The MPC-in-the-head paradigm

Peter Scholl Carsten Baum

Plan for today

- 1. Basics of MPC-in-the-head (now)
- 2. The Ligero proof system & VOLEs
- 3. VOLE-in-the-head and FAEST

What we will cover in Session 1

- 1. What is MPC?
- 2. From MPC to MPC-in-the-head
- 3. The KKW construction

Zero-Knowledge Proofs

- 1. Completeness
- 2. Knowledge Soundness
- 3. Zero-Knowledge

Multiparty Computation (MPC)

Correctness: if parties learn the output, then it is y_i

 t_p -**Privacy:** no t_p parties can learn anything beyond their inputs and outputs from π

 $\bm{t_r}$ -**Robustness:** If $\leq t_r$ parties are actively corrupt, then honest parties output y_i or \bot

03/09/2024 **Carsten Baum 6**

Static vs. adaptive corruptions

Static Adaptive Adaptive

Views

View of ${P}_1$

- 1. All inputs of P_1
- 2. All outputs of P_1
- 3. All messages P_1 sent
- 4. All messages P_1 received

View of adversary

Views of all *corrupt* parties

Security – the simulation paradigm

Ideal World Real world

Security - Formally

Let A be a PPT algorithm called *adversary*.

Let $view_{\pi,t}((x_i)_{i\in [N]}, P_1, ..., P_N, A)$ be the distribution of the protocol messages where \overrightarrow{A} can corrupt at most t parties.

 t_n or t_r depending on setting

Let $S(A, F(C, (x_i)_{i \in I}))$ be the distribution of messages generated by S interacting with A corrupting parties in I, $|I| \leq t$ as well as F.

Then π is secure if $view_{\pi,t}\ \approx S(A,F\big(C,{(x_i)}_{i\in I}\big))$ for all $x_1,...$, x_N and $C.$

Client-Server MPC

MPC in the preprocessing model

Examples of correlated randomness

- Secret sharing of multiplication triples or bits
- Public key and secret sharing of decryption key

Commitments [Blu82]

Commitments:

- $Com_{ck}(x, r) \rightarrow c$
- Open_{ck} $(x, r, c) \rightarrow \{\perp, \top\}$

Properties:

- 1. Binding: can use $Open_{ck}(\cdot, \cdot, c)$ only with (x, r)
- 2. Hiding: $\{Com_{ck}(x, \cdot)\} \approx \{Com_{ck}(0, \cdot)\}$
- 3. Equivocable: ck can be generated such that

 $Open_{ck}(\cdot;\cdot; c)$ works for other x'

Secret Sharing

$$
(s_1, ..., s_n) \leftarrow Share(x)
$$

$$
y \leftarrow Reconstruct(s_1, ..., s_t), y \in \mathbb{F} \cup \{\perp\}
$$

 t -privacy: any set of t shares reveals no information about x $t + 1$ -reconstruction: any set of $t + 1$ shares allows reconstruction of x t_p privacy of MPC

MPCitH uses special Client-Server-MPC

MPC-in-the-Head

Completeness

- \bullet Let C be a circuit that outputs 1 iff w is a witness for x
- Follows from Correctness of MPC

MPC-in-the-Head

Soundness

- Prover commits to views *before* the challenge is chosen
- Must cheat in MPC protocol some parties have to cheat (i.e. inconsistent view with honest parties)

MPC protocol is -robust against cheating parties

- Prover must have cheated in $> t_r$ parties
- Combinatorial game: what's the chance the verifier doesn't open one of the $>t_r$ dishonest parties?

MPC-in-the-Head: Soundness

Example MPC with $t_r = t_p = 2$

For simplicity assume only broadcast communication

 $y_1, ..., y_5$ must reconstruct to 1

All 3 dishonest parties must lie

Opening one honest and dishonest party detects cheating

 $Pr[open \; honest \;and \; dishonest|open \; two \;particles] > 1/2$

MPC-in-the-Head

Zero-knowledge Opening t_p views is safe due to t_p -privacy

Formally

1. ZK simulato Honest Verifier-ZK: simulator knows choice of verifier PC scheme to simulate m in advance, can use statically secure MPC ad of views).

2. Upon receiving challenge, prover *corrupts* parties in MPC simulator, obtains views and *equivocates commitments* to MPC simulator outputs

MPC-in-the-Head

Introduced in [IKOS07]

Implemented and optimized in ZKBoo [GMO16],

ZKB++[CDG+17]

Ligero [AHIV17] – **sub-linear communication** complexity (later)!

[KKW18] – MPC-in-the-Head in the **pre-processing model**

The computational model

 $(x,w)\in R_L \Leftrightarrow \mathcal{C}(w)=1$ where $w\in\mathbb{F}^\ell$

MPC protocol π of [KKW18]

Circuit C over field F

 π has N parties, $t_p = N - 1$, $t_r = 0$

Sharing of inputs $x \in \mathbb{F}$ as $[x]$:

- 1. $P_1, ..., P_{N-1}$ get uniformly random $x_1, ..., x_{N-1}$
- 2. P_N gets $x_N = x \sum_{i \in [N-1]} x_i$

Linear operations

• To compute $[\gamma] = [\alpha x + y + \beta]$ from $[x]$, $[y]$, P_i sets share $\gamma_i := \alpha_i x_i + y_i + \beta_i/N$

MPC protocol π of [KKW18]

Circuit C over field F

 π has N parties, $t_p = N - 1$, $t_r = 0$

Sharing of inputs $x \in \mathbb{F}$ as $[x]$:

- 1. $P_1, ..., P_{N-1}$ get uniformly random $x_1, ..., x_{N-1}$
- 2. P_N gets $x_N = x \sum_{i \in [N-1]} x_i$

Multiplication – Beaver's trick

- To multiply $[x]$, $[y]$, assume sharing $[a]$, $[b]$, $[c]$ where a , b are uniformly random, $c = a \cdot b$
- Protocol:
	- 1. Parties reveal $[\alpha] = [x a], [\beta] = [y b]$
	- 2. Parties compute $[z] = \beta[x] + \alpha[y] \alpha\beta + [c]$

MPC protocol π of [KKW18]

Circuit C over field F

 π has N parties, $t_p = N - 1$, $t_r = 0$

Prover always opens $N-1$ parties, so can cheat *only in one party*

Soundness error of proof: $\frac{1}{N}$. Can decrease by *parallel repetition*.

Pre-processing in MPCitH

As part of view, each party also commits to r_i

But $r_1, ..., r_N$ may not be valid sharing $(c \neq a \cdot b)$

Prover has chance to cheat!

MPC-in-the-head a'la [KKW18]

Commit to triples for MPC instances

Open subset of triples (MPC instances)

- 1. De-commit the chosen subset
- 2. Run MPC for unopened triples
- 3. Commit to the views of the parties

Open subset of views

De-commit the chosen views

Optimizations

Vanilla protocol: Prover sends $com(view_1)$, ..., $com(view_N)$

Optimization

- Prover sends $h = H(\text{com}(view_1)) \cdots |\text{com}(view_N))$
- Verifier can recompute $com(view_i)$ for opened parties P_i , prover sends $com(view_j)$ for unopened parties
- Verifier checks h

What does this save?

Vanilla protocol

N parties, τ repetitions -> $\tau \cdot N$ commitments sent

Optimization

N parties, τ repetitions -> $1 + \tau$ commitments sent

Observations about [KKW18]

Prover generates

- 1. Shares for inputs of parties $P_1, ..., P_N$
- 2. Shares of triples for parties $P_1, ..., P_N$

Share $[x]$:

- For $P_1, ..., P_{N-1}$ share x_i can be uniformly random in F
- $P_N: x_N = x (x_1 + \cdots + x_{N-1})$

Triple $[a]$, $[b]$, $[c]$:

- For $P_1, ..., P_{N-1}$ share of $[a]$, $[b]$, $[c]$ can be uniformly random in $\mathbb F$
- $P_N: a_N, b_N$ uniformly random, $c_N = (\sum a_i) \cdot (\sum b_i) (c_1 + \cdots + c_{N-1})$

How to generate shares randomly?

Generate shares of $P_1, ..., P_{N-1}$ from PRG seed seed_i

To open $view_i$ for $P_i \in \{P_1, ..., P_{N-1}\}$ prover only reveals $seed_i$ and messages obtained by P_i from other parties

Can generate $seed_i$ from one seed $seed$: GGM trees

What is a GGM tree?

Let G be a length-doubling PRG

- Avoid sending seeds separately
	- Derive from leaves of a GGM tree
- Open $n-1$ leaves (seeds):
	- Send $O(\log n)$ PRG seeds

What does this save?

Vanilla protocol

 N parties, τ repetitions $\rightarrow \tau \cdot N$ seeds

GGM optimization

N parties, τ repetitions $\rightarrow \tau \cdot \log(N)$ seeds

What does One-tree buy you?

Proof size *depends* on challenge, can restrict to subset of challenges.

For signatures (next talk) this allows to optimize other parameters and makes prover/verifier faster.

mings on machine ith AMD Ryzen 7 5800H, 3.2–4.4 GHz

What is MPC?

MPC-in-the-head: build ZK from MPC & commitments

The KKW18 construction & optimizations

Further reading

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., & Sahai, A. (2009). Zero-knowledge proofs from secure multiparty computation.

[GMO16] Giacomelli, I., Madsen, J., & Orlandi, C. (2016). ZKBoo: Faster Zero-Knowledge for Boolean Circuits.

[CDG+17] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D. & Zaverucha, G. (2017). Postquantum zero-knowledge and signatures from symmetric-key primitives.

[KKW18] Katz, J., Kolesnikov, V., & Wang, X. (2018). Improved non-interactive zero knowledge with applications to post-quantum signatures.

[**B**N20] Baum, C., & Nof, A. (2020). Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography.

[BBM+24] Baum, C., Beullens, W., Mukherjee, S., Orsini, E., Ramacher, S., Rechberger, C., Roy, L. & Scholl, P. (2024). One tree to rule them all: Optimizing ggm trees and owfs for post-quantum signatures. *Eprint 2024/490*