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1. Basic notions

I1, . . . , Id ⊆ R intervals (always non-degenerate)
I := I1 × · · · × Id , f : I → R
For s ∈ I, h ∈ Rd

+ such that also s + h ∈ I

(Ehf ) (s) := f (s + h)

∆h := Eh − E0, i.e. (∆hf ) (s) := f (s + h) − f (s)

Since {Eh | h ∈ Rd
+} is commutative, so is {∆h | h ∈ Rd

+}. 
For any h, ∆0

h f  := f (also for h = 0), but ∆0f = 0 ∀f .
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1. Basic notions

For n = (n1, . . . , nd) ∈ Nd
0 and h = (h1, . . . , hd) ∈ Rd

+

∆n
h := ∆n1

h1e1
∆n2

h2e2
. . . ∆nd

hd ed

(where e1, . . . , ed are standard unit vectors), so that (∆n
hf ) (s) is

defined for s, s +
∑d

i=1 nihiei ∈ I.
We first consider d = 1, n = n ∈ N, I ⊆ R and put

σn(x1, . . . , xn) := x1 + · · · + xn.
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1. Basic notions

Assume I = [0, 1], hence f : [0, 1] → R. For t ∈ [0, 1[ and h > 0,
t + nh ≤ 1,

(∆n
hf ) (t) = f (t + nh) −

(
n
1

)
f (t + (n − 1)h) ± · · · + (−1)nf (t)

=
[
∆(1,...,1)

(h,...,h)(f ◦ σn)
] ( t

n , . . . ,
t
n

)
.

If a univariate f is C∞, then

∆n
h(f ) ≥ 0 ∀h > 0 ⇔ f (n) ≥ 0.

If a multivariate f is C∞, then

∆n
h(f ) ≥ 0 ∀h ∈ Rd

+ ⇔ fn := ∂|n|f
∂xn1

1 . . . ∂xnd
d

≥ 0
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1. Basic notions

Definition 1.
I ⊆ Rd , n ∈ Nd

0 \ {0}, f : I → R is n -↑ (read “n-increasing”) iff

(
∆p

hf
)

(s) ≥ 0 ∀s ∈ I, h ∈ Rd
+, p ∈ Nd

0 , 0 ≨ p ≤ n

such that sj + pjhj ∈ Ij ∀j ∈ [d ] := {1, . . . , d}.

For a C∞ function f then

f is n -↑ ⇔ fp ≥ 0 for 0 ≨ p ≤ n.
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1. Basic notions

• For d = 1, n = n ∈ N, f is 1 -↑ iff f is (weakly) increasing,
and f is 2 -↑ iff f is increasing and convex.

• d = 2, f (s1, s2) := (s1s2 − a)+, a > 0
f is (1, 0) -↑, (0, 1) -↑, (1, 1) -↑ (will be shown later), but not
(2, 2) -↑: (

∆(2,2)
(
√

a,
√

a)f
)

(0) = −a.
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2. The univariate case

Theorem 1.
f : [0, 1[→ R+ is n -↑ (n ≥ 2) iff ∃! a0, . . . , an−2 ≥ 0 and a
measure µ on [0, 1[ such that

f (t) = a0 + a1t + · · · + an−2tn−2 +
∫

(t − a)n−1
+ dµ(a).

f is continuous and for n > 2 (n − 2) times continuously
differentiable.

Paul Ressel Multivariate Higher Order Monotonicity – and its Preservation



8

2. The univariate case

Let Kn := {f : [0, 1] → R+ | f is n -↑, f (1) = 1}, and
fa(t) := (t − a)+/(1 − a) for 0 ≤ a < 1, f1 := 1{1},
En := {1, t, . . . , tn−2} ∪ {f n−1

a | a ∈ [0, 1]}, n ≥ 2

Corollary 1.
Kn is a Bauer simplex, ex(Kn) = En for n ≥ 2.

Corollary 2.
If f : [0, 1[→ R+ is “absolutely monotone”, i.e. n -↑ ∀ n ∈ N, then

f (t) =
∑
j≥0

ajt j where aj ≥ 0 ∀j .

Corollary 3.
K∞ :=

⋂
n≥1 Kn is a Bauer simplex with

ex(K∞) = {1, t, t2, . . .} ∪ {1{1}}.
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3. The multivariate case

First some special situations and examples.
1 fj : Ij → R, 1 ≤ j ≤ d , f := f1 ⊗ · · · ⊗ fd , i.e.

f (s) =
d∏

i=1
fj(sj)

Then (
∆p

hf
)

(s) =
d∏

j=1

(
∆pj

hj
fj
)

(sj)

for p ∈ Nd
0 , h ∈ Rd

+, implying for fj ≥ 0

f is n -↑ ⇔ fj is nj -↑ ∀j .
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3. The multivariate case

2 f (s) :=
∑d

j=1 fj(sj) (a “tensor sum”)
Then

∆p
hf (s) =

∆pi
hi

fi(si) if p = piei , pi ≥ 1

= 0 if p has more than one positive entry.

f is n -↑ ⇔ fj is nj -↑ ∀j

(fj ≥ 0 not necessary)
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3. The multivariate case

3 d = 2,

f (s, t) :=
∫ ∞

0
1[a,∞[(s)︸ ︷︷ ︸

1 -↑

(t − a)+︸ ︷︷ ︸
2 -↑︸ ︷︷ ︸

(1,2) -↑

da on R2
+

=
∫ s∧t

0
(t − a)+ da = (s ∧ t) ·

(
t − 1

2(s ∧ t)
)

f is (1, 2) -↑ (and not more!)
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3. The multivariate case

5 

f (s, t) := (s ∧ t) ·
(

t − 1
2(s ∧ t)

)
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3. The multivariate case

For n ∈ Nd , n ≥ 2d we consider

Kn := {f : [0, 1]d → R+ | f is n -↑, f (1d) = 1},

obviously convex and compact, and

En := En1 ⊗ · · · ⊗ End = {f1 ⊗ · · · ⊗ fd | fi ∈ Eni ∀i}.

Theorem 2.
For n ≥ 2d Kn is a Bauer simplex, and ex(Kn) = En.
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3. The multivariate case

For example, if d = 2, any f : [0, 1]2 → R+ which is (2, 2) -↑, has
the form

f (s, t) =
∫

E2×E2
ρ1(s)ρ2(t) dµ(ρ1, ρ2),

hence in case f (s, 0) = f (0, t) = 0 ∀s, t,

f (s, t) =
∫

[0,1]2
fa(s)fb(t) dµ(a, b)

for some measure µ on [0, 1]2.
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3. The multivariate case

Let us now consider the special important case
n = 1d = (1, . . . , 1).
For d = 2, h = (h1, h2) ∈ R2

+(
∆(1,1)

h f
)

(s, t) = f (s + h1, t + h2) − f (s, t + h2)

− f (s + h1, t) + f (s, t)(
∆(1,0)

h f
)

(s, t) = f (s + h1, t) − f (s, t)(
∆(0,1)

h f
)

(s, t) = f (s, t + h2) − f (s, t).
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3. The multivariate case

For general d ∈ N, h ∈ Rd
+(

∆1d
h f
)

(s) = f (s + h) − f (s1, s2 + h2, . . . , sd + hd) − · · ·

− f (s1 + h1, . . . , sd−1 + hd−1, sd)

+ f (s1, s2, s3 + h3, . . . , sd + hd) + · · ·

· · · + (−1)d f (s).

If f is the distribution function (“d.f.”) of some measure µ, say on
Rd

+, i.e.
f (s) = µ([0, s]),

then (
∆1d

h f
)

(s) = µ(]s, s + h]) ≥ 0.
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3. The multivariate case

Theorem 3.
Let ∅ ≠ Ij ⊆ R be arbitrary (not necessarily intervals), j ≤ d,
I = I1 × · · · × Id , f : I → R+. Then

f is the d.f. of some measure on I

⇔ f is 1d -↑ and right-continuous.

The proof relies on the fact, that f (≥ 0) is 1d -↑ iff f is completely
monotone on the semigroup (I, ∧) iff f is positive definite on (I, ∧).
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3. The multivariate case

In dimension one any 2 -↑ function is right-continuous; if a
multivariate f is (only) 1d -↑, this need not be the case:

f = 1]0,1]2 on [0, 1]2.

However, for n ∈ Nd each n -↑ f is the pointwise limit of some net
of n -↑ right-continuous functions.
(If n ≥ 2d , then f itself is right-continuous.)
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3. The multivariate case

Application. Mean values as distribution functions

For x ∈]0, ∞[d and t ∈ R consider

Mt(x) :=
(

1
d

d∑
i=1

x t
i

) 1
t

for t ̸= 0

M0(x) :=
( d∏

i=1
xi

) 1
d (

= lim
t→0

Mt(x)
)

M∞(x) := max
i≤d

xi
(
= lim

x→∞
Mt(x)

)
M−∞(x) := min

i≤d
xi

(
= lim

t→−∞
Mt(x)

)
.
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3. The multivariate case

(If t < 0 and xi = 0 for some i , then Mt (x) = 0.)

The function R ∋ t 7→ Mt (x) (for non-constant x) is continuous and 
strictly increasing from min xi to max xi .
Since Mt (1, . . . , 1) = 1, these mean values are candidates for d.f..s 

of probability measures on [0, 1]d .
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3. The multivariate case

Theorem 4.
Mt |[0,1]d is a d.f. ⇔ t ∈ [−∞, 1

d−1 ] ∪ { 1
d−2 , . . . , 1

2 , 1}
(t ∈ [−∞, 1] for d = 2)

How to prove this?

Mt = ft ◦
(

1
d

d∑
i=1

x t
i

)
, ft(s) := s1/t on ]0, ∞[

For t > 0,
∑d

i=1 x t
i is a tensor sum of increasing functions, hence

1d -↑.
We need to know which functions on R+ preserve this property!
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3. The multivariate case

The following result was essentially shown by P. M. Morillas (2005):

Theorem 5.

Let I ⊆ Rd and J ⊆ R be intervals, g : I → J, f : J → R. Then, if g is 1d -↑
and f is d -↑, f ◦ g is again 1d -↑.

Let’s apply this to the mean values Mt (for t > 0):

• for t ∈ {1, 1
2 , 1

3 , . . .} we have ft(s) = sk for some k ∈ N, hence ft is
absolutely monotone, and Mt a d.f.

• for t ∈]0, 1] \ {1, 1
2 , 1

3 , . . .}:(
x

1
t

)(k)
= 1

t

(1
t − 1

)
· · ·
(1

t − (k − 1)
)

x
1
t −k

1
t > k − 1 ⇒ . . . > 0

⇔ t <
1

k − 1

hence t < 1
d−1 is sufficient for ft to be d -↑. (in fact also necessary; t > 1 will

be dealt with later)
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3. The multivariate case

Before considering Mt for t < 0, this remark: Let α, β > 0

then xi 7→ −x−α
i is increasing on ]0, ∞[

⇒ x 7→ −
∑

x−α
i is 1d -↑ on ]0, ∞[d

s 7→ s−β is completely monotone on ]0, ∞[

⇔ s 7→ (−s)−β is absolutely monotone on ] − ∞, 0[

Now let t < 0, α := −t, β := −1
t

⇒ Mt(x) = d−1/t
[
−
(
−
∑

x−α
i

)]−β
is 1d -↑,

again by Theorem 5.
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3. The multivariate case

An important supplement to Theorem 5:

Theorem 6.
Let I ⊆ Rd be an interval (always non-degenerate),
σd(x) :=

∑d
i=1 xi , J := σd(I), f : J → R. Then

f is d -↑ ⇔ f ◦ σd is 1d -↑ .
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3. The multivariate case

An important supplement to Theorem 5:

Theorem 6.
Let I ⊆ Rd be an interval (always non-degenerate),
σd(x) :=

∑d
i=1 xi , J := σd(I), f : J → R. Then

f is d -↑ ⇔ f ◦ σd is 1d -↑ .

Here “⇒” follows from Theorem 5. For “⇐” it is sufficient to
consider I = [0, 1

d ]d and J = [0, 1]. Then for t ∈ [0, 1[, h > 0,
t + k · h ≤ 1 (k ≤ d)

(
∆k

hf
)

(t) = f (t + kh) −
(

k
1

)
f (t + (k − 1)h) + · · · + (−1)k f (t)

=
(
∆1k ,0d−k

(h,...,h) (f ◦ σd)
)

( t
d , . . . ,

t
d )
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3. The multivariate case

However: attention!
We’d need t

d + h ≤ 1
d , or t + dh ≤ 1, but only know t + kh ≤ 1.

Lemma 1.
J ⊆ R interval, f : J → R, k ∈ N. If ∃h0 > 0 such that(
∆k

hf
)

(t) ≥ 0 ∀t ∈ J, h ∈]0, h0] with t + kh ∈ J, then the same
holds ∀h > 0 such that t + kh ∈ J.

To finish the proof of Theorem 6, choose h0 := 1−t
d .

Corollary 4.
f : [0, 1] → R is d -↑ iff f ◦ M1 is 1d -↑.
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3. The multivariate case

A natural question:

Suppose F is a two-dimensional d.f., G a three-dimensional d.f.,
for which functions f on [0, 1]2 is then always f ◦ (F × G) a
five-dimensional d.f.?
Apart from normalisation, when is f (F (x), G(y)) 15 -↑?
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3. The multivariate case

Theorem 7.

Let I1 ⊆ Rn1 , . . . , Id ⊆ Rnd be intervals, g1 : I1 → [0, 1] 1n1 -↑, . . . , gd : Id → [0, 1]
1nd -↑, n := (n1, . . . , nd ). If f : [0, 1]d → R+ is n -↑, then f ◦ (g1 × · · · × gd ) is 1|n| -↑.

Proof.

We may assume f (1d ) = 1, and also n ≥ 2d . Then (Theorem 2)

f (s) =
∫

En

d∏
i=1

ρi (si ) dµ(ρ1, . . . , ρd )

for some probability measure µ on En. So

f ◦ (g1 × · · · × gd ) =
∫ d⊗

i=1

(ρi ◦ gi ) dµ(ρ1, . . . , ρd )

where each ρi ◦ gi is 1ni -↑ (Theorem 5), therefore
⊗d

i=1(ρi ◦ gi ) is 1|n| -↑, and so is
then f ◦ (g1 × · · · × gd ) as a mixture of those.
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3. The multivariate case

A special case would be gi = σni (∀i) on suitable ni -dimensional
intervals. As a generalisation of Theorem 6 we have
(σn := σn1 × · · · × σnd )

Theorem 8.
Let I1 ⊆ Rn1 , . . . , Id ⊆ Rnd be non-degenerate intervals,
Ji := σni (Ii), J := J1 × · · · × Jd and f : J → R. Then

f is n -↑ ⇔ f ◦ σn is 1|n| -↑

(similar proof!)
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3. The multivariate case

Finally, we get a natural generalisation of Theorem 5, our first
main result:
Theorem 9.
Let gi : Ii → [0, 1] be mi -↑, where mi ∈ Nni . Put
g := g1 × · · · × gd : I1 × · · · × Id → [0, 1]d . If f : [0, 1]d → R is
(|m1|, . . . , |md|) -↑ then f ◦ g is (m1, . . . , md) -↑.

Example.
d = 2, n1 = 2, n2 = 3, m1 = (2, 4), m2 = (3, 3, 2). If g1 (bivariate)
is (2, 4) -↑, g2 (trivariate) is (3, 3, 2) -↑, and f is (6, 8) -↑, then
f ◦ (g1 × g2) is (2, 4, 3, 3, 2) -↑ (as a function of 5 variables).
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3. The multivariate case

Proof.
f (s) =

∫ ⊗d
i=1 ρi(si) dµ(ρ)

µ on E(|m1|,...,|md|)

⇒ f ◦ g =
∫ ⊗d

i=1 ρi ◦ gi dµ(ρ)
gi is mi -↑, equiv. gi ◦ σmi is 1|mi| -↑

f ◦ g ◦ σ(m1,...,md) =
∫ d⊗

i=1
ρi ◦ gi ◦ σmi dµ(ρ)︸ ︷︷ ︸
is 1|m1|+···+|md| -↑

⇒ f ◦ g is (m1, . . . , md) -↑.
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3. The multivariate case

Special cases:

g n -↑, f |n| -↑ ⇒ f ◦ g n -↑

g n -↑, f n -↑ ⇒ f ◦ g n -↑

(if defined...)
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4. k-increasing functions (k ∈ N!) in any dimension

Let I ⊆ R, f : I → R continuous, k ∈ N. Then
∆k

h(f )(t) ≥ 0 ∀ t ∈ I, h > 0, t + kh ∈ I
is equivalent with

(∆h1∆h2 . . . ∆hk f ) (t) ≥ 0 ∀ t ∈ I, hi > 0, t +
k∑

i=1
hi ∈ I.

(Boas-Widder (1940), easy to see)
The following notion now seems natural:

Definition 2.
I ⊆ Rd interval, f : I → R, k ∈ N. Then f is called k-increasing (“k -↑”)
iff ∀ j ∈ [k], ∀ h(1), . . . , h(j) ∈ Rd

+, ∀ s ∈ I such that
s + h(1) + . . . + h(j) ∈ I

(∆h(1) . . . ∆h(j) f ) (s) ≥ 0.
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4. k-increasing functions (k ∈ N!) in any dimension

• For k = 2 these functions are known as ultramodular.

• For d = 1 this definition is the known one.

• Already for d = 2 increasing convexity and being 2 -↑ are
incomparable properties: on R2

+ the product is 2 -↑, but not
convex; and the Euclidean norm is convex, however not 2 -↑:(

∆e1∆e2

√
x2 + y2

)
(0) =

√
2 − 2

There is a surprisingly close connection to n -↑ functions:
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4. k-increasing functions (k ∈ N!) in any dimension

Theorem 10.
Let I ⊆ Rd be an interval, d , k ∈ N, f : I → R. Then

f is k -↑ ⇔ f is n -↑ ∀ n ∈ Nd
0 with 0 < |n| ≤ k.

Furthermore:
∀ m ∈ N, ∀ interval J ⊆ Rm, ∀ positive affine φ : Rm → Rd

such that φ(J) ⊆ I, also f ◦ φ is k -↑ .

Corollary 5.
I ⊆ Rd , B ⊆ R intervals, g : I → B and f : B → R both k -↑, then
so is f ◦ g.

Because: 0 < |n| ≤ k ⇒ f |n| -↑, g n -↑ ⇒ f ◦ g n -↑.
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4. k-increasing functions (k ∈ N!) in any dimension

Lemma 2.
I ⊆ Rd1 , J ⊆ Rd2 intervals, f : I → R+, g : J → R+ both k -↑
⇒ f ⊗ g k -↑ on I × J. In case I = J the product f · g is also k -↑.

Proof.[
∆m,n

(h(1),h(2))(f ⊗ g)
]

(x , y) =
(
∆m

h(1)f
)

(x) ·
(
∆n

h(2)g
)

(y). For
|(m, n)| = |m| + |n| ≤ k both factors are ≥ 0 (m = 0 or n = 0 is
possible, therefore f ≥ 0, g ≥ 0).
For I = J , let φ : Rd → R2d be given by φ(x) := (x , x), a linear
positive map, with φ(I) ⊆ I × I. Therefore

(f ⊗ g) ◦ φ = f · g is also k -↑ .
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4. k-increasing functions (k ∈ N!) in any dimension

Examples.

Each monomial f (x) =
∏d

i=1 xni
i (ni ∈ N) is k -↑ on Rd

+ ∀k ∈ N.∏d
i=1 x ci (ci > 0) is k -↑ on Rd

+ at least for k ≤ ci + 1 ∀i .

For a > 0 the function f (x , y) := (xy − a)+ is 2 -↑, since (t − a)+ is
2 -↑ on R+. So, by Theorem 10, f is (1, 1) -↑, but not (2, 2) -↑ as we
saw earlier. It is even not (1, 2) -↑:

(
∆(1,2)

1
2 ,1 f

)
( 1

2 , 1) = − 1
2 , for a = 1.

The tensor product g(x , y) := (x − a)+ · (y − b)+, where a, b > 0,
is (2, 2) -↑, hence certainly 2 -↑, but not 3 -↑, since x 7→ (x − a)+ is
not.

(xyz − a)2
+ is 3 -↑ on R3

+, (xy − a)2
+ 3 -↑ on R2

+.

f (x , y , z) := xy + xz + yz − xyz on [0, 1]3

Then f1 = y + z − yz ≥ 0, f(1,1) = 0, f(1,2) = 1 − z ≥ 0,
f(1,2,3) = −1 i.e. f is 2 -↑, but not 3 -↑.
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4. k-increasing functions (k ∈ N!) in any dimension

Intermezzo: Bernstein polynomials

bi ,r (t) :=
(

r
i

)
t i(1 − t)r−i , r ∈ N, i ∈ {0, 1, . . . , r}, t ∈ R

For i = (i1, . . . , id) ∈ {0, 1, . . . , r}d

Bi,r := bi1 ⊗ . . . ⊗ bid .

For any f : [0, 1]d → R the associated Bernstein polynomials
f (1), f (2), . . . are defined by

f (r) :=
∑

0≤i≤rd

f
( i

r

)
Bi,r
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4. k-increasing functions (k ∈ N!) in any dimension

For each continuity point x of f we have

f (r)(x) → f (x), r → ∞.

In the following, the “upper right boundary” of [0, 1]d will play a
role.
For α ⊆ [d ] let Tα := {x ∈ [0, 1]d | xi < 1 ⇔ i ∈ α}. Then

[0, 1]d =
⋃

α⊆[d]
Tα is a disjoint union

T∅ = {1d}, T[d] = [0, 1[d

and
⋃

α⫋[d] Tα is called the upper right boundary of [0, 1]d .

Paul Ressel Multivariate Higher Order Monotonicity – and its Preservation



38

4. k-increasing functions (k ∈ N!) in any dimension

For each continuity point x of f we have

f (r)(x) → f (x), r → ∞.

In the following, the “upper right boundary” of [0, 1]d will play a
role.
For α ⊆ [d ] let Tα := {x ∈ [0, 1]d | xi < 1 ⇔ i ∈ α}. Then

[0, 1]d =
⋃

α⊆[d]
Tα is a disjoint union

T∅ = {1d}, T[d] = [0, 1[d

and
⋃

α⫋[d] Tα is called the upper right boundary of [0, 1]d .

Paul Ressel Multivariate Higher Order Monotonicity – and its Preservation



39

4. k-increasing functions (k ∈ N!) in any dimension

It is easy to show, that on each part Tα (α ⫋ [d ]) of this boundary the
restriction f |Tα has as its Bernstein polynomials the restrictions f (r)|Tα.
Thus we have the

Lemma 3.
Let f : [0, 1]d → R have the property that each restriction f |Tα for
∅ ≠ α ⊆ [d ] is continuous. Then limr→∞ f (r)(x) = f (x) ∀x ∈ [0, 1]d , i.e.
f (r) converges pointwise to f .

(Note that f (r)(1d) = f (1d) ∀r .)

Lemma 4.
Let f : [0, 1]d → R be 2 -↑. Then

(i) f is continuous iff f is continuous in 1d .

(ii) f is right-continuous and on [0, 1[d continuous.
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4. k-increasing functions (k ∈ N!) in any dimension

Theorem 11.

f : [0, 1]d → R, 2d ≤ n ∈ Nd
0 , 2 ≤ k ∈ N.

(i) f n -↑ ⇒ each f (r) is n -↑ and f (r) → f pointwise
(ii) f k -↑ ⇒ each f (r) is k -↑ and f (r) → f pointwise

We can now tackle another natural question on the preservation of
monotonicity, related but different to the previous one.

If g1, . . . , gm : I → [0, 1] are d.f.s on some d-dimensional interval,

g = (g1, . . . , gm) : I → [0, 1]m, i.e. g(s) = (g1(s), g2(s), . . .),

for which functions f on [0, 1]m is f ◦ g again a d.f.?
For d = 1 f has just to be increasing (and right-cont.), for d = 2 this is not
sufficient:

g1(s, t) := s + t
2 , g2(s, t) := st, f = 1[( 1

2 , 1
2 ),(1,1)]

⇒
[
∆(1,1)

( 1
2 , 1

2 )f ◦ (g1, g2)
](1

2 ,
1
2

)
= −1.
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4. k-increasing functions (k ∈ N!) in any dimension

Here is our second main result:
Theorem 12.
Let f : [0, 1]m → R+ be d -↑ (d ≥ 2), and let
g1, . . . , gm : Rd → [0, 1] be d.f.s of (subprobability) measures.
Then, also f ◦ (g1, . . . , gm) is a d.f. on Rd .

Idea of proof:
g := (g1, . . . , gm), h := f ◦ g
h is right-continuous (since f is by Lemma 1).
To show: h is 1d -↑!
Because of Theorem 11 we may assume f to be C∞.
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4. k-increasing functions (k ∈ N!) in any dimension

Idea of proof:
1 Also g1, . . . , gd are C∞.

An explicite and rather complicated generalization of the
usual multivariate chain rule and of Faà di Bruno’s formula
leads to the result (Constantine & Savits, TAMS 1996).

2 To show: for x ∈ Rd and ξ ∈ Rd
+(

∆1d
ξ h
)

(x) = h(x + ξ) ∓ . . . + (−1)dh(x) ≥ 0

∃C∞ d.f.s g̃1, . . . , g̃m such that g̃i |B = gi |B ∀i ≤ d , where
B := {x +

∑
i∈α ξiei |α ⊆ [d ]}.

⇒ 0 ≤ ∆1d
ξ (f ◦ g̃)(x) =

(
∆1d

ξ h
)

(x).

For d = 2 this result was proved in 2011 (Klement et al., Inf. Sc.).
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4. k-increasing functions (k ∈ N!) in any dimension

Corollary 6.
Let m, d , k ∈ N, J ⊆ Rm and I ⊆ Rd intervals,
g = (g1, . . . , gm) : I → J, f : J → R, n ∈ Nd .

(i) If each gi is n -↑, and f is |n| -↑, then f ◦ g is n -↑
(ii) If each gi and f are k -↑, then so is f ◦ g.

Proof.
(i) By Theorem 8 each gi ◦ σn is 1|n| -↑, hence so is by Theorem 12

f ◦ (g1 ◦ σn, . . . , gm ◦ σn) = (f ◦ g) ◦ σn,

and again Theorem 8 shows f ◦ g to be n -↑.
(ii) For any n ∈ Nd with |n| ∈ Nd with |n| ≤ k each gi is n -↑,
hence f ◦ g is n -↑. By Theorem 10 f ◦ g is k -↑.
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5. Two related notions of monotonicity

∇f := −∆f , i.e. (∇hf )(s) := f (s) − f (s + h)

Definition 3.
f : I → R is n -↓ (“n-decreasing”) iff

(
∇p

hf
)

(s) ≥ 0 ∀s ∈ I, h ∈ Rd
+, 0 ≨ p ≤ n.

And f is n -↕ (“n-alternating”) iff

(
∇p

hf
)

(s) ≤ 0 ∀s ∈ I, h ∈ Rd
+, 0 ≨ p ≤ n.
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5. Two related notions of monotonicity

Remarks.
(a) f is n -↓ on I ⇔ f (− · ) is n -↑ on −I
(b) f is n -↕ on I ⇔ −f (− · ) is n -↑ on −I
(c) A C∞ function f is n -↓ iff (−1)|p|fp ≥ 0 ∀0 ≨ p ≤ n, and f

is n -↕ iff (−1)|p|fp ≤ 0 instead.

For d = 1:

f is 2 -↑ ⇔ f is increasing and convex

f is 2 -↓ ⇔ f is decreasing and convex

f is 2 -↕ ⇔ f is increasing and concave

f ≥ 0 is n -↕ ∀n ∈ N (“∞ -↑ ”) ⇔ f is a Bernstein function
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(a) f is n -↓ on I ⇔ f (− · ) is n -↑ on −I
(b) f is n -↕ on I ⇔ −f (− · ) is n -↑ on −I
(c) A C∞ function f is n -↓ iff (−1)|p|fp ≥ 0 ∀0 ≨ p ≤ n, and f

is n -↕ iff (−1)|p|fp ≤ 0 instead.

For d = 1:
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5. Two related notions of monotonicity

An easy consequence of Theorem 1 is

Williamson’s theorem.
If f :]0, ∞[→ R+ is n -↓, n ≥ 2, then

f (s) =
∫

(1 − cs)n−1
+ dµ(c)

where µ is a measure on R+.

(n -↓ functions are often called “n-monotone”)
A (more recent) generalization reads:

If f :]0, ∞[d→ R+ is n -↓, n ≥ 2d , then

f (s) =
∫ d∏

i=1
(1 − cisi)ni −1

+ dµ(c)

with µ a measure on Rd
+.
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5. Two related notions of monotonicity

An interesting appearance of 3 -↕ functions:
For x , y , z ∈ R we have always

|x + y | + |y + z | + |z + x | ≤ |x | + |y | + |z | + |x + y + z |

the socalled Hornich-Hlawka inequality. This can be generalized as
follows:
Let f : R+ → R+ be 3 -↕, then ∀x , y , z ∈ R

f (|x+y |)+f (|y+z |)+f (|z+x |) ≤ f (|x |)+f (|y |)+f (|z |)+f (|x+y+z |).

f = id gives the original inequality, which also holds for vectors
x , y , z . The above generalization for x , y , z ∈ Rd can be shown for
f (t) =

√
t, f (t) = 4√t, f (t) = 8√t, . . ., but is open for other

(Bernstein) functions.
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5. Two related notions of monotonicity

The remarks given before are useful even in dimension one, as
shown in the following

Example.

φ(t) := − log(1 − e−t), t ∈]0, ∞[

Then φ is completely montone, i.e. n -↓ for each n ∈ N, and this
was shown in an article from 2018 by using so-called Eulerian
numbers (of permutations). It follows also from

φ(− · ) = [− log(1 − · )]︸ ︷︷ ︸
n -↑

◦ exp︸︷︷︸
n -↑

(on ] − ∞, 0[)

using the Bernstein function log(1 + t):
φ(− · ) is n -↑ as composition of two such functions, hence φ is

n -↓ ∀n ∈ N.
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5. Two related notions of monotonicity

Of special importance is again n = 1d . Non-negative 1d -↓
functions are (essentially) survival-functions, i.e. of the form
µ([s, ∞]) for some measure µ.
Non-negative 1d -↕ are (essentially) co-survival functions, i.e. of
the form µ([s, ∞]∁) for some µ.

A particular subclass of the latter is of special interest:
A d.f. F on Rd

+ is called a simple multivariate extreme value
distribution iff

(F (tx))t = F (x) ∀x ∈ Rd
+, ∀t > 0

and if F has standard Fréchet margins, defined by the
(one-dimensional) d.f. exp

(
− 1

u

)
for u > 0. Then F (x) = 0 if

xi = 0 for some i , and 0 < F (x) < 1 else.
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5. Two related notions of monotonicity

f (x) := − log F
(1

x

)
where 1

x
:=
( 1

x1
,

1
x2

, . . .

)
is called a stable tail dependence function (STDF). It is a function
f : Rd

+ → R+ with the properties
(i) f is homogeneous, i.e. f (tx) = tf (x) ∀t > 0, ∀x
(ii) f (ei) = 1 ∀i = 1, . . . , d
(iii) maxi≤d xi ≤ f (x) ≤

∑d
i=1 xi

(iv) f is convex

but this is a full characterization of STDFs only for d = 2. In
higher dimensions, this had been an open problem for some time.
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5. Two related notions of monotonicity

The answer I could give is as follows:

Theorem 13.
A function f : Rd

+ → R is a STDF if and only if f is homogeneous,
1d -↕, and f (e1) = · · · = f (ed) = 1.
In this case f is the co-survival function of a homogeneous Radon
measure µ on [0, ∞]d \ {∞}, i.e.

f (x) = µ
(
[x , ∞]∁

)
, x ∈ Rd

+.

In this case f has the unique integral representation

f (x) = f (1d) ·
∫

max
i≤d

(cixi) dν(c),

ν being a probability measure on {c ∈ Rd
+ | maxi≤d ci = 1}.
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5. Two related notions of monotonicity

Examples.
The classical norms fp(x) :=

(∑d
i=1 xp

i

) 1
p for p ≥ 1, up to

f∞(x) := maxi≤d xi (GUMBEL)

f (x , y) = x2+xy+y2

x+y on R2
+∑

i xi −
∑

i<j(x
p
i + xp

j )
1
p ± · · · + (−1)d−1 (

∑
i xp

i )
1
p for p < 0

(GALAMBOS)

Which (univariate) functions preserve n -↓ (multivariate) functions?
Answer: exactly those preserving n -↑ ones, because of Remark (a).
And which ones preserve n -↕ functions:

• g n -↕, f |n| -↕ ⇒ f ◦ g is n -↕
since −(f ◦ g)(− · ) = [−f (− · )] ◦ [−g(− · )],

• g n -↕, f |n| -↓ ⇒ f ◦ g is n -↓
since f ◦ g(− · ) = [f (− · )] ◦ [−g(− · )].
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5. Two related notions of monotonicity

An open problem:

K := {f : [0, 1]2 → R+ | f is 2 -↑, f (1, 1) = 1}

Then K is compact and convex, multiplicatively stable.

• Is K a Bauer simplex?

• Determine ex(K )!

I could prove that
fc ◦ (fa ⊗ fb) ∈ ex(K )

∀a, b, c ∈ [0, 1] (fa(t) = (t − a)+/(1 − a), f1 := 1{1}).
Are there other extreme points?
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