The MPC-in-the-head paradigm

Peter Scholl

Carsten Baum

Plan for today

- 1. Basics of MPC-in-the-head (now)
- 2. The Ligero proof system & VOLEs
- 3. VOLE-in-the-head and FAEST

What we will cover in Session 1

- 1. What is MPC?
- 2. From MPC to MPC-in-the-head
- 3. The KKW construction

Zero-Knowledge Proofs

- 1. Completeness
- 2. Knowledge Soundness
- 3. Zero-Knowledge

Multiparty Computation (MPC)

Correctness: if parties learn the output, then it is y_i

 t_p -Privacy: no t_p parties can learn anything beyond their inputs and outputs from π

 t_r -Robustness: If $\leq t_r$ parties are actively corrupt, then honest parties output y_i or \perp

Carsten Baum

Static vs. adaptive corruptions

Static

Adaptive

Views

View of P_1

- 1. All inputs of P_1
- 2. All outputs of P_1
- 3. All messages P_1 sent
- 4. All messages P₁ received

View of adversary

Views of all *corrupt* parties

Security – the simulation paradigm

Ideal World

Real world

Security - Formally

Let *A* be a PPT algorithm called *adversary*.

Let $view_{\pi,t}((x_i)_{i\in[N]}, P_1, ..., P_N, A)$ be the distribution of the protocol messages where A can corrupt at most t parties.

 t_p or t_r depending on setting

Let $S(A, F(C, (x_i)_{i \in \overline{I}}))$ be the distribution of messages generated by S interacting with A corrupting parties in $I, |I| \leq t$ as well as F.

Then π is secure if $view_{\pi,t} \approx S(A, F(C, (x_i)_{i \in \overline{I}}))$ for all x_1, \dots, x_N and C.

Client-Server MPC

MPC in the preprocessing model

Examples of correlated randomness

- Secret sharing of multiplication triples or bits
- Public key and secret sharing of decryption key

Commitments [Blu82]

Commitments:

- $Com_{ck}(x,r) \rightarrow c$
- $Open_{ck}(x,r,c) \rightarrow \{\bot,\top\}$

Properties:

- 1. Binding: can use $Open_{ck}(\cdot, \cdot, c)$ only with (x, r)
- 2. Hiding: $\{Com_{ck}(x,\cdot)\} \approx \{Com_{ck}(0,\cdot)\}$
- 3. Equivocable: ck can be generated such that

 $Open_{ck}(\cdot, \cdot, c)$ works for other x'

Secret Sharing

$$(s_1, \dots, s_n) \leftarrow Share(x)$$

$$y \leftarrow Reconstruct(s_1, \dots, s_t), y \in \mathbb{F} \cup \{\bot\}$$

t-privacy: any set of *t* shares reveals no information about *x* t + 1-reconstruction: any set of t + 1 shares allows reconstruction of *x*

MPCitH uses special Client-Server-MPC

Carsten Baum

MPC-in-the-Head

Completeness

- Let *C* be a circuit that outputs 1 iff *w* is a witness for *x*
- Follows from Correctness of MPC

MPC-in-the-Head

Soundness

- Prover commits to views *before* the challenge is chosen
- Must cheat in MPC protocol some parties have to cheat (i.e. inconsistent view with honest parties)

MPC protocol is t_r -robust against cheating parties

- Prover must have cheated in $> t_r$ parties
- Combinatorial game: what's the chance the verifier doesn't open one of the $> t_r$ dishonest parties?

MPC-in-the-Head: Soundness

 $\frac{\text{Example}}{\text{MPC with } t_r = t_p = 2}$

For simplicity assume only broadcast communication

 y_1, \dots, y_5 must reconstruct to 1

All 3 dishonest parties must lie

Opening one honest and dishonest party detects cheating

 $\Pr[open honest and dishonest|open two parties] > 1/2$

MPC-in-the-Head

Zero-knowledge Opening t_p views is safe due to t_p -privacy

Formally

1. ZK simulator simulate m Honest Verifier-ZK: simulator knows choice of verifier in advance, can use statically secure MPC

PC scheme to ad of views).

2. Upon receiving challenge, prover *corrupts* parties in MPC simulator, obtains views and *equivocates commitments* to MPC simulator outputs

MPC-in-the-Head

Introduced in [IKOS07]

Implemented and optimized in ZKBoo [GMO16]

ZKB++[CDG+17]

Ligero [AHIV17] – **sub-linear communication** complexity (later)!

[KKW18] – MPC-in-the-Head in the pre-processing model

The computational model

 $(x, w) \in R_L \Leftrightarrow C(w) = 1$ where $w \in \mathbb{F}^{\ell}$

MPC protocol π of [KKW18]

Circuit *C* over field \mathbb{F}

 π has N parties, $t_p = N - 1$, $t_r = 0$

Sharing of inputs $x \in \mathbb{F}$ as [x]:

- 1. P_1, \ldots, P_{N-1} get uniformly random x_1, \ldots, x_{N-1}
- 2. P_N gets $x_N = x \sum_{i \in [N-1]} x_i$

Linear operations

• To compute $[\gamma] = [\alpha x + y + \beta]$ from $[x], [y], P_i$ sets share $\gamma_i \coloneqq \alpha_i x_i + y_i + \beta_i / N$

MPC protocol π of [KKW18]

Circuit *C* over field \mathbb{F}

 π has N parties, $t_p = N - 1$, $t_r = 0$

Sharing of inputs $x \in \mathbb{F}$ as [x]:

- 1. P_1, \ldots, P_{N-1} get uniformly random x_1, \ldots, x_{N-1}
- 2. P_N gets $x_N = x \sum_{i \in [N-1]} x_i$

<u>Multiplication – Beaver's trick</u>

- To multiply [x], [y], assume sharing [a], [b], [c] where a, b are uniformly random, $c = a \cdot b$
- Protocol:
 - 1. Parties reveal $[\alpha] = [x a], [\beta] = [y b]$
 - 2. Parties compute $[z] = \beta[x] + \alpha[y] \alpha\beta + [c]$

MPC protocol π of [KKW18]

Circuit *C* over field \mathbb{F}

 π has N parties, $t_p = N - 1$, $t_r = 0$

Prover always opens N - 1 parties, so can cheat **only in one party**

Soundness error of proof: $\frac{1}{N}$. Can decrease by *parallel repetition*.

Pre-processing in MPCitH

As part of view, each party also commits to r_i

But r_1, \ldots, r_N may not be valid sharing $(c \neq a \cdot b)$

Prover has chance to cheat!

MPC-in-the-head a'la [KKW18]

Commit to triples for MPC instances

Prover

Open subset of triples (MPC instances)

- 1. De-commit the chosen subset
- 2. Run MPC for unopened triples
- 3. Commit to the views of the parties

Open subset of views

De-commit the chosen views

Cut & Choose

Carsten Baum

Optimizations

Vanilla protocol: Prover sends $com(view_1), ..., com(view_N)$

Optimization

- Prover sends $h = H(com(view_1)| \cdots |com(view_N))$
- Verifier can recompute com(view_i) for opened parties P_i, prover sends com(view_i) for unopened parties
- Verifier checks *h*

What does this save?

Vanilla protocol

N parties, τ repetitions -> $\tau \cdot N$ commitments sent

Optimization

N parties, τ repetitions -> $1 + \tau$ commitments sent

Observations about [KKW18]

Prover generates

- 1. Shares for inputs of parties P_1, \ldots, P_N
- 2. Shares of triples for parties P_1, \ldots, P_N

Share [x]:

- For P_1, \ldots, P_{N-1} share x_i can be uniformly random in \mathbb{F}
- $P_N: x_N = x (x_1 + \dots + x_{N-1})$

Triple [*a*], [*b*], [*c*]:

- For P_1, \ldots, P_{N-1} share of [a], [b], [c] can be uniformly random in \mathbb{F}
- $P_N: a_N, b_N$ uniformly random, $c_N = (\sum a_i) \cdot (\sum b_i) (c_1 + \dots + c_{N-1})$

How to generate shares randomly?

Generate shares of P_1, \dots, P_{N-1} from PRG seed $seed_i$

To open $view_i$ for $P_i \in \{P_1, \dots, P_{N-1}\}$ prover only reveals $seed_i$ and messages obtained by P_i from other parties

Can generate $seed_i$ from one seed seed: GGM trees

What is a GGM tree?

Let G be a length-doubling PRG

- Avoid sending seeds separately
 - Derive from leaves of a GGM tree
- Open n 1 leaves (seeds):
 - Send $O(\log n)$ PRG seeds

What does this save?

Vanilla protocol

N parties, τ repetitions -> $\tau \cdot N$ seeds

GGM optimization

N parties, τ repetitions -> $\tau \cdot \log(N)$ seeds

What does One-tree buy you?

Proof size *depends* on challenge, can restrict to subset of challenges.

For signatures (next talk) this allows to optimize other parameters and makes prover/verifier faster.

	Sign/Verify	Size	
FAEST-128s	pprox 4,4 ms	5.006 B	
FAEST-128f	\approx 0,4 ms	6.336 B	
FAESTER-128s	≈ 3,3 ms	4.594 B	
FAESTER-128f	pprox 0,4 ms	5.444 B	

Timings on machine with AMD Ryzen 7 5800H, 3.2–4.4 GHz

What is MPC?

MPC-in-the-head: build ZK from MPC & commitments

The KKW18 construction & optimizations

Further reading

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., & Sahai, A. (2009). Zero-knowledge proofs from secure multiparty computation.

[GMO16] Giacomelli, I., Madsen, J., & Orlandi, C. (2016). ZKBoo: Faster Zero-Knowledge for Boolean Circuits.

[CDG+17] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D. & Zaverucha, G. (2017). Postquantum zero-knowledge and signatures from symmetric-key primitives.

[KKW18] Katz, J., Kolesnikov, V., & Wang, X. (2018). Improved non-interactive zero knowledge with applications to post-quantum signatures.

[BN20] Baum, C., & Nof, A. (2020). Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography.

[**B**BM+24] Baum, C., Beullens, W., Mukherjee, S., Orsini, E., Ramacher, S., Rechberger, C., Roy, L. & Scholl, P. (2024). One tree to rule them all: Optimizing ggm trees and owfs for post-quantum signatures. *Eprint 2024/490*