The MPC-in-the-head paradigm

Carsten Baum

Peter Scholl
?\:_.‘T\T INP/P
g DT
oD

S
N 2

2\ LI T

) «

c ﬁﬁi’.’

Z A &

7 < < =

Plan for today

1. Basics of MPC-in-the-head (now)
2. The Ligero proof system & VOLEs

3. VOLE-in-the-head and FAEST

03/09/2024 Carsten Baum

What we will cover in Session 1

F

File FEdic Uisi S2aroh Fin [E'Eu[rﬁ mﬂé.lls Qe Bons He= 1 1 Wh t ° IVI PC?
:='.=EI_EEH *1 8. 1. B: COLOR 75 Cl8] . dal IS .
OLOE e -

DI mtarsiBill, mxlIfdE, =il
BOR o = @ TO 188

NBORIZE TINER ‘ 2. From MPC to MPC-in-the-head

SELECT SN n
AFE 1

oA s
CAEE 2
PLEE B

CASE 3
ARANAAOdIATE

3. The KKW construction

03/09/2024 Carsten Baum

/ero-Knowledge Proofs

Ideal functionality

C,w C
hen
- Output ,1“
Else
Output ,,0 0/1

1. Completeness
2. Knowledge Soundness
3. Zero-Knowledge

03/09/2024 Carsten Baum 4

Multiparty Computation

1. Correctness
ZK is restricted form 2. Privacy

of MPC

03/09/2024 Carsten Baum

Y1 Compute (¥4, ..., Yn) = C(wy, ...

Multiparty Computation (MPC)
W1 V1

Correctness: if parties learn the output, then itis y;

t,-Privacy: no t,, parties can learn anything beyond their inputs and outputs from 7

t,-Robustness: If < t,. parties are actively corrupt, then honest parties output y; or L

03/09/2024 Carsten Baum 6

Static vs. adaptive corruptions

Static Adaptive

03/09/2024 Carsten Baum

Views

View of P4

1. Allinputs of P;

2. All outputs of P,

3. All messages P; sent
4

All messages P;
received

View of adversary
Views of all corrupt parties

03/09/2024 Carsten Baum

Security — the simulation paradigm

Ideal World Real world

Ideal Functionality

Compute
(Y1, s ¥5) = C(Wy, ..., Ws)

|

Simulator for

2

03/09/2024 Carsten Baum 9

Security - Formally

Let A be a PPT algorithm called adversary.

Let view,, + ((x;)ie[n, P1) ---» Py, A) be the distribution of the protocol
messages where 4 can corrupt at mos arties.

\ t, or t, depending on setting

Let S(A4, F(C, (xi)iei)) be the distribution of messages generated by S
interacting with 4 corrupting partiesin I, |I| < t as well as F.

Then 1 is secure if view,, =~ S(4, F(C, (xi)iei)) forall x4, ..., x5 and C.

03/09/2024 Carsten Baum 10

Client-Server MPC

03/09/2024

Carsten Baum

V1, ¥2) = C(wy,wy)

11

Examples of correlated randomness
- Secret sharing of multiplication triples or bits
- Public key and secret sharing of decryption key

03/09/2024 Carsten Baum 12

Commitments [Blu82]

Commitments: Properties:

* Comg(x,7) = c 1. Binding: can use Openc(:,, c) only with (x,7)
* Open, (x,r,c) - {1,T} o

2. Hiding: {Com . (x,-)} = {Com(0,)}

3. Equivocable: ck can be generated such that

Open (-, c) works for other x’

03/09/2024
Carsten Baum /08/ 13

Secret Sharing

Dealer

(S1, ..., Sp) < Share(x)
y < Reconstruct(sy, ...,St),y € FU {1}

t-privacy: any set of t shares reveals no information about x
: : t, privacy of MPC
t + 1-reconstruction: any set of t 4+ 1 shares allows reconstruction of x

MPC-in-the-Head [IKOSO8]

View, |

v(.’ Challenge: open a random subset of t views
—

[/ R . .
L, View;, = View;,
—
Prover Verifier

03/09/2024 Carsten Baum 15

MPCitH uses special Client-Server-MPC

Client 1

Client 2

Prover Verifier

03/09/2024 Carsten Baum 16

MPC-in-the-Head

Completeness

* Let C be a circuit that outputs 1 iff
w is a witness for x

* Follows from Correctness of MPC

03/09/2024 Carsten Baum

17

MPC-in-the-Head

Soundness

* Prover commits to views before
the challenge is chosen

* Must cheat in MPC protocol —some
parties have to cheat _
(i.e. inconsistent view with honest parties)

MPC protocol is t,.-robust against cheating parties
* Prover must have cheated in > t,. parties

* Combinatorial game: what’s the chance the verifier doesn’t
open one of the > t,. dishonest parties?

MPC-in-the-Head: Soundness

Example
MPC with t, = ty = 2

For simplicity assume only
broadcast communication

V1, .-, Y5 must reconstruct
to1l

All 3 dishonest parties
must lie

=
~

View | Opening one honest and
dishonest party detects

cheating

Pr[open honest and dishonest|open two parties| > 1/2

03/09/2024 Carsten Baum 19

MPC-in-the-Head

Zero-knowledge
Opening t,, views is safe due to t,-privacy

Formally

1. ZK simulatc .._ . 2 PC scheme to
. Honest Verifier-ZK: simulator knows choice of verifier .
simulate m in advance, can use statically secure MPC ad of V|eWS) .

2. Upon receiving challenge, prover corrupts parties in
MPC simulator, obtains views and equivocates
commitments to MPC simulator outputs

03/09/2024 Carsten Baum 20

MPC-in-the-Head

Introduced in [IKOSO7]

Implemented and optimized in ZKBoo [GMO16]

/KB++[CDG+17]
Ligero [AHIV17] — sub-linear communication complexity (later)!

[KKW18] — MPC-in-the-Head in the pre-processing model

The computational model

(x,w) € R, & C(w) = 1 wherew € F*

W1 Wy w3 Wy e Wy
L.

Prover

Verifier

22

MPC protocol T of [KKW18]

Circuit C over field F

T has N parties, t, =N —1,t, =0

Sharing of inputs x € F as [x]:

1. Pi,...,Py_1 get uniformly random x4, ..., xy_1

2. Pygetsxy =X — Nien-1]Xi

Linear operations

* Tocompute [y] = [ax + y + B] from [x], [y], P; sets share y; := a;x; + y; + B;/N

03/09/2024 Carsten Baum 23

MPC protocol T of [KKW18]

Circuit C over field IF

 has N parties, t, =N — 1,t, =0

Sharing of inputs x € F as [x]:

1. Py, ..., Py_q getuniformly random xq, ..., Xxy_1

2. Pygetsxy =x— 2ie[1v—1] Xi

Multiplication — Beaver’s trick

« To multiply [x], [y], assume sharing [a], [b], [c] where a, b are uniformly random,c =a - b

* Protocol:
1. Parties reveal [a] = [x — al,[B] = [y — b]
2. Parties compute [z] = B[x] + a[y] — aB + [c]

03/09/2024 Carsten Baum 24

MPC protocol T of [KKW18]

Circuit C over field F

T has N parties, t, =N —1,t, =0

Prover always opens N — 1 parties, so can cheat only in one party

Soundness error of proof: % Can decrease by parallel repetition.

03/09/2024 Carsten Baum 25

Pre-processing in MPCitH

As part of view, each party

also commits to r;

But ry, ..., ry may not be

valid sharing (c # a - b)

Prover has chance to cheat!

03/09/2024 Carsten Baum 26

C
MPC-in-the-head a’la [KKW 18] at@c/,o
OS@

Commit to triples for MPC instances

— ° e
Prover Verifier

Open subset of triples (MPC instances)
—

1. De-commit the chosen subset
“ 2. Run MPC for unopened triples
3. Commit to the views of the parties

—

Open subset of views
—

De-commit the chosen views
—

03/09/2024 Carsten Baum

,Fs)(—D

Fy, o

open all shares of MPC instance

Challenge

28

Carsten Baum

03/09/2024

Optimizations
Vanilla protocol: Prover sends com(view,), ..., com(viewy)

Optimization
* Prover sends h = H(com(view,)| -+ |com(viewy))

* Verifier can recompute com(view;) for opened parties P;, prover
sends com(view;) for unopened parties

* Verifier checks h

) 4) 4
H

Saves communication if H is CRHF l)

03/09/2024 Carsten Baum 29

What does this save?

Vanilla protocol
N parties, T repetitions -> 7 - N commitments sent

Optimization

N parties, T repetitions -> 1 4+ 7 commitments sent

¥

) 4

H

03/09/2024 Carsten Baum

h

30

Observations about [KKW 18]

Prover generates
1. Shares for inputs of parties Py, ..., Py
2. Shares of triples for parties Py, ..., Py

Share |x]:
* For P, ..., Py_1 share x; can be uniformly random in [F
¢ PN:xN ZX—(X1+"’+.X'N_1)

Triple |a], [b], | c]:
* For Py, ..., Py_4 share of |a], [b], [c] can be uniformly random in T
* Py:ay, by uniformly random, cy = Ola;) - Ob;) — (¢ + -+ + cy—1)

How to generate shares randomly?

Generate shares of Py, ..., Py_1 from PRG seed seed,;

To open view; for P; € {Py, ..., Py_1} prover only reveals seed; and
messages obtained by P; from other parties

Can generate seed; from one seed seed: GGM trees

What is a GGM tree?

Let G be a length-doubling PRG seed « {0,1}*

* Avoid sending seeds separately A

* Derive from leaves of a GGM tree ‘

L] ﬁ

seedq seed, Seedz seedg

 Openn — 1 leaves (seeds):
* Send O(log n) PRG seeds

03/09/2024 Carsten Baum 33

What does this save?

Vanilla protocol

N parties, T repetitions
-> T - N seeds

GGM optimization

N parties, T repetitions
-> T - log(N) seeds

03/09/2024

Carsten Baum

What it T = 2 ? Always have to open 2 paths

One-tree optimization [BBM+24]
a _&

o = E -
A ' o S i e

seed] seedi seed; seeds seed: seed: seed} seed§

What does One-tree buy you?

Proof size depends on challenge, can restrict to subset of challenges.

For signatures (next talk) this allows to optimize other parameters and
makes prover/verifier faster.

FAEST-128s ~ 4,4 ms 5.006 B
FAEST-128f ~ 0,4 ms 6.336B

Timings on machine
FAESTER-128s ~ 3,3 ms 4.594 B with AMD Ryzen 7

FAESTER-128f ~ 0,4 ms 5.444 B 5800H, 3.2-4.4 GHz

03/09/2024 Carsten Baum

37

Summary

What is MPC?

MPC-in-the-head: build ZK from
MPC & commitments

The KKW18 construction & optimizations

03/09/2024 Carsten Baum

38

Further reading

[IKOSO08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., & Sahai, A. (2009). Zero-knowledge proofs from secure multiparty computation.
[GMO16] Giacomelli, I., Madsen, J., & Orlandi, C. (2016). ZKBoo: Faster Zero-Knowledge for Boolean Circuits.

[CDG+17] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D. & Zaverucha, G. (2017). Post-
guantum zero-knowledge and signatures from symmetric-key primitives.

[KKW18] Katz, J., Kolesnikov, V., & Wang, X. (2018). Improved non-interactive zero knowledge with applications to post-quantum
signatures.

BN20] Baum, C., & Nof, A. (2020). Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to
attice-based cryptography.

[BBM+24] Baum, C., Beullens, W., Mukherjee, S., Orsini, E., Ramacher, S., Rechberger, C., Roy, L. & Scholl, P. (2024). One tree to rule
them all: Optimizing ggm trees and owfs for post-quantum signatures. Eprint 2024/490

