The MPC-in-the-head paradigm

Carsten Baum

Peter Scholl
?\:_.‘T\T INP/P
g DT
oD

S
N 2

2\ LI T

) «

c ﬁﬁi’.’

Z A &

7 < < =

Schedule

1. Basics of MPC-in-the-head (now)

2. Signatures, Ligcero & VOLEs

3. VOLE-in-the-head and FAEST

9/3/2024 Carsten Baum

What we will cover in session 2

1. Signatures from MPC-in-the-head =

*

2. The Ligero proof system

3. VOLEs

9/3/2024 Carsten Baum 3

Recap: MPC

Correctness: if parties learn the output, then itis y;

t,-Privacy: no t,, parties can learn anything beyond their inputs and outputs from 7

t,-Robustness: If < t,. parties are actively corrupt, then all honest parties output y;
9/3/2024 Carsten Baum

...,ys) — C(Wl,

Views

View of P4

1. Allinputs of P;

2. All outputs of P,

3. All messages P; sent

4. All messages P;
received

View of adversary
Views of all corrupt parties

9/3/2024

Carsten Baum

Size of an MPC view in [KKW18]

Every party except Py:
1. seed;
2. For every multiplication: 2 shares from unopened party

Py:

1. seedy

2. 1 share perinput, 1 share per triple
3. 2 shares for every multiplication

Proof size scales with (#inputs + #multiplications) - log(|[F|)

ldentification

/ Key generation \

Secret key Verification key

Sender —> Receiver

Carsten Baum 7

/K proof + One-Way Function = ldentification

Efficient to compute

Verification key
—— Secret key

Hard to compute

Key generation
& Pick sk and compute vk = F(sk)

> Identify

Generate interactive ZK proof m of knowledge of value sk s.th. vk = F(sk)

Carsten Baum 8

From Identification scheme to Signature

Fiat-Shamir
Transformation

(hash transcript)

Prover

\

random

\

random

E—1

<4

—

v

Verifier

A

¥

[One message only > %

Non-Interactive ZK Proof

NIZK proof + One-Way Function = Signhature

Efficient to compute

Ut Verification key
SR Signing key

Hard to compute

€= Key generation
Pick sk and compute vk = F(sk)

m > Sign

o <2 Generate non-interactive ZK proof rr of value sk s.th. vk = F(sk) . Hash includes m & vk

o,m,m E> Verify
= Verify ZK proof i for vk, m

Carsten Baum 10

NIZK proof + One-Way Function = Signhature

Signing time

Signature size

Prover time

Proof size

o <2 Generate non-interactive ZK proof rr of value sk s.th. vk = F(sk) . Hash includes m & vk

o,m,m E> Verify
Verify ZK proof m for vk, m

Carsten Baum

11

Attempt 1: Picnic

Proof size in [KKW18] etc. scales with
(#inputs + #multiplications) - log(|[F|)

Signature size!

Use Block cipher as OWF with small input and #non-linear gates

E.g. LowMC cipher [ARS+15], used in the Picnic signature scheme

Cryptanalysis of Full LowMC and LowMC-M
with Algebraic Techniques

Fukang Liu®2, Takanori Isobe?3*, Willi Meier®

! Bast China Normal University, Shanghai, China
liufukangs@1l63.com
2 University of Hyogo, Hyogo, Japan
3 National Institute of Information and Communications Technology, Tokyo, Japan
4 PRESTO, Japan Science and Technology Agency, Tokyo, Japan
takanori.isobe@ai.u-hyogo.ac.jp
® FHNW, Windisch, Switzerland
willimeier48@gmail.com

Abstract. In this paper, we revisit the difference enumeration technique
for LowMC and develop new algebraic techniques to achieve efficient key-
recovery attacks. In the original difference enumeration attack framework,
an incvitable step is to precompute and store a set of intermediate
state differences for efficient checking via the binary search. Our first
observation is that Bar-On et al.’s general algebraic technique developed
for SPNs with partial nonlincar layers can be utilized to fulfill the same
task, which can make the memory complexity negligible as there is no
need to store a huge set of state differences any more. Benefiting from
this technique, we could significantly improve the attacks on LowMC
when the block size is much larger than the key size and even break
LowMC with such a kind of paramecter. On the other hand, with our
new key-recovery technique, we could significantly improve the time to
retrieve the full key if given only a single pair of input and output
messages together with the difference trail that they take, which was
stated as an interesting question by Rechberger et al. at ToSC 2018.
Combining both techniques, with only 2 chosen plaintexts, we could
break 4 rounds of LowMC adopting a full S-Box layer with block size
of 129, 192 and 255 bits, respectively, which are the 3 recommended
parameters for Picnic3, an alternative third-round candidate in NIST’s
Post-Quantum Cryptography competition. We have to emphasize that
our attacks do not indicate that Picnic3 is broken as the Picnic use-case
is very different and an attacker cannot even freely choose 2 plaintexts to
encrypt for a concrete LowMC instance. However, such parameters are
deemed as secure in the latest LowMC. Moreover, much more rounds of
seven instances of the backdoor cipher LowMC-M as proposed by Peyrin
and Wang in CRYPTO 2020 can be broken without finding the backdoor
by making full use of the allowed 2% data. The above mentioned attacks
are all achieved with negligible memory.

Carsten Baum

BBQ [DDOS19], Banquet [BDK+21], Limbo [DOT21]

Evaluate AES circuit over F,s (use [BN20] instead of [KKW18])

High-level description of the algorithm [edit]

1. KeyExpansion — round keys are derived from the cipher key using the AES key schedule. AES requires a separate 128-bit round key block for each round plus

one more.
2. Initial round key addition:

1. AddroundKey — each byte of the state is combined with a byte of the round key using bitwise xor.
3.9, 11 or 13 rounds:

1. SubBytes — a non-linear substitution step where each byte is replaced with another according to a lookup table.

2. shiftRows — a transposition step where the last three rows of the state are shifted cyclically a certain number of steps.
3. MixColumns — a linear mixing operation which operates on the columns of the state, combining the four bytes in each column.
4. AddRoundKey
4. Final round (making 10, 12 or 14 rounds in total):
1. SubBytes
2. ShiftRows

3. AddRoundKey

All operations except S-boxes are linear over F,
SubBytes(x):x = x~1in Fys (and 0 - 0)

9/3/2024 Carsten Baum 14

9/3/2024

Protocol N M 1 Sign (ms) Ver (ms) Size (bytes)
Picnic2 64 343 27 11.16 18.21 12 347
16 252 36 10.42 5.00 13831
Picnic3 16 252 36 5.33 1.03 12 466
SPHINCS " -fast - : - 14.42 1.74 16976
SPHINCS*-small - - - 239.34 (.73 =080
Banquet 16 - 41 .30 4.86 19776
T - 24 21.13 18.96 14784
255 - 21 13.81 40.11 13284

Picnic, SPHINCS+ (using sha256simple) and Banquet for

comparable parameter sizes and security levels (all run on

Intel Xeon W-2133 CPU @ 3.60GHz) for NIST PQ L1 level

Carsten Baum

15

Other OWFs

Legendre PRF [BD20,Damgaard88]
Syndrome decoding [FJR22]

Multivariate Quadratic Polynomials [BFR23]

Ligero [AHIV17]

Getting below the circuit-size barrier

9/3/2024

Modifty the MPC scheme

Client 1

Client 2

9/3/2024 Carsten Baum

18

Communication complexity of a proof

&

Proof size: t - #input shares + #parties

\ J
: \ : J

Opened parties Messages from MPC
parties to verifier

9/3/2024 Carsten Baum 19

Super-duper high level Ligero idea

Proof size: t - #input shares + #parties

Y Y

Opened parties Messages from MPC
parties to verifier

Let |C| = |w|. If N = V|C]|, t = log(|C]) and #input shares ~ V|C|,
then communication O(V|C])

Use [DIO6] protocol!

Shamir secret sharing

Secrets € F

Secrecy against t,, corruptions
Create f € F[X], deg(f) = ¢t,, f(0) =s

fw f@ e
: | |

Py P, P5

Observations
Create f € F[X], deg(f) =¢,,f(0) =s

fw @ e
i l |

Py P, P5

1. Canreconstruct from any t,, + 1 shares
2. s uniformly random given t,, or less shares
3. Linearly homomorphic sharing (poly evaluation is homomorphism)

What if someone lies?

Create f € F|X], deg(f) =¢,,f(0) =s
F) f@) f/{
; ; ;

If N > 3t,, shares, then can efficiently reconstruct with t,, faulty shares
(Berlekamp-Welch)

Packed Shamir secret sharing

Secret (sS4, ...,S,) € F"
Secrecy against t,, corruptions
Create f € F[X], deg(f) =t, +1,f(1 —1i) =5

fw f@ e
: | |

Py P, P5

Notation

Packed sharing of s4, ..., S;- using poly of degree t: (sq, ..., S;-);

Given a, fy, ..., Br, (ay, oo, @p)y (b, ooy by)y,
parties can locally compute

(CZ raq t+ bl + 181» ey XAy T+ br + lgr)max(ta,tb)
and

(a1 by, ey ar br)ta+tb

Share O(N) secrets among N parties

(vlt ey vr)f

letr = N =./|C| (=)
ai - Wq, ..., Wy)p
+...+

tar - (Wicl-r+1, - Wicl),

Client 1)
Client 2

9/3/2024 Carsten Baum 26

Share O(N) secrets among N partie

(vlt reny vr)f

Letr = N =./|C| -

al) (Wll '--;WT')f

t large enough:
All (-, ..oy

decodable

Client 1 Tt Client 2
ien
+ay - (Wicj-r+1, ---rW|C|){)
+(21J '--;ZT')f
(er -JW‘I")f
Communication:
(WICI—r+1' t-r+ N elements

(Z1, er) Z1) in F

9/3/2024 Carsten Baum 27

Extending the witness

(x,w)€ER, & Cw) =1

Oic|
?
=y = 1

Circuit evaluation
9/3/2024 Carsten Baum

Circuit consistency check

28

Check linear relations

For (Wq, ...,w,.), checkthatw; + w, = w3 o w; +w, —w3 =0

Client 1 Vg, oo, V) prp = - (1,1, —1,0, ..., 0), - (Wy, .., W), |
+ (a,b,—a—b,0,...,0)4, Client 2

(vll e vT)T+€

(W1, s W)

Check that vy + v, —v3 =0

(Wic|—r+1, ---'W|C|){)

(a,b,a+b,0,...,0),y

9/3/2024 Carsten Baum 29

Check linear relations

Cost:
1. Secret sharing of (a,b,—a — b, 0, ..., 0)., by prover

2. Sending (v, ..., V)40 to verifier

One can show:

One sharing by prover and message to verifier enough to check any
number of linear relations

For the experts:

1. Use random linear combination
2. Use blinding vector that sums to 0

9/3/2024 Carsten Baum

30

Check multiplicative relations

(Wli){’; (WZ;){’l (W3;){’
consistent with(wy, ..., w,.), ?

For (Wq, ...,w,); checkthatw; -wy, =wz3 & wy; -w, —w3 =0

Client 1
(U1, s Vpdop =@ (Wy, s)p - Wy,)p—a - (W,)yp Client 2

+(0,aq, ..., ar_1)2¢

(Wll e Wr){’

Check thatv; =0

(Wic|—r+1 ---»W|C|)f

(O) A1y ey Ar—q)ZfJ (W11)t; (Wz,)ti (W3,)t

9/3/2024 Carsten Baum 31

Check multiplicative relations

Cost:
1. Sharing of (Wl;)f; (WZJ)f) (WBJ)f} (O) A1, -y Ar—1q)Zf

2. Sending (v4, ..., ,-)5, to verifier

One can show:
Can verify r multiplications with 4 sharings + 1 opening + linear check

(for r? = |C| multiplications we need O(4/|C|) sharings + 1 opening +
linear check)

Further reading

LCDG+17] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D. & Zaverucha, G. (2017). Post-quantum zero-
nowledge and signatures from symmetric-key primitives.

[DDOS19] de Saint Guilhem, C. D., De Meyer, L., Orsini, E., & Smart, N. P. (2019, August). BBQ: using AES in picnic signatures.

[BDK+21] Baum, C., de Saint Guilhem, C. D., Kales, D., Orsini, E., Scholl, P., & Zaverucha, G. (2021, May). Banquet: short and fast signatures from AES.
[DOT21] Delpech de Saint Guilhem, C., Orsini, E., & Tanguy, T. (2021, November). Limbo: efficient zero-knowledge MPCitH-based arguments.

[BD20] Beullens, W., & Delpech de Saint Guilhem, C. (2020, April). LegRoast: Efficient post-quantum signatures from the Legendre PRF.

[FIR22] Feneuil, T., Joux, A., & Rivain, M. (2022, August). Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs.

[BFR23] Benadjila, R., Feneuil, T., & Rivain, M. (2023). MQ on my mind: Post-quantum signatures from the non-structured multivariate quadratic problem.

[AHIV17] Ames, S., Hazay, C., Ishai, Y., & Venkitasubramaniam, M. (2017, October). Ligero: Lightweight sublinear arguments without a trusted setup.

