
The MPC-in-the-head paradigm

Peter Scholl Carsten Baum

Plan for today

1. Basics of MPC-in-the-head (now)

2. The Ligero proof system & VOLEs

3. VOLE-in-the-head and FAEST

203/09/2024 Carsten Baum

What we will cover in Session 1

1. What is MPC?

2. From MPC to MPC-in-the-head

3. The KKW construction

303/09/2024 Carsten Baum

𝐶,𝑤 𝐶

0/1

If 𝐶(𝑤) = 1 then
Output „1“

Else
Output „0“

1. Completeness
2. Knowledge Soundness
3. Zero-Knowledge

Zero-Knowledge Proofs

Carsten Baum 403/09/2024

Ideal functionality

Compute (𝑦1, … , 𝑦𝑁) = 𝐶(𝑤1, … , 𝑤𝑁)

𝐶,𝑤1

𝐶,𝑤2

𝐶,𝑤𝑁

1. Correctness
2. Privacy

Multiparty Computation

Carsten Baum 5

𝑦1

𝑦2

𝑦𝑁

ZK is restricted form
of MPC

03/09/2024

…

Multiparty Computation (MPC)
𝑤1

𝑤2

𝑤5

𝑤4
𝑤3

Correctness: if parties learn the output, then it is 𝑦𝑖

𝒕𝒑-Privacy: no 𝑡𝑝 parties can learn anything beyond their inputs and outputs from 𝜋

𝒕𝒓-Robustness: If ≤ 𝑡𝑟 parties are actively corrupt, then honest parties output 𝑦𝑖 or ⊥

𝜋

𝑦1

𝑦2

𝑦3
𝑦4

𝑦5

𝑦1, … , 𝑦5 = 𝐶(𝑤1, … , 𝑤5)

603/09/2024 Carsten Baum

Static vs. adaptive corruptions

Static Adaptive

7

𝑤1

𝑤2
𝑤5

𝑤4

𝑤3

𝜋

𝑦1

𝑦2

𝑦3 𝑦4

𝑦5

𝑤1

𝑤2
𝑤5

𝑤4

𝑤3

𝜋

𝑦1

𝑦2

𝑦3 𝑦4

𝑦5

03/09/2024 Carsten Baum

Views

View of 𝑷𝟏

1. All inputs of 𝑃1
2. All outputs of 𝑃1
3. All messages 𝑃1 sent

4. All messages 𝑃1
received

View of adversary

Views of all corrupt parties

8

𝑤1

𝑤2

𝑤5

𝑤4
𝑤3

𝜋

𝑦1

𝑦2

𝑦3
𝑦4

𝑦5

03/09/2024 Carsten Baum

Security – the simulation paradigm

Ideal World Real world

9

𝑤1

𝑤2
𝑤5

𝑤4

𝑤3

𝜋

𝑦1

𝑦2

𝑦3 𝑦4

𝑦5

Ideal Functionality

Compute
(𝑦1, … , 𝑦5) = 𝐶(𝑤1, … , 𝑤5)

Simulator for 𝜋

≈

03/09/2024 Carsten Baum

Security - Formally

Let 𝐴 be a PPT algorithm called adversary.

Let 𝑣𝑖𝑒𝑤𝜋,𝑡(𝑥𝑖 𝑖∈ 𝑁 , 𝑃1, … , 𝑃𝑁 , 𝐴) be the distribution of the protocol
messages where 𝐴 can corrupt at most 𝑡 parties.

Let 𝑆(𝐴, 𝐹 𝐶, 𝑥𝑖 𝑖∈𝐼) be the distribution of messages generated by 𝑆
interacting with 𝐴 corrupting parties in 𝐼, 𝐼 ≤ 𝑡 as well as 𝐹.

Then 𝜋 is secure if 𝑣𝑖𝑒𝑤𝜋,𝑡 ≈ 𝑆(𝐴, 𝐹 𝐶, 𝑥𝑖 𝑖∈𝐼) for all 𝑥1, … , 𝑥𝑁 and 𝐶.

1003/09/2024 Carsten Baum

𝑡𝑝 or 𝑡𝑟 depending on setting

Client-Server MPC

𝑤1

𝑤2

𝑦1

𝑦2
𝑦1, 𝑦2 = 𝐶(𝑤1, 𝑤2)

1103/09/2024 Carsten Baum

MPC in the preprocessing model
𝑤1, 𝑟1

𝑤2, 𝑟2
𝑤5, r5

𝑤4, 𝑟4
𝑤3, 𝑟3

𝜋

𝑦1

𝑦2

𝑦3
𝑦4

𝑦5

12

𝑟1, … , 𝑟5 ← 𝐷

Examples of correlated randomness
- Secret sharing of multiplication triples or bits
- Public key and secret sharing of decryption key

03/09/2024 Carsten Baum

𝑟5

𝑟1

𝑟2

𝑟3

𝑟4

Commitments [Blu82]

Commitments:

• 𝐶𝑜𝑚𝑐𝑘 𝑥, 𝑟 → 𝑐

• 𝑂𝑝𝑒𝑛𝑐𝑘 𝑥, 𝑟, 𝑐 → {⊥, ⊤}

𝑥

13

Properties:

1. Binding: can use 𝑂𝑝𝑒𝑛𝑐𝑘(⋅,⋅, 𝑐) only with (𝑥, 𝑟)

2. Hiding: 𝐶𝑜𝑚𝑐𝑘 𝑥,⋅ ≈ {𝐶𝑜𝑚𝑐𝑘(0,⋅)}

3. Equivocable: 𝑐𝑘 can be generated such that

𝑂𝑝𝑒𝑛𝑐𝑘(⋅,⋅, 𝑐) works for other 𝑥′

Carsten Baum
03/09/2024

Secret Sharing

𝑠1, … , 𝑠𝑛 ← 𝑆ℎ𝑎𝑟𝑒(𝑥)
𝑦 ← 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑠1, … , 𝑠𝑡 , 𝑦 ∈ 𝔽 ∪ {⊥}

𝑡-privacy: any set of 𝑡 shares reveals no information about 𝑥

𝑡 + 1-reconstruction: any set of 𝑡 + 1 shares allows reconstruction of 𝑥

Dealer

𝑥 ∈ 𝔽

𝑠1

𝑠2

𝑡𝑝 privacy of MPC

MPC-in-the-Head [IKOS08]

Prover Verifier

w

𝑤1

𝑤2
𝑤3

Challenge: open a random subset of t views

𝑉𝑖𝑒𝑤𝑖1 𝑉𝑖𝑒𝑤𝑖𝑡
…

Views consistent?
Output correct?

…𝑉𝑖𝑒𝑤1 𝑉𝑖𝑒𝑤𝑁

1503/09/2024 Carsten Baum

MPCitH uses special Client-Server-MPC

16

Client 1
Client 2

03/09/2024 Carsten Baum

Prover Verifier

MPC-in-the-Head

Completeness
• Let 𝐶 be a circuit that outputs 1 iff
𝑤 is a witness for 𝑥

• Follows from Correctness of MPC

1703/09/2024 Carsten Baum

MPC-in-the-Head

Soundness
• Prover commits to views before

the challenge is chosen
• Must cheat in MPC protocol – some

parties have to cheat
(i.e. inconsistent view with honest parties)

MPC protocol is 𝑡𝑟-robust against cheating parties
• Prover must have cheated in > 𝑡𝑟 parties
• Combinatorial game: what’s the chance the verifier doesn’t

open one of the > 𝑡𝑟 dishonest parties?

1803/09/2024 Carsten Baum

MPC-in-the-Head: Soundness

1903/09/2024 Carsten Baum

Example
MPC with 𝑡𝑟 = 𝑡𝑝 = 2

For simplicity assume only
broadcast communication

𝑦1, … , 𝑦5 must reconstruct
to 1

All 3 dishonest parties
must lie

Opening one honest and
dishonest party detects
cheating

𝑉𝑖𝑒𝑤1

𝑉𝑖𝑒𝑤5

𝑦1

𝑦5

Pr 𝑜𝑝𝑒𝑛 ℎ𝑜𝑛𝑒𝑠𝑡 𝑎𝑛𝑑 𝑑𝑖𝑠ℎ𝑜𝑛𝑒𝑠𝑡 𝑜𝑝𝑒𝑛 𝑡𝑤𝑜 𝑝𝑎𝑟𝑡𝑖𝑒𝑠 > 1/2

MPC-in-the-Head

Zero-knowledge
Opening 𝑡𝑝 views is safe due to 𝑡𝑝-privacy

Formally

1. ZK simulator runs adaptive simulator of MPC scheme to
simulate messages (and commits to 0 instead of views).

2. Upon receiving challenge, prover corrupts parties in
MPC simulator, obtains views and equivocates
commitments to MPC simulator outputs

20

Honest Verifier-ZK: simulator knows choice of verifier
in advance, can use statically secure MPC

03/09/2024 Carsten Baum

MPC-in-the-Head

Introduced in [IKOS07]

Implemented and optimized in ZKBoo [GMO16],

ZKB++[CDG+17]

Ligero [AHIV17] – sub-linear communication complexity (later)!

[KKW18] – MPC-in-the-Head in the pre-processing model

2103/09/2024 Carsten Baum

The computational model

𝑥, 𝑤 ∈ 𝑅𝐿 ⇔ 𝐶 𝑤 = 1 where 𝑤 ∈ 𝔽ℓ

22

+ × +

× ×

+

…𝑤1 𝑤2 𝑤3 𝑤2 𝑤ℓ

𝑜1 𝑜2 𝑜3

𝑜|𝐶| = 𝑦 =
?

1

… …

MPC protocol 𝜋 of [KKW18]

Circuit 𝐶 over field 𝔽

𝜋 has 𝑁 parties, 𝑡𝑝 = 𝑁 − 1, 𝑡𝑟 = 0

Sharing of inputs 𝑥 ∈ 𝔽 as [𝑥]:

1. 𝑃1, … , 𝑃𝑁−1 get uniformly random 𝑥1, … , 𝑥𝑁−1

2. 𝑃𝑁 gets 𝑥𝑁 = 𝑥 − σ𝑖∈[𝑁−1] 𝑥𝑖

Linear operations

• To compute 𝛾 = 𝛼𝑥 + 𝑦 + 𝛽 from 𝑥 , [𝑦], 𝑃𝑖 sets share 𝛾𝑖 ≔ 𝛼𝑖𝑥𝑖 + 𝑦𝑖 + 𝛽𝑖/𝑁

2303/09/2024 Carsten Baum

MPC protocol 𝜋 of [KKW18]

Circuit 𝐶 over field 𝔽

𝜋 has 𝑁 parties, 𝑡𝑝 = 𝑁 − 1, 𝑡𝑟 = 0

Sharing of inputs 𝑥 ∈ 𝔽 as [𝑥]:

1. 𝑃1, … , 𝑃𝑁−1 get uniformly random 𝑥1, … , 𝑥𝑁−1

2. 𝑃𝑁 gets 𝑥𝑁 = 𝑥 − σ𝑖∈[𝑁−1] 𝑥𝑖

Multiplication – Beaver’s trick

• To multiply 𝑥 , [𝑦], assume sharing 𝑎 , 𝑏 , [𝑐] where 𝑎, 𝑏 are uniformly random, 𝑐 = 𝑎 ⋅ 𝑏

• Protocol:
1. Parties reveal 𝛼 = 𝑥 − 𝑎 , 𝛽 = [𝑦 − 𝑏]

2. Parties compute 𝑧 = 𝛽 𝑥 + 𝛼 𝑦 − 𝛼𝛽 + [𝑐]

2403/09/2024 Carsten Baum

MPC protocol 𝜋 of [KKW18]

Circuit 𝐶 over field 𝔽

𝜋 has 𝑁 parties, 𝑡𝑝 = 𝑁 − 1, 𝑡𝑟 = 0

Prover always opens 𝑁 − 1 parties, so can cheat only in one party

Soundness error of proof:
1

𝑁
. Can decrease by parallel repetition.

2503/09/2024 Carsten Baum

Pre-processing in MPCitH

As part of view, each party

also commits to 𝑟𝑖

But 𝑟1, … , 𝑟𝑁 may not be

valid sharing (𝑐 ≠ 𝑎 ⋅ 𝑏)

Prover has chance to cheat!

2603/09/2024 Carsten Baum

MPC-in-the-head a’la [KKW18]

Prover Verifier

Commit to triples for MPC instances

Open subset of triples (MPC instances)

1. De-commit the chosen subset
2. Run MPC for unopened triples
3. Commit to the views of the parties

Open subset of views

De-commit the chosen views

1. Triples: correct?
2. View: consistent?
3. Output: correct?

2703/09/2024 Carsten Baum

03/09/2024 Carsten Baum 28

𝑟1, … , 𝑟5 ← 𝐷

𝑟1

𝑟2
𝑟3

𝑟1

𝑟2
𝑟3

𝑟1, … , 𝑟5 ← 𝐷

Challenge: open all shares of MPC instance

𝑟1 𝑟5
…

w

Optimizations

Vanilla protocol: Prover sends c𝑜𝑚 𝑣𝑖𝑒𝑤1 , … , 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁)

Optimization

• Prover sends h = 𝐻(𝑐𝑜𝑚(𝑣𝑖𝑒𝑤1)|⋯ |𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁))

• Verifier can recompute 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑖) for opened parties 𝑃𝑖, prover
sends 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑗) for unopened parties

• Verifier checks ℎ

Saves communication if 𝐻 is CRHF

29

𝑐𝑜𝑚(𝑣𝑖𝑒𝑤1) 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁)…

𝐻

ℎ

03/09/2024 Carsten Baum

What does this save?

Vanilla protocol

𝑁 parties, 𝜏 repetitions -> 𝜏 ⋅ 𝑁 commitments sent

Optimization

𝑁 parties, 𝜏 repetitions -> 1 + 𝜏 commitments sent

3003/09/2024 Carsten Baum

𝑐𝑜𝑚(𝑣𝑖𝑒𝑤1) 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁)…

𝐻

ℎ

Observations about [KKW18]

Prover generates
1. Shares for inputs of parties 𝑃1, … , 𝑃𝑁
2. Shares of triples for parties 𝑃1, … , 𝑃𝑁

Share [𝑥]:
• For 𝑃1, … , 𝑃𝑁−1 share 𝑥𝑖 can be uniformly random in 𝔽
• 𝑃𝑁: 𝑥𝑁 = 𝑥 − (𝑥1 +⋯+ 𝑥𝑁−1)

Triple 𝑎 , 𝑏 , 𝑐 :
• For 𝑃1, … , 𝑃𝑁−1 share of 𝑎 , 𝑏 , [𝑐] can be uniformly random in 𝔽
• 𝑃𝑁: 𝑎𝑁, 𝑏𝑁 uniformly random, 𝑐𝑁 = σ𝑎𝑖 ⋅ σ𝑏𝑖 − (𝑐1 +⋯+ 𝑐𝑁−1)

3103/09/2024 Carsten Baum

How to generate shares randomly?

Generate shares of 𝑃1, … , 𝑃𝑁−1 from PRG seed 𝑠𝑒𝑒𝑑𝑖

To open 𝑣𝑖𝑒𝑤𝑖 for 𝑃𝑖 ∈ {𝑃1, … , 𝑃𝑁−1} prover only reveals 𝑠𝑒𝑒𝑑𝑖 and
messages obtained by 𝑃𝑖 from other parties

Can generate 𝑠𝑒𝑒𝑑𝑖 from one seed 𝑠𝑒𝑒𝑑: GGM trees

3203/09/2024 Carsten Baum

What is a GGM tree?

Carsten Baum 33

𝑠𝑒𝑒𝑑 ← 0,1 𝜆

G

G G G G

G G

Let 𝐺 be a length-doubling PRG

• Avoid sending seeds separately
• Derive from leaves of a GGM tree

• Open 𝑛 − 1 leaves (seeds):
• Send 𝑂(log 𝑛) PRG seeds

×
𝑠𝑒𝑒𝑑1 𝑠𝑒𝑒𝑑2 𝑠𝑒𝑒𝑑3 𝑠𝑒𝑒𝑑8…

03/09/2024

What does this save?

Vanilla protocol

𝑁 parties, 𝜏 repetitions
-> 𝜏 ⋅ 𝑁 seeds

GGM optimization

𝑁 parties, 𝜏 repetitions
-> 𝜏 ⋅ log(𝑁) seeds

34

G

G G G G

G G

×

03/09/2024 Carsten Baum

What if 𝜏 = 2 ? Always have to open 2 paths

Carsten Baum 3503/09/2024

G

G G G G

G G

×

G

G G G G

G G

×

G

𝑠𝑒𝑒𝑑1
1 𝑠𝑒𝑒𝑑2

1 𝑠𝑒𝑒𝑑3
1 𝑠𝑒𝑒𝑑8

1… 𝑠𝑒𝑒𝑑1
2 𝑠𝑒𝑒𝑑2

2 𝑠𝑒𝑒𝑑3
2

𝑠𝑒𝑒𝑑8
2…

One-tree optimization [BBM+24]

Carsten Baum 3603/09/2024

G

G G G G

G G

×

G

G G G G

G G

×

G

𝑠𝑒𝑒𝑑1
1 𝑠𝑒𝑒𝑑2

1 𝑠𝑒𝑒𝑑3
1 𝑠𝑒𝑒𝑑8

1𝑠𝑒𝑒𝑑1
2 𝑠𝑒𝑒𝑑2

2 𝑠𝑒𝑒𝑑3
2 𝑠𝑒𝑒𝑑8

2…

What does One-tree buy you?

Proof size depends on challenge, can restrict to subset of challenges.

For signatures (next talk) this allows to optimize other parameters and
makes prover/verifier faster.

03/09/2024 Carsten Baum 37

Sign/Verify Size

FAEST-128s ≈ 4,4 ms 5.006 B

FAEST-128f ≈ 0,4 ms 6.336 B

FAESTER-128s ≈ 3,3 ms 4.594 B

FAESTER-128f ≈ 0,4 ms 5.444 B

Timings on machine
with AMD Ryzen 7
5800H, 3.2–4.4 GHz

Summary

What is MPC?

MPC-in-the-head: build ZK from
MPC & commitments

The KKW18 construction & optimizations

03/09/2024 Carsten Baum 38

Further reading

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., & Sahai, A. (2009). Zero-knowledge proofs from secure multiparty computation.

[GMO16] Giacomelli, I., Madsen, J., & Orlandi, C. (2016). ZKBoo: Faster Zero-Knowledge for Boolean Circuits.

[CDG+17] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D. & Zaverucha, G. (2017). Post-
quantum zero-knowledge and signatures from symmetric-key primitives.

[KKW18] Katz, J., Kolesnikov, V., & Wang, X. (2018). Improved non-interactive zero knowledge with applications to post-quantum
signatures.

[BN20] Baum, C., & Nof, A. (2020). Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to
lattice-based cryptography.

[BBM+24] Baum, C., Beullens, W., Mukherjee, S., Orsini, E., Ramacher, S., Rechberger, C., Roy, L. & Scholl, P. (2024). One tree to rule
them all: Optimizing ggm trees and owfs for post-quantum signatures. Eprint 2024/490

3903/09/2024 Carsten Baum

