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Plan for today

1. Basics of MPC-in-the-head (now)

2. The Ligero proof system & VOLEs

3. VOLE-in-the-head and FAEST

203/09/2024 Carsten Baum



What we will cover in Session 1

1. What is MPC?

2. From MPC to MPC-in-the-head

3. The KKW construction
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𝐶,𝑤 𝐶

0/1

If 𝐶(𝑤) = 1 then
Output „1“

Else
Output „0“

1. Completeness
2. Knowledge Soundness
3. Zero-Knowledge

Zero-Knowledge Proofs

Carsten Baum 403/09/2024

Ideal functionality



Compute (𝑦1, … , 𝑦𝑁) = 𝐶(𝑤1, … , 𝑤𝑁)

𝐶,𝑤1

𝐶,𝑤2

𝐶,𝑤𝑁

1. Correctness
2. Privacy

Multiparty Computation
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𝑦1

𝑦2

𝑦𝑁

ZK is restricted form 
of MPC
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Multiparty Computation (MPC)
𝑤1

𝑤2

𝑤5

𝑤4
𝑤3

Correctness: if parties learn the output, then it is 𝑦𝑖

𝒕𝒑-Privacy: no 𝑡𝑝 parties can learn anything beyond their inputs and outputs from 𝜋

𝒕𝒓-Robustness: If ≤ 𝑡𝑟 parties are actively corrupt, then honest parties output 𝑦𝑖 or ⊥

𝜋

𝑦1

𝑦2

𝑦3
𝑦4

𝑦5

𝑦1, … , 𝑦5 = 𝐶(𝑤1, … , 𝑤5)
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Static vs. adaptive corruptions

Static Adaptive
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𝑤1

𝑤2
𝑤5

𝑤4

𝑤3

𝜋

𝑦1

𝑦2

𝑦3 𝑦4

𝑦5

𝑤1

𝑤2
𝑤5

𝑤4

𝑤3

𝜋

𝑦1

𝑦2

𝑦3 𝑦4

𝑦5
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Views

View of 𝑷𝟏

1. All inputs of 𝑃1
2. All outputs of 𝑃1
3. All messages 𝑃1 sent

4. All messages 𝑃1
received

View of adversary

Views of all corrupt parties
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𝑤1

𝑤2

𝑤5

𝑤4
𝑤3

𝜋

𝑦1

𝑦2

𝑦3
𝑦4

𝑦5
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Security – the simulation paradigm

Ideal World Real world
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𝑤1

𝑤2
𝑤5

𝑤4

𝑤3

𝜋

𝑦1

𝑦2

𝑦3 𝑦4

𝑦5

Ideal Functionality

Compute 
(𝑦1, … , 𝑦5) = 𝐶(𝑤1, … , 𝑤5)

Simulator for 𝜋

≈
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Security - Formally

Let 𝐴 be a PPT algorithm called adversary.

Let 𝑣𝑖𝑒𝑤𝜋,𝑡( 𝑥𝑖 𝑖∈ 𝑁 , 𝑃1, … , 𝑃𝑁 , 𝐴) be the distribution of the protocol 
messages where 𝐴 can corrupt at most 𝑡 parties.

Let 𝑆(𝐴, 𝐹 𝐶, 𝑥𝑖 𝑖∈𝐼 ) be the distribution of messages generated by 𝑆
interacting with 𝐴 corrupting parties in 𝐼, 𝐼 ≤ 𝑡 as well as 𝐹.

Then 𝜋 is secure if 𝑣𝑖𝑒𝑤𝜋,𝑡 ≈ 𝑆(𝐴, 𝐹 𝐶, 𝑥𝑖 𝑖∈𝐼 ) for all 𝑥1, … , 𝑥𝑁 and 𝐶.
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𝑡𝑝 or 𝑡𝑟 depending on setting



Client-Server MPC

𝑤1

𝑤2

𝑦1

𝑦2
𝑦1, 𝑦2 = 𝐶(𝑤1, 𝑤2)
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MPC in the preprocessing model
𝑤1, 𝑟1

𝑤2, 𝑟2
𝑤5, r5

𝑤4, 𝑟4
𝑤3, 𝑟3

𝜋

𝑦1

𝑦2

𝑦3
𝑦4

𝑦5
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𝑟1, … , 𝑟5 ← 𝐷

Examples of correlated randomness
- Secret sharing of multiplication triples or bits
- Public key and secret sharing of decryption key
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𝑟5

𝑟1

𝑟2

𝑟3

𝑟4



Commitments [Blu82]

Commitments: 

• 𝐶𝑜𝑚𝑐𝑘 𝑥, 𝑟 → 𝑐

• 𝑂𝑝𝑒𝑛𝑐𝑘 𝑥, 𝑟, 𝑐 → {⊥, ⊤}

𝑥
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Properties:

1. Binding:  can use 𝑂𝑝𝑒𝑛𝑐𝑘(⋅,⋅, 𝑐) only with (𝑥, 𝑟)

2. Hiding:   𝐶𝑜𝑚𝑐𝑘 𝑥,⋅ ≈ {𝐶𝑜𝑚𝑐𝑘(0,⋅)}

3. Equivocable: 𝑐𝑘 can be generated such that

𝑂𝑝𝑒𝑛𝑐𝑘(⋅,⋅, 𝑐) works for other 𝑥′

Carsten Baum
03/09/2024



Secret Sharing

𝑠1, … , 𝑠𝑛 ← 𝑆ℎ𝑎𝑟𝑒(𝑥)
𝑦 ← 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑠1, … , 𝑠𝑡 , 𝑦 ∈ 𝔽 ∪ {⊥}

𝑡-privacy: any set of 𝑡 shares reveals no information about 𝑥

𝑡 + 1-reconstruction: any set of 𝑡 + 1 shares allows reconstruction of 𝑥

Dealer

𝑥 ∈ 𝔽

𝑠1

𝑠2

𝑡𝑝 privacy of MPC



MPC-in-the-Head [IKOS08]

Prover Verifier

w

𝑤1

𝑤2
𝑤3

Challenge: open a random subset of t views

𝑉𝑖𝑒𝑤𝑖1 𝑉𝑖𝑒𝑤𝑖𝑡
…

Views consistent? 
Output correct?

…𝑉𝑖𝑒𝑤1 𝑉𝑖𝑒𝑤𝑁
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MPCitH uses special Client-Server-MPC
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Client 1
Client 2
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Prover Verifier



MPC-in-the-Head

Completeness
• Let 𝐶 be a circuit that outputs 1 iff
𝑤 is a witness for 𝑥

• Follows from Correctness of MPC
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MPC-in-the-Head

Soundness
• Prover commits to views before

the challenge is chosen
• Must cheat in MPC protocol – some 

parties have to cheat 
(i.e. inconsistent view with honest parties)

MPC protocol is 𝑡𝑟-robust against cheating parties
• Prover must have cheated in > 𝑡𝑟 parties
• Combinatorial game: what’s the chance the verifier doesn’t 

open one of the > 𝑡𝑟 dishonest parties?

1803/09/2024 Carsten Baum



MPC-in-the-Head: Soundness 

1903/09/2024 Carsten Baum

Example
MPC with 𝑡𝑟 = 𝑡𝑝 = 2

For simplicity assume only 
broadcast communication

𝑦1, … , 𝑦5 must reconstruct 
to 1

All 3 dishonest parties 
must lie

Opening one honest and 
dishonest party detects 
cheating

𝑉𝑖𝑒𝑤1

𝑉𝑖𝑒𝑤5

𝑦1

𝑦5

Pr 𝑜𝑝𝑒𝑛 ℎ𝑜𝑛𝑒𝑠𝑡 𝑎𝑛𝑑 𝑑𝑖𝑠ℎ𝑜𝑛𝑒𝑠𝑡 𝑜𝑝𝑒𝑛 𝑡𝑤𝑜 𝑝𝑎𝑟𝑡𝑖𝑒𝑠 > 1/2



MPC-in-the-Head

Zero-knowledge
Opening 𝑡𝑝 views is safe due to 𝑡𝑝-privacy

Formally

1. ZK simulator runs adaptive simulator of MPC scheme to 
simulate messages (and commits to 0 instead of views).

2. Upon receiving challenge, prover corrupts parties in 
MPC simulator, obtains views and equivocates 
commitments to MPC simulator outputs
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Honest Verifier-ZK: simulator knows choice of verifier 
in advance, can use statically secure MPC

03/09/2024 Carsten Baum



MPC-in-the-Head

Introduced in [IKOS07]

Implemented and optimized in ZKBoo [GMO16], 

ZKB++[CDG+17]

Ligero [AHIV17] – sub-linear communication complexity (later)!

[KKW18] – MPC-in-the-Head in the pre-processing model
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The computational model

𝑥, 𝑤 ∈ 𝑅𝐿 ⇔ 𝐶 𝑤 = 1 where 𝑤 ∈ 𝔽ℓ
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+ × +

× ×

+

…𝑤1 𝑤2 𝑤3 𝑤2 𝑤ℓ

𝑜1 𝑜2 𝑜3

𝑜|𝐶| = 𝑦 =
?

1

… …



MPC protocol 𝜋 of [KKW18]

Circuit 𝐶 over field 𝔽

𝜋 has 𝑁 parties, 𝑡𝑝 = 𝑁 − 1, 𝑡𝑟 = 0

Sharing of inputs 𝑥 ∈ 𝔽 as [𝑥]: 

1. 𝑃1, … , 𝑃𝑁−1 get uniformly random 𝑥1, … , 𝑥𝑁−1

2. 𝑃𝑁 gets 𝑥𝑁 = 𝑥 − σ𝑖∈[𝑁−1] 𝑥𝑖

Linear operations

• To compute 𝛾 = 𝛼𝑥 + 𝑦 + 𝛽 from 𝑥 , [𝑦], 𝑃𝑖 sets share 𝛾𝑖 ≔ 𝛼𝑖𝑥𝑖 + 𝑦𝑖 + 𝛽𝑖/𝑁
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MPC protocol 𝜋 of [KKW18]

Circuit 𝐶 over field 𝔽

𝜋 has 𝑁 parties, 𝑡𝑝 = 𝑁 − 1, 𝑡𝑟 = 0

Sharing of inputs 𝑥 ∈ 𝔽 as [𝑥]: 

1. 𝑃1, … , 𝑃𝑁−1 get uniformly random 𝑥1, … , 𝑥𝑁−1

2. 𝑃𝑁 gets 𝑥𝑁 = 𝑥 − σ𝑖∈[𝑁−1] 𝑥𝑖

Multiplication – Beaver’s trick

• To multiply 𝑥 , [𝑦], assume sharing 𝑎 , 𝑏 , [𝑐] where 𝑎, 𝑏 are uniformly random, 𝑐 = 𝑎 ⋅ 𝑏

• Protocol:
1. Parties reveal 𝛼 = 𝑥 − 𝑎 , 𝛽 = [𝑦 − 𝑏]

2. Parties compute 𝑧 = 𝛽 𝑥 + 𝛼 𝑦 − 𝛼𝛽 + [𝑐]
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MPC protocol 𝜋 of [KKW18]

Circuit 𝐶 over field 𝔽

𝜋 has 𝑁 parties, 𝑡𝑝 = 𝑁 − 1, 𝑡𝑟 = 0

Prover always opens 𝑁 − 1 parties, so can cheat only in one party

Soundness error of proof: 
1

𝑁
. Can decrease by parallel repetition.
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Pre-processing in MPCitH

As part of view, each party 

also commits to 𝑟𝑖

But 𝑟1, … , 𝑟𝑁 may not be 

valid sharing (𝑐 ≠ 𝑎 ⋅ 𝑏)

Prover has chance to cheat!
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MPC-in-the-head a’la [KKW18]

Prover Verifier

Commit to triples for MPC instances

Open subset of triples (MPC instances) 

1. De-commit the chosen subset
2. Run MPC for unopened triples
3. Commit to the views of the parties

Open subset of views 

De-commit the chosen views

1. Triples: correct?
2. View: consistent?
3. Output: correct?
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𝑟1, … , 𝑟5 ← 𝐷

𝑟1

𝑟2
𝑟3

𝑟1

𝑟2
𝑟3

𝑟1, … , 𝑟5 ← 𝐷

Challenge: open all shares of MPC instance

𝑟1 𝑟5
…

w



Optimizations

Vanilla protocol: Prover sends  c𝑜𝑚 𝑣𝑖𝑒𝑤1 , … , 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁)

Optimization

• Prover sends h = 𝐻(𝑐𝑜𝑚(𝑣𝑖𝑒𝑤1)|⋯ |𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁))

• Verifier can recompute 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑖) for opened parties 𝑃𝑖, prover 
sends 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑗) for unopened parties

• Verifier checks ℎ

Saves communication if 𝐻 is CRHF

29

𝑐𝑜𝑚(𝑣𝑖𝑒𝑤1) 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁)…

𝐻

ℎ
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What does this save?

Vanilla protocol

𝑁 parties, 𝜏 repetitions -> 𝜏 ⋅ 𝑁 commitments sent

Optimization

𝑁 parties, 𝜏 repetitions ->  1 + 𝜏 commitments sent

3003/09/2024 Carsten Baum

𝑐𝑜𝑚(𝑣𝑖𝑒𝑤1) 𝑐𝑜𝑚(𝑣𝑖𝑒𝑤𝑁)…

𝐻

ℎ



Observations about [KKW18]

Prover generates
1. Shares for inputs of parties 𝑃1, … , 𝑃𝑁
2. Shares of triples for parties 𝑃1, … , 𝑃𝑁

Share [𝑥]:
• For 𝑃1, … , 𝑃𝑁−1 share 𝑥𝑖 can be uniformly random in 𝔽
• 𝑃𝑁: 𝑥𝑁 = 𝑥 − (𝑥1 +⋯+ 𝑥𝑁−1)

Triple 𝑎 , 𝑏 , 𝑐 :
• For 𝑃1, … , 𝑃𝑁−1 share of 𝑎 , 𝑏 , [𝑐] can be uniformly random in  𝔽
• 𝑃𝑁: 𝑎𝑁, 𝑏𝑁 uniformly random, 𝑐𝑁 = σ𝑎𝑖 ⋅ σ𝑏𝑖 − (𝑐1 +⋯+ 𝑐𝑁−1)
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How to generate shares randomly?

Generate shares of 𝑃1, … , 𝑃𝑁−1 from PRG seed 𝑠𝑒𝑒𝑑𝑖

To open 𝑣𝑖𝑒𝑤𝑖 for 𝑃𝑖 ∈ {𝑃1, … , 𝑃𝑁−1} prover only reveals 𝑠𝑒𝑒𝑑𝑖 and 
messages obtained by 𝑃𝑖 from other parties

Can generate 𝑠𝑒𝑒𝑑𝑖 from one seed 𝑠𝑒𝑒𝑑: GGM trees
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What is a GGM tree?

Carsten Baum 33

𝑠𝑒𝑒𝑑 ← 0,1 𝜆

G

G G G G

G G

Let 𝐺 be a length-doubling PRG

• Avoid sending seeds separately
• Derive from leaves of a GGM tree

• Open 𝑛 − 1 leaves (seeds):
• Send 𝑂(log 𝑛) PRG seeds

×
𝑠𝑒𝑒𝑑1 𝑠𝑒𝑒𝑑2 𝑠𝑒𝑒𝑑3 𝑠𝑒𝑒𝑑8…
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What does this save?

Vanilla protocol

𝑁 parties, 𝜏 repetitions 
-> 𝜏 ⋅ 𝑁 seeds

GGM optimization

𝑁 parties, 𝜏 repetitions 
-> 𝜏 ⋅ log(𝑁) seeds

34

G

G G G G

G G

×
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What if 𝜏 = 2 ? Always have to open 2 paths

Carsten Baum 3503/09/2024

G

G G G G

G G

×

G

G G G G

G G

×

G

𝑠𝑒𝑒𝑑1
1 𝑠𝑒𝑒𝑑2

1 𝑠𝑒𝑒𝑑3
1 𝑠𝑒𝑒𝑑8

1… 𝑠𝑒𝑒𝑑1
2 𝑠𝑒𝑒𝑑2

2 𝑠𝑒𝑒𝑑3
2

𝑠𝑒𝑒𝑑8
2…



One-tree optimization [BBM+24]
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G

G G G G

G G

×

G

G G G G

G G

×

G

𝑠𝑒𝑒𝑑1
1 𝑠𝑒𝑒𝑑2

1 𝑠𝑒𝑒𝑑3
1 𝑠𝑒𝑒𝑑8

1𝑠𝑒𝑒𝑑1
2 𝑠𝑒𝑒𝑑2

2 𝑠𝑒𝑒𝑑3
2 𝑠𝑒𝑒𝑑8

2…



What does One-tree buy you?

Proof size depends on challenge, can restrict to subset of challenges.

For signatures (next talk) this allows to optimize other parameters and 
makes prover/verifier faster. 
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Sign/Verify Size

FAEST-128s ≈ 4,4 ms 5.006 B

FAEST-128f ≈ 0,4 ms 6.336 B

FAESTER-128s ≈ 3,3 ms 4.594 B

FAESTER-128f ≈ 0,4 ms 5.444 B

Timings on machine 
with AMD Ryzen 7 
5800H, 3.2–4.4 GHz



Summary

What is MPC?

MPC-in-the-head: build ZK from 
MPC & commitments

The KKW18 construction & optimizations
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