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Secure and Private ML Inference

Ingredients 

Zero Knowledge Proofs

Commitments
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• Binding:
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Practical challenges of constructing ZKPs for ML

Scale with large models and not-that-ZKP-friendly computations

VGG16 (one of the best computer vision NN) has ~500MB parameters

Dense matrix operations, non-linear layers (NN), threshold&comparison gates (DT)

Proof verification — can leverage SNARKs

Proof generation — the most challenging, we’d like proving time O(|F|) and concretely close to |F|

Solution: special-purpose ZKPs!
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ZKPs for CNNs

• Sumcheck-based proofs 
[LXZ21, BFGRS23]

• Suitable for layered 
computation

• Proof generation mostly 
information-theoretic. 
Cryptographic work is only  
O(|X|+|W|)

[LXZ21] Liu, Xi, Zhang. zkCNN: Zero 
Knowledge Proofs for Convolutional Neural 
Network Predictions and Accuracy. CCS 2021
[BFGRS23] Balbás, Fiore, Gonzalez-Vasco, 
Robissout, Soriente. Modular Sumcheck 
Proofs with Applications to Machine Learning 
and Image Processing. CCS 2023
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Modular approach for CNNs [BFGRS23]

Sumcheck-based VEs for subroutines of CNNs

• Modular design&composition generalization of GKR-style IPs

• Easier to focus on designing efficient specialized VEs
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𝒫( f, x, y) 𝒱( f, x, y)

⋮

Fingerprint of  on  :  

- Compressing: 

- Statistically binding: 

Example: for , H is the MLE evaluation 

x r cx ← 𝖧(x, r)

|cx | ≪ |x |

∀x ≠ x*, Pr
r

[𝖧(x, r) = 𝖧(x*, r)] = 𝗇𝖾𝗀𝗅(λ)

⃗x ∈ 𝔽n, ⃗r ∈ 𝔽log n 𝖧( ⃗x, ⃗r) = x̃( ⃗r)
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Structure of common IPs

•Public coin verifier

•Output fingerprint

•Subroutine: verifiable evaluation (VE) schemes on fingerprinted data (  runs w/o )𝒱VE x, y

•Input fingerprint

Examples of VE-based IPs: sumcheck protocol, GKR, ….
14

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry) cx, rx, bcx, rx

Return b ∧ cx
?= 𝖧(x, rx)

f

x

y no need to know x



VE Soundness

Soundness of VE subroutine: for random  and any unbounded rx, ry 𝒜

=neglPr
c*y ≠ 𝖧( f(x), ry)

∧ b

( f, c*y , x) ← 𝒜(ry)

(c*x ; rx; b) ← ⟨𝒜(x), 𝒱VE(rx)⟩( f, c*y , ry)
c*x = 𝖧(x, rx)

15

f

x

y

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry) cx, rx, bcx, rx

Return b ∧ cx
?= 𝖧(x, rx)

Correct input fingerprint

⇒  fingerprints correct outputc*y



VE Soundness

Soundness of VE subroutine: for random  and any unbounded rx, ry 𝒜

=neglPr
c*y ≠ 𝖧( f(x), ry)

∧ b

( f, c*y , x) ← 𝒜(ry)

(c*x ; rx; b) ← ⟨𝒜(x), 𝒱VE(rx)⟩( f, c*y , ry)
c*x = 𝖧(x, rx)
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16

𝒫(x, y) 𝒱(y)

r1

⋮

f1(T1) = Σt2,…,tℓ∈{0,1} x(T1, t2, …, tℓ)

fℓ(Tℓ) = x(r1, r2, …, rℓ−1, Tℓ)

cx, rx = (r1, …, rℓ)

rℓ
⋀

i

[ fi(0) + fi(1) ?= fi−1(ri−1)]

b ∧ cx
?= x(r1, …, rℓ) = 𝖧(x, rx)

cx ← x(r1, …, rℓ)
cx, rx = (r1, …, rℓ)

ry

cy ← 𝖧(y, ry) = ỹ(ry) = y

∧ cx
?= fℓ(rℓ)

Return

b ←



GKR as VE-based IP

17

𝒫( f, x, y) 𝒱( f, x, y)

cy ← ỹ(ry)

ry

cy ← ỹ(ry)



GKR as VE-based IP

17

𝒫( f, x, y) 𝒱( f, x, y)

cy ← ỹ(ry)

ry

x̃(rx)

cy = Ṽd(ry) = ∑
b1,b2∈{0,1}ℓ

˜addd−1(ry, b1, b2)(Ṽd−1(b1) + Ṽd−1(b2)) + ˜multd−1(ry, b1, b2)(Ṽd−1(b1) ⋅ Ṽd−1(b2))

no need to know x

cy ← ỹ(ry)
Sumcheck claim:

c1 = Ṽ1(r1) = ∑
b1,b2∈{0,1}ℓ

˜add1(r1, b1, b2)(x̃(b1) + x̃(b2)) + ˜mult1(r1, b1, b2)(x̃(b1) ⋅ x̃(b2))Sumcheck claim:

⋮



GKR as VE-based IP

17

𝒫( f, x, y) 𝒱( f, x, y)

cy ← ỹ(ry)

ry

cx, rx, bcx, rx

x̃(rx)

GKR no need to know x

cy ← ỹ(ry)



GKR as VE-based IP

17

𝒫( f, x, y) 𝒱( f, x, y)

cy ← ỹ(ry)

ry

cx, rx, bcx, rx

x̃(rx)

GKR

= 𝖧(x, rx)
?= cx

no need to know x

= 𝖧(y, ry)cy ← ỹ(ry)



GKR as VE-based IP

And even the layer subprotocols of GKR can be seen as VEs

17

𝒫( f, x, y) 𝒱( f, x, y)

cy ← ỹ(ry)

ry

cx, rx, bcx, rx

x̃(rx)

GKR

= 𝖧(x, rx)
?= cx

no need to know x

= 𝖧(y, ry)cy ← ỹ(ry)



Sequential composition of VEs

18

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2( f1(x), w)



Sequential composition of VEs

18

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2( f1(x), w)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)



Sequential composition of VEs

18

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2
⟨𝒫VE(x2), 𝒱VE⟩( f3, cy, ry)

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2( f1(x), w)

If  then c2 = 𝖧(x2, r2)
cy = 𝖧( f3(x2), ry)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)



Sequential composition of VEs

18

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2
⟨𝒫VE(x2), 𝒱VE⟩( f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩( f2, c2, r2)

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2( f1(x), w)

If  then c2 = 𝖧(x2, r2)
cy = 𝖧( f3(x2), ry)

If  then c1 = 𝖧(x1, r1)
c2 = 𝖧( f2(x1), r2)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)



Sequential composition of VEs

18

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2
⟨𝒫VE(x2), 𝒱VE⟩( f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩( f2, c2, r2)

⟨𝒫VE(x), 𝒱VE⟩( f1, c1, r1) cx, rx, b0cx, rx

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2( f1(x), w)

If  then c2 = 𝖧(x2, r2)
cy = 𝖧( f3(x2), ry)

If  then c1 = 𝖧(x1, r1)
c2 = 𝖧( f2(x1), r2)

If  then cx = 𝖧(x, rx)
c1 = 𝖧( f1(x), r1)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)



Sequential composition of VEs

18

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2

Return b ∧ cx
?= 𝖧(x, rx)

⟨𝒫VE(x2), 𝒱VE⟩( f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩( f2, c2, r2)

⟨𝒫VE(x), 𝒱VE⟩( f1, c1, r1) cx, rx, b0cx, rx

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2( f1(x), w)

If  then c2 = 𝖧(x2, r2)
cy = 𝖧( f3(x2), ry)

If  then c1 = 𝖧(x1, r1)
c2 = 𝖧( f2(x1), r2)

If  then cx = 𝖧(x, rx)
c1 = 𝖧( f1(x), r1)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)

cx, rx, b = b0 ∧ b1 ∧ b2cx, rx



Sequential composition of VEs

18

𝒫( f, x, y) 𝒱( f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2

Return b ∧ cx
?= 𝖧(x, rx)

⟨𝒫VE(x2), 𝒱VE⟩( f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩( f2, c2, r2)

⟨𝒫VE(x), 𝒱VE⟩( f1, c1, r1) cx, rx, b0cx, rx

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2( f1(x), w)

If  then c2 = 𝖧(x2, r2)
cy = 𝖧( f3(x2), ry)

If  then c1 = 𝖧(x1, r1)
c2 = 𝖧( f2(x1), r2)

If  then cx = 𝖧(x, rx)
c1 = 𝖧( f1(x), r1)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)

cx, rx, b = b0 ∧ b1 ∧ b2cx, rx

If  then cx = 𝖧(x, rx)
cy = 𝖧( f1( f2( f3(x))), ry)



From VE-based IP to AoK [vSQL]

19

VE 
y = f(x)

SNARK 𝝥 

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H 
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

+
Fiat-Shamir



From VE-based IP to AoK [vSQL]

19

Π . 𝒫( f, x, y) Π . 𝒱( f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

VE 
y = f(x)

SNARK 𝝥 

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H 
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)

VE-based IP

+
Fiat-Shamir



From VE-based IP to AoK [vSQL]

19

Π . 𝒫( f, x, y) Π . 𝒱( f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

Return  b ∧ Π𝖧 . Ver(𝖼𝗆x, cx, rx, πx)
πx = Π𝖧 . 𝒫( (𝖼𝗆x, cx, rx), x, πx)

VE 
y = f(x)

SNARK 𝝥 

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H 
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)  cx = 𝖧(x, rx)
∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

VE-based IP

Prove that input 
fingerprint is 
correct w.r.t. 𝖼𝗆x

+
Fiat-Shamir



From VE-based IP to AoK [vSQL]

19

Π . 𝒫( f, x, y) Π . 𝒱( f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

Return  b ∧ Π𝖧 . Ver(𝖼𝗆x, cx, rx, πx)
πx = Π𝖧 . 𝒫( (𝖼𝗆x, cx, rx), x, πx)

VE 
y = f(x)

SNARK 𝝥 

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H 
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

When , 𝝥H  can be instantiated with a multilinear polynomial commitment𝖧(x, rx) = x̃(rx)

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)  cx = 𝖧(x, rx)
∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

VE-based IP

Prove that input 
fingerprint is 
correct w.r.t. 𝖼𝗆x

+
Fiat-Shamir



From VE-based IP to AoK [vSQL]

19

Π . 𝒫( f, x, y) Π . 𝒱( f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

Return  b ∧ Π𝖧 . Ver(𝖼𝗆x, cx, rx, πx)
πx = Π𝖧 . 𝒫( (𝖼𝗆x, cx, rx), x, πx)

VE 
y = f(x)

SNARK 𝝥 

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H 
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

When , 𝝥H  can be instantiated with a multilinear polynomial commitment𝖧(x, rx) = x̃(rx)
To get ZK: hiding of Com + ZK of 𝝥H + “ZK of the IP” [Libra] (or “committed IP” [zk-vSQL, Hyrax])

⟨𝒫VE(x), 𝒱VE⟩( f, cy, ry)  cx = 𝖧(x, rx)
∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

VE-based IP

Prove that input 
fingerprint is 
correct w.r.t. 𝖼𝗆x

+
Fiat-Shamir



Modular approach for CNNs

Sumcheck-based VEs for subroutines of CNNs

20

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1) 
IP 

Y=F(X, W)

SNARK 
Y=F(X, W) ∧

cmW=Com(W)

PolyCom 

cm=Com( . )
1

VE for 𝖷1 = f (1)(𝖷𝟢, 𝖶𝟢)2

VE for 𝖷L = f (L)(𝖷𝖫−𝟣, 𝖶𝖫−𝟣)

…

3

Verifiable Evaluation schemes



Convolution

21

Input 
(  )

X
n × n

Kernel 
(  )

W
m × m

Output 
( )

Y
n′ × n′ 

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1



Convolution
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Input 
(  )

X
n × n

Kernel 
(  )

W
m × m

Output 
( )

Y
n′ × n′ 

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1



Convolution
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Input 
(  )

X
n × n

Kernel 
(  )

W
m × m

Output 
( )

Y
n′ × n′ 

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1



Convolution
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Input 
(  )

X
n × n

Kernel 
(  )

W
m × m

Output 
( )

Y
n′ × n′ 

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1



Convolution

25

Input 
(  )

X
n × n

Kernel 
(  )

W
m × m

Output 
( )

Y
n′ × n′ 

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1



Multichannel Convolution of CNNs

26

Input 
(  )

{X(k)
σ }c(k)−1

σ=0
n(k) × n(k)

Kernel 
(  )

{W(k)
σ,τ}c(k)−1,c(k+1)−1

σ,τ=0
m(k) × m(k)

Output 
( )

{X(k+1)
τ }c(k+1)−1

τ=0
n(k+1) × n(k+1)

Output X(k+1)
τ [u, v] =

c(k)−1

∑
σ=0

m(k)−1

∑
i,j=0

X(k)
σ [u + i, v + j] ⋅ W(k)

σ,τ[i, j]

⋱

⋱

⋱

⋱



Proving convolution

   expensive as a circuit, Yτ[u, v] =
c−1

∑
σ=0

m−1

∑
i,j=0

Xσ[u + i, v + j] ⋅ Wσ,τ[i, j] O(cd |Yτ | ⋅ |Wσ,τ | )

27
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Special-purpose techniques: convolution → structured matrix multiplication
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Special-purpose techniques: convolution → structured matrix multiplication

zkCNN [LXZ21]

(2dim)Convolution → 1dim-convolution → poly mult → FFT → matrix multiplication
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Proving convolution

   expensive as a circuit, Yτ[u, v] =
c−1

∑
σ=0

m−1

∑
i,j=0

Xσ[u + i, v + j] ⋅ Wσ,τ[i, j] O(cd |Yτ | ⋅ |Wσ,τ | )

Special-purpose techniques: convolution → structured matrix multiplication

zkCNN [LXZ21]

(2dim)Convolution → 1dim-convolution → poly mult → FFT → matrix multiplication

[BFGRS23]

Convolution → matrix multiplication with reshaped X, W

27



Reshaping convolution

Let  and . Compact convolution as X =
x0 x1 x2
x3 x4 x5
x6 x7 x8

W = [w0 w1
w2 w3]

𝗏𝖾𝖼(Y) =

w0x0 + w1x1 + w2x3 + w3x4
w0x1 + w1x2 + w2x4 + w3x5
w0x3 + w1x4 + w2x6 + w3x7
w0x4 + w1x5 + w2x7 + w3x8

=

x0 x1 x3 x4
x1 x2 x4 x5
x3 x4 x6 x7
x4 x5 x7 x8

w0
w1
w2
w3

= X̂ ⋅ Ŵ

28



Reshaping multi-channel convolution

29

reshaped 
(  )

X̂σ
(n′ )2 × m2

reshaped 
(  )

Ŵσ,τ
m2

⋱

⋱
⋱

⋱

Inputs 
(  )

Xσ
n × n

Kernel 
(  )

Wσ,τ
m × m

Outputs 
( )

Yτ
n′ × n′ 

(  )
𝗏𝖾𝖼(Yτ) = X̂σ ⋅ Ŵσ,τ

(n′ )2



Reshaping multi-channel convolution

For multiple channels 

       sum of matrix multiplicationsY = [Y1 |⋯ |Yd] = ∑
σ

X̂σ ⋅ [Ŵσ,1 |⋯ |Ŵσ,d] = ∑
σ

X̂σ ⋅ Ŵσ

29

reshaped 
(  )

X̂σ
(n′ )2 × m2

reshaped 
(  )

Ŵσ,τ
m2

⋱

⋱
⋱

⋱

Inputs 
(  )

Xσ
n × n

Kernel 
(  )

Wσ,τ
m × m

Outputs 
( )

Yτ
n′ × n′ 

(  )
𝗏𝖾𝖼(Yτ) = X̂σ ⋅ Ŵσ,τ

(n′ )2



Reshaping multi-channel convolution

For multiple channels 

       sum of matrix multiplicationsY = [Y1 |⋯ |Yd] = ∑
σ

X̂σ ⋅ [Ŵσ,1 |⋯ |Ŵσ,d] = ∑
σ

X̂σ ⋅ Ŵσ

VE for convolution ← VE for (sum of) matrix multiplications
29

reshaped 
(  )

X̂σ
(n′ )2 × m2

reshaped 
(  )

Ŵσ,τ
m2

⋱

⋱
⋱

⋱

Inputs 
(  )

Xσ
n × n

Kernel 
(  )

Wσ,τ
m × m

Outputs 
( )

Yτ
n′ × n′ 

(  )
𝗏𝖾𝖼(Yτ) = X̂σ ⋅ Ŵσ,τ

(n′ )2



VE for matrix multiplication [Thaler13]
Prove  for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃( ⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã( ⃗i , ⃗j) ⋅ B̃( ⃗j , ⃗k)

30
VE efficiency: communication&verification O(log n), prover O(n2), faster than computing  in O(n3)A ⋅ B
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VE for matrix multiplication [Thaler13]
Prove  for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃( ⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã( ⃗i , ⃗j) ⋅ B̃( ⃗j , ⃗k)

30

⃗rC = ( ⃗r1, ⃗r2)cC = 𝖧(C, ⃗rC) = C̃( ⃗r1, ⃗r2) cC = 𝖧(C, ⃗rC) = C̃( ⃗r1, ⃗r2)

VE efficiency: communication&verification O(log n), prover O(n2), faster than computing  in O(n3)A ⋅ B
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VE for matrix multiplication [Thaler13]
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Ã( ⃗r1, ⃗j)⋅B̃( ⃗j , ⃗r2)⏞
X̃( ⃗j)

VE efficiency: communication&verification O(log n), prover O(n2), faster than computing  in O(n3)A ⋅ B

𝒫mm
VE (A, B, C) 𝒱mm

VE (cC, rC)

𝒫mm(A, B, C) 𝒱mm(A, B, C)



VE for matrix multiplication [Thaler13]
Prove  for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃( ⃗i , ⃗k) = ∑

⃗j∈{0,1}log n
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Proofs for convolution

zkCNN [LXZ21]

(2dim)Convolution → 1dim-convolution → poly mult → FFT → matrix multiplication

[BFGRS23] 

Convolution → matrix multiplication with reshaped X, W

Performance for c input channels, d output channels

• Very efficient for small kernels m2≤d 
(VGG16 m=3, d→512)

• Confirmed experimentally  
(proving VGG11 ~5s)
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[BFGRS23] zkCNN [LXZ21]

Prover O(c |W| (|Y| + d)) O(c d |X|)

Verifier O(log(c |Y|)) O(log2(c d |X|))

Proof size O(log(c |Y|)) O(log2(c d |X|))



ZKPs for Decision Trees

[zkDT] J. Zhang, Z. Fang, Y. Zhang, D. Song. Zero Knowledge Proofs for Decision Tree Predictions and Accuracy. 
CCS 2020.

Merkle hash of T. Proving inference = proving traversal from leaf (class) to root

[CFFLL24] M. Campanelli, A. Faonio, D. Fiore, T. Li, H. Lipmaa. Lookup Arguments: Improvements, 
Extensions and Applications to Zero-Knowledge Decision Trees. PKC 2024

Matrix-encoding of T. Proving inference = proving matrix lookup (reduced to vector lookup)
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att1, thr1

att2, thr2

x[att1]≤thr1 x[att1]>thr1

x[att2]≤thr2 x[att2]>thr2

Tree 
Height H, #nodes N
Classify x=(x[att1],…,x[attd])

𝒯 : 𝔽d → [M]



ZKPs for secure ML

How to use ZKPs and Commitments to prove ML inference

Efficient solutions for CNNs and Decision Trees
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ZKPs for secure ML

How to use ZKPs and Commitments to prove ML inference

Efficient solutions for CNNs and Decision Trees

Other related problems

Proofs of accuracy: prove that model W achieves a claimed accuracy level

Prove Yi=F(Xi, W) over dataset of labeled samples {Xi} and compares results to labels

Proofs of training: prove W=NN-Train(Data)

Challenge: several iterations of inference-like computations

[GGJMMP23] S. Garg, A. Goel, S. Jha, S. Mahloujifar, M. Mahmoody, G. Policharla, M. Wang. Experimenting with Zero-
Knowledge Proofs of Training. CCS 2023

[APKP24] K. Abbaszadeh, C. Pappas, J. Katz, D. Papadopoulos. Zero-Knowledge Proofs of Training for Deep Neural 
Networks. CCS 2024
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Thanks! 

Questions ?

34


