutative, sois {Ay| h € R9}.
For any h, A%f := f(also for h=0), but Agf= 0 Vf.

Paul Ressel Multivariate Higher Order Monotonicity — and its Preservation



Forn= (n,...,nqg) € Ng and h = (hy,..., hg) € RL

AN =AMl AT AN

hiet " hyey hgeq

(where ey, ..., eq are standard unit vectors), so that (A}f)(s) is
defined for s, s + Z}j:l nih;e; € 1.
We first consider d =1, n=n€eN, | CR and put

On(X1y. .oy Xn) = X1+ -+ Xp.

3
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Assume | = [0, 1], hence f : [0,1] — R. For t € [0,1] and h > 0,
t+ nh <1,

(ARF) (£) = F(t + nh) — <’1’> F(t+ (n— 1)h) £ -+ (~1)"F(t)

_ {Aﬁ’ﬂ::}v))(f o 0',,)} (;, o t) :

n

If a univariate f is C°°, then
ANf)>0Yh>0 <« >0
If a multivariate f is C*°, then

ANA sOvheR! o fe 0N g
M= + ne Ox{t .. Oxy?

4
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1. Basic notions

Definition 1.
ICRY, neNJ\{0}, f:/— Risn-1 (read “n-increasing”) iff

APf)(s)>0Vsel, heRY, peN{, 0Sp<n
h 0 ==

such that s; 4+ pjh; € [; Vj € [d] .= {1,...,d}.

For a C* function f then

fisn-t & f,>0for0<p<n.

5
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e Ford=1,n=neN, fis1-1iff fis (weakly) increasing,
and f is 2-1 iff f is increasing and convex.

e d=2, f(s1,5) = (s1%2—a)y+, a>0
fis (1,0)-1, (0,1)-1, (1,1)-1 (will be shown later), but not
(2,2)-7:

(827) 0= -2

6
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2. The univariate case

Theorem 1.
f:[0,1[> Ry isn-1 (n>2)iff3 ap,...,ap—2 >0 and a

measure i on [0, 1] such that
f(t)y=ap+art+---+ an_at" % + /(t — a)i_l du(a).

f is continuous and for n > 2 (n — 2) times continuously

differentiable.

7
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2. The univariate case

Let K, ={f:[0,1]] = R, |fis n-1,f(1) = 1}, and
fo(t) =(t—a);/(1—a)for0<a<1, fi =1y,
E,={l,t,...,t"2}u{frtlac|0,1]},n>2

Corollary 1.

K, is a Bauer simplex, ex(K,) = E, for n > 2.

Corollary 2.

If f :[0,1[— Ry is “absolutely monotone”, i.e. n-1 ¥ n € N, then

f(t) = Zajtj where a; > 0 Vj.
j=>0

Corollary 3.
Koo = (Np>1 Kn is a Bauer simplex with
ex(Kso) = {1,t,82,.. } U {1y }.
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3. The multivariate case

First some special situations and examples.

Qf: [ -R1<j<d F=HQ -y ie

d
f(s) = [1 ()
i=1
Then P
(a86) (s) = T (a%6) (5)
j=1

forpe Ng, he ]Ri, implying for f; > 0

fisn-1 & fiisni-1 V).
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3. The multivariate case

Q f(s) = 27:1 fi(s;) (a “tensor sum”)
Then

AYfi(s)) if p=pie;,pi>1
Abf(s) = '
=0 if p has more than one positive entry.

fisn-1 & fiisn -1V

(fi > 0 not necessary)

10
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3. The multivariate case

o

d=2,

f(s,t) 1[aoo s)(t — a); daonR2
\‘,_/%/—’
14 24

(12
—/OSAt(t—a)+da—(sAt)- (t—;(s/\t))

fis (1,2) -1 (and not more!)

11
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3. The multivariate case
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3. The multivariate case

For n € N9, n > 24 we consider
Ko :={f:[0,1]9 = R, |fisn-1,f(1q) =1},
obviously convex and compact, and

En=E,® - QE,={Ai® - ®fy|fi € E, Vi}.

Theorem 2.
Forn > 24 K, is a Bauer simplex, and ex(Ky) = En.

13

Paul Ressel Multivariate Higher Order Monotonicity — and its Preservation



3. The multivariate case

For example, if d =2, any f : [0,1]> — R, which is (2,2) -1, has
the form
fs.)= [ ;(s)oa(®) dulp o),
E2><E2

hence in case f(s,0) = (0,t) =0 Vs, t,

f(s,t) = /[01

)

L B()(8) (3. )

for some measure 1 on [0, 1]°.

14
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3. The multivariate case

Let us now consider the special important case
n:].d:(l,...,].).
Ford =2, h=(h, h) € R2

(A(Ll)f) _

h (S,t)—f(5+h1,t+h2)—f(5,t+h2)
—f(s+ h1,t)+ f(s,t)
(A5F) (s,8) = F(s + b, t) — (s, 1)
(AVF) (s,8) = F(s, t + ho) — (s, t).

15
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3. The multivariate case

For general d € N, h € Ri

(BMF)(s) = F(s+h) = F(s1,% + ho, ., 5q + ha) =+
—f(s1+h1,...,S4-1+ hg—1,54)
+ f(s1,52,5 + h3,...,5q+ hg) + -
4 (=1)%f(s).

If f is the distribution function (“d.f.") of some measure p, say on
Ri, i.e.
f(s) = u([0,s]),
then
(83F) (s) = u(ls,s + h]) > 0.

16
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3. The multivariate case

Theorem 3.

Let O # I; C R be arbitrary (not necessarily intervals), j < d,
I=I x - %Iy f:1—R,. Then

f is the d.f. of some measure on |

& fis 1y -1 and right-continuous.

The proof relies on the fact, that f(> 0) is 1, -1 iff f is completely

monotone on the semigroup (/, A) iff f is positive definite on (/, A).
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3. The multivariate case

In dimension one any 2 -1 function is right-continuous; if a

multivariate f is (only) 14 -7, this need not be the case:
f= 1]071]2 on [0, 1]2

However, for n € N9 each n-1 f is the pointwise limit of some net
of n-1 right-continuous functions.

(If n > 24, then f itself is right-continuous.)

18
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3. The multivariate case

Application. Mean values as distribution functions

For x €]0,00[? and t € R consider
1
1 d t
Mt(X) = (d ;X}) for t ?é 0

Mo(x) = (I:ﬁl Xi>(11 (Z lim Mr(X))

Mo (x) = rpgajx,- (: lim I\/It(x))

X—00

M_ oo (x) == min x; (_ lim I\/It(x)> .

i<d t——o00

19
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3. The multivariate case

(If t <0 and x; = 0 for some i, then M;(x) =0.)

The function R'> t— M;(x) (for non-constant x) is continuous and
strictly increasing from min x; to max x;.
Since M¢(1,...,1) =1, these mean values are candidates for d.f.s

of probability measures on [0, 1]¢.

20
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3. The multivariate case

Theorem 4.

Mt|[0,1]d isadf & te[—o0, ﬁ] u {ﬁ, ceey %,1}
(t € [-o0,1] ford =2)

How to prove this?

1 d
M (d fot> , fi(s) = sY/* on ]0, o0

For t >0, 329, x! is a tensor sum of increasing functions, hence
14-1.
We need to know which functions on R preserve this property!

21
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3. The multivariate case

The following result was essentially shown by P. M. Morillas (2005):

Let | CR? and J C R be intervals, g:l—J,f:J—R. Then, ifgisly -1
and f isd -1, f o g is again 14 -1.

22
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3. The multivariate case

Theorem 5.

Let | CR? and J C R be intervals, g : | — J, f : J — R. Then, if g is 14 -1
and f isd -1, f o g is again 14 -1.
Let's apply this to the mean values M; (for t > 0):

o fort € {1,1,1,...} we have fi(s) = s* for some k € N, hence f; is

absolutely monotone, and M; a d.f.

22
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3. The multivariate case

Theorem 5
Let | CR? and J C R be intervals, g : | — J, f : J — R. Then, if g is 14 -1
and f isd -1, f o g is again 14 -1.

Let's apply this to the mean values M; (for t > 0):

o fort € {1,1,1,...} we have fi(s) = s* for some k € N, hence f; is

absolutely monotone, and M; a d.f.

o for t €]0,1]\ {1,3,3,.. .1

hence t < ﬁ is sufficient for f; to be d-7. (in fact also necessary; t > 1 will

be dealt with later)

22

Paul Ressel Multivariate Higher Order Monotonicity — and its Preservation



3. The multivariate case

Before considering M, for t < 0, this remark: Let o, 5 > 0

then x; — —x; @

= X — —foa is 14-1 on ]0, co[?

is increasing on ]0, oo[

s — s 7 is completely monotone on ]0, oo

& s (—s)? is absolutely monotone on ] — oo, 0]
Now let t <0, a == —t, 8= —1
= M) = d V[ (- x)] s -,
again by Theorem 5.

23
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3. The multivariate case

An important supplement to Theorem 5:

Theorem 6.

Let | CRY be an interval (always non-degenerate),
o4(x) =9 x;, J=04(l), f: J = R. Then
fisd-1 & foogisly-1.

24
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3. The multivariate case

An important supplement to Theorem 5:

Theorem 6.

Let | C RY be an interval (always non-degenerate),
og(x) =9, x;, J=04(l), f: J = R. Then
fisd-? & foogisly-T.

Here “=" follows from Theorem 5. For “<" it is sufficient to
consider / = [0, 1]? and J = [0,1]. Then for t € [0,1[, h > 0,
t+k-h<1l(k<d)

(Aﬁf)(t)z f(t+ kh) — (’I) F(t+ (k—1)h) + - + (—1)F(2)

_ lkvodfk t t
= (A(h,...,h) (fo Ud)) (8’ . E)
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3. The multivariate case

However: attention!
We'd need 54— h < %, or t + dh <1, but only know t + kh < 1.

Lemma 1.
J C Rinterval, f : J — R, k € N. If 3hg > 0 such that

(Aﬁf) (t) >0Vt e J, helo, hy] with t + kh € J, then the same
holds Vh > 0 such that t + kh € J.

To finish the proof of Theorem 6, choose hy = 1£.

25
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3. The multivariate case

However: attention!
We'd need 54— h < %, or t + dh <1, but only know t + kh < 1.

J C Rinterval, f : J — R, k € N. If 3hg > 0 such that
(Aﬁf) (t) >0Vt e J, helo, hy] with t + kh € J, then the same
holds ¥h > 0 such that t + kh € J.

To finish the proof of Theorem 6, choose hy = 1£.

Corollary 4.

f:[0,1]] > Risd-1ifffoMyislg-T.

25
Paul Ressel Multivariate Higher Order Monotonicity — and its Preservation



3. The multivariate case

A natural question:

Suppose F is a two-dimensional d.f., G a three-dimensional d.f.,
for which functions f on [0,1]2 is then always f o (F x G) a
five-dimensional d.f.?

Apart from normalisation, when is f (F(x), G(y)) 15-17

26
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3. The multivariate case

Let h CR™, ... Iy CR"™ be intervals, g1 : Iy — [0,1] 15 -1,...,84 : l4 = [0,1]
1o, -1, ni=(n1,...,nq). If f :[0,1]9 — Ry isn -1, then fo (g1 X -+ X gq) is 1, -1

27
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3. The multivariate case

Let h CR™,..., Iy CR" be intervals, g1 : h — [0,1] 15, -1,...,84 : l4 — [0,1]
1o, -1, ni=(n1,...,nq). If f :[0,1]9 — Ry isn -1, then fo (g1 X -+ X gq) is 1, -1

Proof.
We may assume f(1,) =1, and also n > 2,4. Then (Theorem 2)

d
f(s) = | []eis)dutor- . pq)

Enimy

for some probability measure p on Ey. So

d
fo(gLx--- ng)=/®(Pi0gi)d#(/)1,~-~7pd)
i=1

where each p; o gj is 15, -1 (Theorem 5), therefore ®7:1(p,< ogi)is 1|,,‘ -1, and so is
then f o (g1 X -+ X g4) as a mixture of those. O

27
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3. The multivariate case

A special case would be g; = o, (Vi) on suitable n;-dimensional
intervals. As a generalisation of Theorem 6 we have

(on=0p, X -+ X 0Op,)

Theorem 8.

Let h CR™ ... Iy CR" be non-degenerate intervals,
Ji=on(l;), J = x---xJgand f:J— R. Then

fisn-t & foopisly -1

(similar proof!)
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3. The multivariate case

Finally, we get a natural generalisation of Theorem 5, our first
main result:

Theorem 9.

Let gj : l; — [0,1] be m; -1, where m; € N"i. Put
g =g X Xggihx-xlg—[0,1]9 Iff:[0,1] — R is
(lmil,...,|mgq|) -1 then f o g is (myq,...,mq) -1.
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3. The multivariate case

Finally, we get a natural generalisation of Theorem 5, our first

main result:

Theorem 9.

Let gj : l; — [0,1] be m; -1, where m; € N"i. Put
g =g X Xggihx-xlg—[0,1]9 Iff:[0,1] — R is
(lmil,...,|mgq|) -1 then f o g is (myq,...,mq) -1.

Example.

d=2,m=2nm=3m =(24), m=(33,2). If g1 (bivariate)
is (2,4) -1, g (trivariate) is (3,3,2) -1, and f is (6,8) -1, then
fo(grxg)is(2,4,3,3,2)-1 (as a function of 5 variables).
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3. The multivariate case

Proof.

f(s) = [ QL1 pi(si) du(p)
ton Ejmy|,..../mq))

= fog=[Q®%L,piogidulp)

gi is mi -1, equiv. gj 0 om; is 1y -1

d
fo go° U(ml,...,md) = /®p,' 0 gi O 0m, du(p)
i=1

iS Ly |+t |mg| T

= fogis(my,...,mqg)-T. [

30
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3. The multivariate case

Special cases:

gn-1, f|n[-t=fogn-1
gn-1T, fn-t=fogn-1

(if defined...)

31
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4. k-increasing functions (k € N!) in any dimension

Let /I C R, f: ] — R continuous, k € N. Then
AK(FA)(t)>0 VYtel, h>0, t+khel
is equivalent with X
(ApDpy . Apf)(£) =0 VEel hi>0 t+> hel
(Boas-Widder (1940), easy to see) =

The following notion now seems natural:

Definition 2.

I CR? interval, f : | =+ R, k € N. Then f is called k-increasing (“k-1")
iff Vj € [k], VA, ... h0) € RZ, Vs € I such that

s+hW 4 4 A0 e

(Ah(l) VAN f) (S) > 0.

32
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4. k-increasing functions (k € N!) in any dimension

e For k = 2 these functions are known as ultramodular.
e For d =1 this definition is the known one.

e Already for d = 2 increasing convexity and being 2 -1 are
incomparable properties: on ]Ri the product is 2 -7, but not

convex; and the Euclidean norm is convex, however not 2 -1:

(AelAeﬂ/xz +y2> (0)=v2-2

There is a surprisingly close connection to n -7 functions:

33
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4. k-increasing functions (k € N!) in any dimension

Theorem 10.

Let | C RY be an interval, d,k € N, f : | — R. Then
fisk-t < fisn-1 ¥YneN§ with0< |n| < k.
Furthermore:
VmeN, VY interval J CR™, V positive affine ¢ : R™ — RY

such that o(J) C I, also f o is k-1 .
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4. k-increasing functions (k € N!) in any dimension

Theorem 10.

Let | C RY be an interval, d,k € N, f : | — R. Then
fisk-t < fisn-1 ¥YneN§ with0< |n| < k.
Furthermore:

VmeN, VY interval J CR™, V positive affine ¢ : R™ — RY

such that o(J) C I, also f o is k-1 .

Corollary 5.
| CRY, B C R intervals, g:1l— Bandf:B— R both k -1, then

soisfog.

Because: 0 < [n| < k= f |n|-1, gn-T=fogn-1 .
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4. k-increasing functions (k € N!) in any dimension

| CR%, J C R®% jntervals, f : I —- Ry, g:J— Ry both k -1
=f®gk-TonlxJ. Incasel = J the product f - g is also k -7.

35
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4. k-increasing functions (k € N!) in any dimension

| CR%, J C R®% jntervals, f : I —- Ry, g:J— Ry both k -1
=f®gk-TonlxJ. Incasel = J the product f - g is also k -7.

Proof

[ama o (F©8)] (x.y) = (B ) (x) - (Aleyg) (). For

|(m,n)| = |m| + |n| < k both factors are>0(m=0o0rn=0is

possible, therefore f >0, g > 0).

For I = J, let ¢ : R? — R29 be given by (p(x) = (x, x), a linear

positive map, with (/) C | x I. Therefore
(feg)op="-gisalso k-71. O

35
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4. k-increasing functions (k € N!) in any dimension

@ Each monomial f(x) = H;j:l x/" (n; € N) is k-1 on RY Vk € N.
H:.jzl x5 (¢ > 0)is k-1 on Ri at least for k < ¢; +1 Vi.
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4. k-increasing functions (k € N!) in any dimension

@ Each monomial f(x) = H:.jzl x/" (n; € N) is k-1 on RY Vk € N.
H:.jzl x% (¢; > 0) is k-1 on R at least for k < ¢; + 1 Vi.

@ For a > 0 the function f(x,y) = (xy — a); is 2-1, since (t — a) is
2-1on R;. So, by Theorem 10, f is (1,1)-1, but not (2,2)-1 as we
saw earlier. It is even not (1,2)-1: (A(ll’lz)f) (3,1)=-1% fora=1

25

36
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4. k-increasing functions (k € N!) in any dimension

@ Each monomial f(x) = H:.jzl x/" (n; € N) is k-1 on RY Vk € N.
H:.jzl x5 (¢ > 0)is k-1 on Ri at least for k < ¢; +1 Vi.

@ For a > 0 the function f(x,y) = (xy — a); is 2-1, since (t — a) is
2-1on R;. So, by Theorem 10, f is (1,1)-1, but not (2,2)-1 as we
saw earlier. It is even not (1,2)-1: (A(ll’lz)f) (3,1)=-1% fora=1

29

@ The tensor product g(x,y) = (x — a)+ - (¥ — b)+, where a, b > 0,
is (2,2) -1, hence certainly 2-1, but not 3-1, since x — (x — a)4 is
not.
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4. k-increasing functions (k € N!) in any dimension

Each monomial f(x) = Hle x/" (n; € N) is k-1 on RY Vk € N.
H:.jzl x% (¢; > 0) is k-1 on R at least for k < ¢; + 1 Vi.

For a > 0 the function f(x,y) := (xy — a)y is 2-1, since (t — a) is
2-1on R;. So, by Theorem 10, f is (1,1)-1, but not (2,2)-1 as we
saw earlier. It is even not (1,2)-1: (A(;’lz)f) (3,1)=-1% fora=1
The tensor product g(x,y) = (x — a)+ - (¥ — b)+, where a, b > 0,
is (2,2) -1, hence certainly 2-1, but not 3-1, since x — (x — a)4 is
not.

@ (xyz—a)? is3-7onR3, (xy —a)2 3-1 on R2.
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4. k-increasing functions (k € N!) in any dimension

Each monomial f(x) = H:.jzlx,-”" (ni €N)is k-1 on RY Vk € N.
H:.jzl x5 (¢ > 0)is k-1 on Ri at least for k < ¢; +1 Vi.

For a > 0 the function f(x,y) := (xy — a)y is 2-1, since (t — a) is

2-1on R;. So, by Theorem 10, f is (1,1)-1, but not (2,2)-1 as we

saw earlier. It is even not (1,2)-1: (A(ll’lz)f) (3,1)=-1% fora=1
25

The tensor product g(x,y) = (x — a)+ - (¥ — b)+, where a, b > 0,

is (2,2) -1, hence certainly 2-1, but not 3-1, since x — (x — a)4 is
not.

(xyz—a)3 is3-tonR%, (xy —a)2 3-1onR3.

f(x,y,z) = xy + xz + yz — xyz on [0, 1]3
Then ﬂ =y+z—y220, f(l,l) :0, f(1,2) :1—220,
f(]_’2’3) =—-1ie fis 2—T, but not 3-T
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4. k-increasing functions (k € N!) in any dimension

Intermezzo: Bernstein polynomials

b (t) = <r> t{1—-t)" reN,ie{0,1,...,r}, teR

I
Fori:(il,...,id)6{0,1,...,r}d
BiJ = b,‘1®...®b,'d.

For any f : [0,1]¢ — R the associated Bernstein polynomials
f, @ are defined by

37
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4. k-increasing functions (k € N!) in any dimension

For each continuity point x of f we have

F(x) = f(x), r— oo
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4. k-increasing functions (k € N!) in any dimension

For each continuity point x of f we have
F(x) = f(x), r— .

In the following, the “upper right boundary” of [0, 1]¢ will play a
role.

For a C[d] let T, = {x€[0,1]9|x <1« i€ a}. Then

[0,1]9 = U T, is a disjoint union
aCld]

T(Z’ = {ld}a T[d] = [07 1[d
and Uag[d] T. is called the upper right boundary of [0,1]9.

38
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4. k-increasing functions (k € N!) in any dimension

It is easy to show, that on each part T, (a & [d]) of this boundary the
restriction f|T, has as its Bernstein polynomials the restrictions f(")|T,.

Thus we have the

Lemma 3.

Let f:[0,1]9 — R have the property that each restriction f|T,, for
0 # a C [d] is continuous. Then lim,_,o f()(x) = f(x) Vx € [0,1]7, i.e.

(") converges pointwise to f.

(Note that f((14) = f(14) Vr.)
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4. k-increasing functions (k € N!) in any dimension

It is easy to show, that on each part T, (a & [d]) of this boundary the
restriction f|T, has as its Bernstein polynomials the restrictions f(")|T,.

Thus we have the

Lemma 3.

Let f:[0,1]9 — R have the property that each restriction f|T,, for
0 # a C [d] is continuous. Then lim,_,o f()(x) = f(x) Vx € [0,1]7, i.e.
(") converges pointwise to f.

(Note that f((14) = f(14) Vr.)

Lemma 4.
Let f : [0, 1]d — R be2-1. Then

@ £ is continuous iff f is continuous in 14.

@ f is right-continuous and on [0,1[¢ continuous.
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4. k-increasing functions (k € N!) in any dimension

Theorem 11.

f:[0,11Y >R, 2, <neN§,2< keN.
@ fn-t = eachfD isn-t and f) = f pointwise
@ fk-t = eachf" isk-1 and f") — f pointwise

40
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4. k-increasing functions (k € N!) in any dimension

Theorem 11.

f:[0,11Y >R, 2, <neN§,2< keN.
@ fn-t = eachfD isn-t and f) = f pointwise
@ fk-t = eachf" isk-1 and f") — f pointwise

We can now tackle another natural question on the preservation of
monotonicity, related but different to the previous one.

If g1,...,8m : 1 — [0,1] are d.f.s on some d-dimensional interval,

g=(g1,--,8m): 1= [0,1]" ie g(s) = (&(s) &(s),- ),

for which functions f on [0,1]™ is f o g again a d.f.?

40
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4. k-increasing functions (k € N!) in any dimension

Theorem 11.

f:0,1]Y >R, 2,<neNj,2< keN.
@ fn-t = eachf isn-1 and f — f pointwise
@ fk-t = eachf" isk-1andf" — f pointwise
We can now tackle another natural question on the preservation of
monotonicity, related but different to the previous one.
If g1,...,8m : 1 — [0,1] are d.f.s on some d-dimensional interval,
g=(g1,---,8m): 1 —[0,1]" ie. g(s) = (&(s), &(s), - --),

for which functions f on [0,1]™ is f o g again a d.f.?

For d =1 f has just to be increasing (and right-cont.), for d = 2 this is not
sufficient:

s+t
gi(s, t) = — &(s,t) =st, =11 1)1

11
= Atllyli)fo(ghgz)} (E?E) =-1

22

40
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4. k-increasing functions (k € N!) in any dimension

Here is our second main result:

Theorem 12.

Let f:[0,1]" — R4 bed -1 (d > 2), and let

g1, -,8m: R? — [0,1] be d.f.s of (subprobability) measures.
Then, also f o (g1,...,8&m) is a d.f. on RY.

41
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4. k-increasing functions (k € N!) in any dimension

Here is our second main result:

Theorem 12.

Let f:[0,1]" — R4 bed -1 (d > 2), and let

g1, -,8m: R? — [0,1] be d.f.s of (subprobability) measures.
Then, also f o (g1,...,8&m) is a d.f. on RY.

Idea of proof:

g =(g1,-.-,8m), h=fog

h is right-continuous (since f is by Lemma 1).
To show: his 14-1!

Because of Theorem 11 we may assume f to be C*°.

Paul Ressel
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4. k-increasing functions (k € N!) in any dimension

Idea of proof:

O Also g1,...,84 are C*.
An explicite and rather complicated generalization of the
usual multivariate chain rule and of Faa di Bruno's formula
leads to the result (Constantine & Savits, TAMS 1996).
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4. k-increasing functions (k € N!) in any dimension

Idea of proof:

O Also g1,...,84 are C*.
An explicite and rather complicated generalization of the
usual multivariate chain rule and of Faa di Bruno's formula
leads to the result (Constantine & Savits, TAMS 1996).

@ To show: for x € R and ¢ € Ri

(A8h) (x) = h(x + &) F ...+ (~1)h(x) > 0

3C>° d.f.s 81, ..., &n such that g;|B = g;j|B Vi < d, where
B = {x + Yicqa &ieila C [d]}.
1 ~ 1
= 0 < AP(Fog)(x) = (Ah) (x). 0

For d = 2 this result was proved in 2011 (Klement et al., Inf. Sc.).
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4. k-increasing functions (k € N!) in any dimension

Corollary 6.

Let m,d, k e N, J CR™ and | C R intervals,
g=(g1,---,8m): 1 —J, f:J>R neN?

@ Ifeachgiisn-1, and f is|n|-1, then fog isn -1
@ Ifeach gi and f are k -1, then so is f o g.
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4. k-increasing functions (k € N!) in any dimension

Corollary 6.

Let m,d,k € N, JCR™ and | C R? intervals,
g=(g1,....8m): 1 —J, f:J =R neN9

@ Ifeachgiisn-1, and f is|n|-1, then fog isn -1
@ Ifeach g and f are k -1, then so is f o g.

Proof.
(i) By Theorem 8 each gj ooy is 1, -1, hence so is by Theorem 12

fO(gloan,...,gmoan):(fog)oan,

and again Theorem 8 shows f o g to be n-7.
(i) For any n € N¢ with |n| < k each gj is n-T1,
hence f o g is n-1. By Theorem 10 fo g is k-7. Ol
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5. Two related notions of monotonicity

Vi = —Af,ie (Vuf)(s) = f(s)— f(s+ h)

Definition 3.
f:l— Risn-| (“n-decreasing”) iff

(VPf)(s)>0Vscl, heRY, 0Sp<n.
And f is n-J (“n-alternating”) iff

(VPF)(s)<O0Vsel, heRL, 05 p<n.

44
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5. Two related notions of monotonicity

@ fisn-Jonl < f(—-)isn-Ton —/

@ fisn-Jon!l & —f(—-)isn-ton —/

@ A C> function f isn-| iff (~1)Plf, >0V0 S p<n,and f
is n-1 iff (—1)PPl£, < 0 instead.
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5. Two related notions of monotonicity

@ fisn-Jonl < f(—-)isn-Ton —/

@ fisn-Jon!l & —f(—-)isn-ton —/

@ A C> function f isn-| iff (~1)Plf, >0V0 S p<n,and f
is n-1 iff (—1)PPl£, < 0 instead.

For d =1:

f is 2-1 & f is increasing and convex
fis2-| & f is decreasing and convex

fis 2-7 < f is increasing and concave
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5. Two related notions of monotonicity

@ fisn-Jonl < f(—-)isn-1Ton —/

@ fisn-Jonl & —f(—-)isn-ton —/

@ A C* function f isn-| iff (~1)PIf, >0V0 S p<n,and f
is n-1 iff (—1)PPl£, < 0 instead.

For d = 1:

f is 2-1 & f is increasing and convex
fis2-| & f is decreasing and convex

fis 2-7 < f is increasing and concave

f>0isn-JVneN (“c0-1") & fis a Bernstein function

45

Paul Ressel Multivariate Higher Order Monotonicity — and its Preservation



5. Two related notions of monotonicity

An easy consequence of Theorem 1 is

Williamson’s theorem.

If f:]0,00[— R4 isn-J, n>2, then

(s) = [~ es)2 du(c)

where p is a measure on R .

(n- functions are often called “n-monotone”)
A (more recent) generalization reads:

If £ :]0,oo[d—> Ry isn-J, n> 24, then

d
f(s) = / 11— )7 d(c)

; d
with 1 a measure on RY.
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5. Two related notions of monotonicity

An interesting appearance of 3-] functions:

For x,y,z € R we have always
Ix +yl+ 1y +zl+]z+x| < x|+ |y| + [z] + [x +y + 2]

the socalled Hornich-Hlawka inequality. This can be generalized as
follows:
Let f : Ry — Ry be 3-7, then Vx,y,z€ R

Fx+yD)+f (ly+z)+f (|zx]) < F(IxD+F(ly )+ (2D +F (Ix+y+2]).

f = id gives the original inequality, which also holds for vectors
x,y,z. The above generalization for x, y,z € R can be shown for
f(t) =/t f(t) = v/t, f(t) = /¢, ..., but is open for other
(Bernstein) functions.
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5. Two related notions of monotonicity

The remarks given before are useful even in dimension one, as

shown in the following

Example.
(t) = —log(l —e™"), t€]o,oq

Then ¢ is completely montone, i.e. n-| for each n € N, and this
was shown in an article from 2018 by using so-called Eulerian
numbers (of permutations). It follows also from
o(=-) = [~log(L— -)]oexp (on]—o0,0])
—_— ~~
n4 n4

using the Bernstein function log(1 + t):

©(—+) is n-1 as composition of two such functions, hence ¢ is
n-1VnéeN.
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5. Two related notions of monotonicity

Of special importance is again n = 14. Non-negative 14-]
functions are (essentially) survival-functions, i.e. of the form
w([s, 00]) for some measure p.

Non-negative 14-1 are (essentially) co-survival functions, i.e. of

the form p([s, oo]®) for some pu.

49
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5. Two related notions of monotonicity

Of special importance is again n = 14. Non-negative 14-]
functions are (essentially) survival-functions, i.e. of the form
w([s, 00]) for some measure p.
Non-negative 14-1 are (essentially) co-survival functions, i.e. of
the form p([s, oo]®) for some pu.
A particular subclass of the latter is of special interest:
A d.f. Fon Ri is called a simple multivariate extreme value
distribution iff

(F(tx))! = F(x) Yx€R{, vt>0
and if F has standard Fréchet margins, defined by the
(one-dimensional) d.f. exp (—l) for u> 0. Then F(x) =0 if

u

x; = 0 for some i, and 0 < F(x) < 1 else.
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5. Two related notions of monotonicity

1 1 1 1
f(x) = —log F <) where — = <,,...>
X X X1 X2

is called a stable tail dependence function (STDF). It is a function
f: Rj’r — R4 with the properties

f is homogeneous, i.e. f(tx) = tf(x) Vt > 0, Vx
fle)=1Vi=1,...,d

© & e

max;<q x; < f(x) < X0 x;
@ f is convex

but this is a full characterization of STDFs only for d = 2. In

higher dimensions, this had been an open problem for some time.
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5. Two related notions of monotonicity

The answer | could give is as follows:

Theorem 13.

A function f : Ri — R is a STDF if and only if f is homogeneous,
].d -i, and f(e]_) = o0 = f(ed) =1.

In this case f is the co-survival function of a homogeneous Radon

measure ji on [0,00]9 \ {oc}, i.e.

f(x)=pu ([x, oo]c> , x €RL.
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5. Two related notions of monotonicity

The answer | could give is as follows:

Theorem 13.
A function f : Ri — R is a STDF if and only if f is homogeneous,
].d -i, and f(e]_) = o0 = f(ed) =1.

In this case f is the co-survival function of a homogeneous Radon

measure ji on [0,00]9 \ {oc}, i.e.
f(x)=pu ([x, oo]c> , x €RL.
In this case f has the unique integral representation

F(x) = F(1y) - / max(cix) d(c).

v being a probability measure on {c € R{ | max;<q ¢; = 1}.
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5. Two related notions of monotonicity

Examples.

@ The classical norms f,(x) = (Z, . ) for p > 1, up to
fo(x) == maxj<gx; (GUMBEL)

o f(x,y)= %Lon R2

° z’.x,- — Zi<j(xip _’_ij)‘l’ 4.4 (_1)d—1 (Zixip),-l, for p <0
(GALAMBOS)
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5. Two related notions of monotonicity

@ The classical norms f,(x) = (Z, . ) for p > 1, up to
fo(x) == maxj<gx; (GUMBEL)

o f(x,y)= %Lon R2

° z’.x,- — Zi<j(xip _’_ij)‘l’ 4.4 (_1)d—1 (Zixip),-l, for p <0
(GALAMBOS)

Which (univariate) functions preserve n-| (multivariate) functions?
Answer: exactly those preserving n-71 ones, because of Remark (a).
And which ones preserve n-] functions:

e gn-],f|n-J = fogisn-
since —(fog)(—-) =[~f(=-)lo[-g(=)].

e gn-J,fn-l = fogisn-]
since £ o g(—+) = [F(— )] o [~g(—+)].
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5. Two related notions of monotonicity

An open problem:
K = {f . [0,1]2 —>R+ | fis 2'T7 f(lal) = 1}

Then K is compact and convex, multiplicatively stable.
e Is K a Bauer simplex?
e Determine ex(K)!

| could prove that

foo(fz® fp) € ex(K)

Va, b, c € [0,1] (f(t) = (t — a)1 /(1 — a), fi == 1(y3).

Are there other extreme points?

53
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