
Zero-Knowledge Proofs for Secure
and Private Machine Learning

Dario Fiore | IMDEA Software Institute

Foundations and Applications of Zero-Knowledge Proofs | Edinburgh, UK | Sep 6, 2024

Agenda

Security of ML inference

How to use ZKPs for secure ML

Efficiency challenges of ZKPs for ML

Efficient ZKPs for Neural Networks

Efficient ZKPs for Decision Trees

Conclusions

2

Motivation: outsourcing machine learning

3

Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Motivation: outsourcing machine learning

3

Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Banking & Finance

Can I have a loan?

Motivation: outsourcing machine learning

3

Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Banking & Finance

Can I have a loan?

Healthcare

Risk of a disease?

Motivation: outsourcing machine learning

3

Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Banking & Finance

Can I have a loan?

Healthcare

Risk of a disease?

Criminal justice

Released or retained?

Security of outsourced machine learning

4

Can I trust this?

Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Security of outsourced machine learning

Goals

Integrity: detect tampered computations

4

Can I trust this?

Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Security of outsourced machine learning

Goals

Integrity: detect tampered computations

Fairness: assuming the model is trusted, decision process is the same for all clients

4

Can I trust this?

Is the model fair?Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Security of outsourced machine learning

Goals

Integrity: detect tampered computations

Fairness: assuming the model is trusted, decision process is the same for all clients

Privacy: clients should not learn anything about the model W

4

Can I trust this?

Is the model fair?Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Security of outsourced machine learning

Goals

Integrity: detect tampered computations

Fairness: assuming the model is trusted, decision process is the same for all clients

Privacy: clients should not learn anything about the model W

4

Can I trust this?

Is the model fair?

W Yes, it is fair!

Y=F(X, W)

ML inference

model

algorithm

outcome

My data is X

Outcome is Y

Secure and Private ML Inference

Ingredients

Zero Knowledge Proofs

Commitments

5

Commitments [Blum, Even ’81]

6

x
Commit

𝖢𝗈𝗆(𝖼𝗄, x; rx)
𝖼𝗆

Commitments [Blum, Even ’81]

6

x
Commit

𝖢𝗈𝗆(𝖼𝗄, x; rx)
𝖼𝗆

πxOpen & Verify
xrx

𝖼𝗆 ?= 𝖢𝗈𝗆(𝖼𝗄, x; rx)

Commitments [Blum, Even ’81]

• Hiding: 𝖢𝗈𝗆(x) ≈ 𝖢𝗈𝗆(x′)

6

x
Commit

𝖢𝗈𝗆(𝖼𝗄, x; rx)
𝖼𝗆

πxOpen & Verify
xrx

𝖼𝗆 ?= 𝖢𝗈𝗆(𝖼𝗄, x; rx)

Commitments [Blum, Even ’81]

• Hiding: 𝖢𝗈𝗆(x) ≈ 𝖢𝗈𝗆(x′)

• Binding:

6

x
Commit

𝖢𝗈𝗆(𝖼𝗄, x; rx)
𝖼𝗆

πxOpen & Verify
xrx

𝖼𝗆 ?= 𝖢𝗈𝗆(𝖼𝗄, x; rx)

𝖼𝗆 x, rx

x′ , r′ x

𝖼𝗆 = 𝖢𝗈𝗆(𝖼𝗄, x; rx)

👹
𝖼𝗆 = 𝖢𝗈𝗆(𝖼𝗄, x′ ; r′ x)

x

x′

≠

ZKPs for secure and private ML inference

7

X

Y

W

Y=F(X, W)

ML inference

model

algorithm

outcome

ZKPs for secure and private ML inference

7

X

Y

cmW

W
 1 Commit

Y=F(X, W)

ML inference

model

algorithm

outcome

ZKPs for secure and private ML inference

7

X

Y

cmW

W

𝛑Y

 1 Commit

 2 Prove

Y=F(X, W) and
cmW=Com(W)

Y=F(X, W)

ML inference

model

algorithm

outcome

ZKPs for secure and private ML inference

7

X

Y

cmW

W

𝛑Y
Ver((X, Y, cmW), 𝛑y)

 1 Commit

 2 Prove
 3 Verify

Y=F(X, W) and
cmW=Com(W)

Y=F(X, W)

ML inference

model

algorithm

outcome

ZKPs for secure and private ML inference

Integrity: detect tampered computations ZKP Soundness + Com binding

7

X

Y

cmW

W

𝛑Y
Ver((X, Y, cmW), 𝛑y)

 1 Commit

 2 Prove
 3 Verify

Y=F(X, W) and
cmW=Com(W)

Y=F(X, W)

ML inference

model

algorithm

outcome

ZKPs for secure and private ML inference

Integrity: detect tampered computations ZKP Soundness + Com binding

Privacy: clients should not learn anything about the model W ZKP ZK + Com hiding

7

X

Y

cmW

W

𝛑Y
Ver((X, Y, cmW), 𝛑y)

 1 Commit

 2 Prove
 3 Verify

Y=F(X, W) and
cmW=Com(W)

Y=F(X, W)

ML inference

model

algorithm

outcome

ZKPs for secure and private ML inference

Integrity: detect tampered computations ZKP Soundness + Com binding

Privacy: clients should not learn anything about the model W ZKP ZK + Com hiding

Fairness: decision process the same for all clients…

7

X

Y

cmW

W

𝛑Y
Ver((X, Y, cmW), 𝛑y)

 1 Commit

 2 Prove
 3 Verify

Y=F(X, W) and
cmW=Com(W)

Y=F(X, W)

ML inference

model

algorithm

outcome

ZKPs for secure and private ML inference

8

X’

cmW

W
 1 Commit

ZKPs for secure and private ML inference

8

X’

Y’

cmW

W
 1 Commit

Y’=F(X', W’)
👹

ZKPs for secure and private ML inference

8

X’

Y’

cmW

W

𝛑’Y
Ver((X’, Y’, cmW), 𝛑’y)

 1 Commit

 2 Prove
 3 Verify

Y’=F(X’, W’) and
cmW=Com(W’)

Y’=F(X', W’)
👹

ZKPs for secure and private ML inference

Integrity: detect tampered computations ZKP Soundness + Com binding

Privacy: clients should not learn anything about the model W ZKP ZK + Com hiding

Fairness: decision process the same for all clients ZKP Soundness + Com binding

8

X’

Y’

cmW

W

𝛑’Y
Ver((X’, Y’, cmW), 𝛑’y)

 1 Commit

 2 Prove
 3 Verify

Y’=F(X’, W’) and
cmW=Com(W’)

Y’=F(X', W’)
👹

Practical challenges of constructing ZKPs for ML

Scale with large models and not-that-ZKP-friendly computations

9

Y=F(X, W)

ML inference

model

algorithm

outcome Neural Networks Decision Trees

Practical challenges of constructing ZKPs for ML

Scale with large models and not-that-ZKP-friendly computations

VGG16 (one of the best computer vision NN) has ~500MB parameters

Dense matrix operations, non-linear layers (NN), threshold&comparison gates (DT)

9

Y=F(X, W)

ML inference

model

algorithm

outcome Neural Networks Decision Trees

Practical challenges of constructing ZKPs for ML

Scale with large models and not-that-ZKP-friendly computations

VGG16 (one of the best computer vision NN) has ~500MB parameters

Dense matrix operations, non-linear layers (NN), threshold&comparison gates (DT)

Proof verification — can leverage SNARKs

9

Y=F(X, W)

ML inference

model

algorithm

outcome Neural Networks Decision Trees

Practical challenges of constructing ZKPs for ML

Scale with large models and not-that-ZKP-friendly computations

VGG16 (one of the best computer vision NN) has ~500MB parameters

Dense matrix operations, non-linear layers (NN), threshold&comparison gates (DT)

Proof verification — can leverage SNARKs

Proof generation — the most challenging, we’d like proving time O(|F|) and concretely close to |F|

9

Y=F(X, W)

ML inference

model

algorithm

outcome Neural Networks Decision Trees

Practical challenges of constructing ZKPs for ML

Scale with large models and not-that-ZKP-friendly computations

VGG16 (one of the best computer vision NN) has ~500MB parameters

Dense matrix operations, non-linear layers (NN), threshold&comparison gates (DT)

Proof verification — can leverage SNARKs

Proof generation — the most challenging, we’d like proving time O(|F|) and concretely close to |F|

Solution: special-purpose ZKPs!

9

Y=F(X, W)

ML inference

model

algorithm

outcome Neural Networks Decision Trees

Convolutional Neural Networks

10

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1)

Convolutional Neural Networks

10

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

𝖷k+1 = f (k)(𝖷𝗄, 𝖶𝗄)
Y = F(X, W=W0|…|WL-1)

Convolutional Neural Networks

10

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Xk Wk

𝖷k+1 = f (k)(𝖷𝗄, 𝖶𝗄)
Y = F(X, W=W0|…|WL-1)

Convolutional Neural Networks

10

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Xk Wk

Convolutional / fully connected

Yk+1

𝖷k+1 = f (k)(𝖷𝗄, 𝖶𝗄)

Linear
data intensive

Y = F(X, W=W0|…|WL-1)

Convolutional Neural Networks

10

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Xk Wk

Convolutional / fully connected

Activation

Yk+1

Xk+1

𝖷k+1 = f (k)(𝖷𝗄, 𝖶𝗄)

Pooling

ReLU(x)=max(x,0)

Avg(x) / Max(x)
dim reduction

Linear
data intensive

Y = F(X, W=W0|…|WL-1)

non-linear

ZKPs for CNNs

• Sumcheck-based proofs
[LXZ21, BFGRS23]

• Suitable for layered
computation

• Proof generation mostly
information-theoretic.
Cryptographic work is only
O(|X|+|W|)

[LXZ21] Liu, Xi, Zhang. zkCNN: Zero
Knowledge Proofs for Convolutional Neural
Network Predictions and Accuracy. CCS 2021
[BFGRS23] Balbás, Fiore, Gonzalez-Vasco,
Robissout, Soriente. Modular Sumcheck
Proofs with Applications to Machine Learning
and Image Processing. CCS 2023

11

𝖷k+1 = f (k)(𝖷𝗄, 𝖶𝗄)

Xk Wk

Convolutional / fully connected

Activation

Yk+1

Xk

Pooling

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1)

Modular approach for CNNs [BFGRS23]

12

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1)
IP

Y=F(X, W)

SNARK
Y=F(X, W) ∧

cmW=Com(W)

PolyCom

cm=Com(.)
1

[vSQL]

+
Fiat-Shamir

Modular approach for CNNs [BFGRS23]

12

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1)
IP

Y=F(X, W)

SNARK
Y=F(X, W) ∧

cmW=Com(W)

PolyCom

cm=Com(.)
1

2 VE for 𝖷1 = f (1)(𝖷𝟢, 𝖶𝟢)

VE for 𝖷L = f (L)(𝖷𝖫−𝟣, 𝖶𝖫−𝟣)

…
Verifiable Evaluation schemes

[vSQL]

+
Fiat-Shamir

Modular approach for CNNs [BFGRS23]

Sumcheck-based VEs for subroutines of CNNs

12

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1)
IP

Y=F(X, W)

SNARK
Y=F(X, W) ∧

cmW=Com(W)

PolyCom

cm=Com(.)
1

2 VE for 𝖷1 = f (1)(𝖷𝟢, 𝖶𝟢)

VE for 𝖷L = f (L)(𝖷𝖫−𝟣, 𝖶𝖫−𝟣)

…

3

Verifiable Evaluation schemes

[vSQL]

+
Fiat-Shamir

Modular approach for CNNs [BFGRS23]

Sumcheck-based VEs for subroutines of CNNs

• Modular design&composition generalization of GKR-style IPs

• Easier to focus on designing efficient specialized VEs

12

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1)
IP

Y=F(X, W)

SNARK
Y=F(X, W) ∧

cmW=Com(W)

PolyCom

cm=Com(.)
1

2 VE for 𝖷1 = f (1)(𝖷𝟢, 𝖶𝟢)

VE for 𝖷L = f (L)(𝖷𝖫−𝟣, 𝖶𝖫−𝟣)

…

3

Verifiable Evaluation schemes

[vSQL]

+
Fiat-Shamir

Interactive Proofs and Fingerprints

 : IP for language complete and sound⟨𝒫, 𝒱⟩(f, x, y) → b ℒF = {(f, x, y) : f(x) = y}

13

𝒫(f, x, y) 𝒱(f, x, y)

⋮

Interactive Proofs and Fingerprints

 : IP for language complete and sound⟨𝒫, 𝒱⟩(f, x, y) → b ℒF = {(f, x, y) : f(x) = y}

13

𝒫(f, x, y) 𝒱(f, x, y)

⋮

Fingerprint of on :

- Compressing:

- Statistically binding:

Example: for , H is the MLE evaluation

x r cx ← 𝖧(x, r)

|cx | ≪ |x |

∀x ≠ x*, Pr
r

[𝖧(x, r) = 𝖧(x*, r)] = 𝗇𝖾𝗀𝗅(λ)

⃗x ∈ 𝔽n, ⃗r ∈ 𝔽log n 𝖧(⃗x, ⃗r) = x̃(⃗r)

Structure of common IPs

•Public coin verifier

14

𝒫(f, x, y) 𝒱(f, x, y)

f

x

y

Structure of common IPs

•Public coin verifier

14

𝒫(f, x, y) 𝒱(f, x, y)

ryf

x

y

Structure of common IPs

•Public coin verifier

•Output fingerprint

14

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ryf

x

y

Structure of common IPs

•Public coin verifier

•Output fingerprint

•Subroutine: verifiable evaluation (VE) schemes on fingerprinted data (runs w/o)𝒱VE x, y

14

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx, rx, bcx, rx

f

x

y no need to know x

Structure of common IPs

•Public coin verifier

•Output fingerprint

•Subroutine: verifiable evaluation (VE) schemes on fingerprinted data (runs w/o)𝒱VE x, y

•Input fingerprint

14

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx, rx, bcx, rx

Return b ∧ cx
?= 𝖧(x, rx)

f

x

y no need to know x

Structure of common IPs

•Public coin verifier

•Output fingerprint

•Subroutine: verifiable evaluation (VE) schemes on fingerprinted data (runs w/o)𝒱VE x, y

•Input fingerprint

Examples of VE-based IPs: sumcheck protocol, GKR, ….
14

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx, rx, bcx, rx

Return b ∧ cx
?= 𝖧(x, rx)

f

x

y no need to know x

VE Soundness

Soundness of VE subroutine: for random and any unbounded rx, ry 𝒜

=neglPr
c*y ≠ 𝖧(f(x), ry)

∧ b

(f, c*y , x) ← 𝒜(ry)

(c*x ; rx; b) ← ⟨𝒜(x), 𝒱VE(rx)⟩(f, c*y , ry)
c*x = 𝖧(x, rx)

15

f

x

y

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx, rx, bcx, rx

Return b ∧ cx
?= 𝖧(x, rx)

Correct input fingerprint

⇒ fingerprints correct outputc*y

VE Soundness

Soundness of VE subroutine: for random and any unbounded rx, ry 𝒜

=neglPr
c*y ≠ 𝖧(f(x), ry)

∧ b

(f, c*y , x) ← 𝒜(ry)

(c*x ; rx; b) ← ⟨𝒜(x), 𝒱VE(rx)⟩(f, c*y , ry)
c*x = 𝖧(x, rx)

Sound VE + Binding Fingerprint ⇒ Sound IP

15

f

x

y

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx, rx, bcx, rx

Return b ∧ cx
?= 𝖧(x, rx)

Correct input fingerprint

⇒ fingerprints correct outputc*y

Sumcheck protocol as VE-based IP [LFKN92]
 multilinear polynomial. Goal: prove x ∈ 𝔽[T1, …, Tℓ] y = f(x) = Σt1,…,tℓ∈{0,1} x(t1, …, tℓ)

16

𝒫(x, y) 𝒱(y)

r1

⋮

f1(T1) = Σt2,…,tℓ∈{0,1} x(T1, t2, …, tℓ)

fℓ(Tℓ) = x(r1, r2, …, rℓ−1, Tℓ)
⋀

i

[fi(0) + fi(1) ?= fi−1(ri−1)]

∧ x(r1, …, rℓ) ?= fℓ(rℓ)

Sumcheck protocol as VE-based IP [LFKN92]
 multilinear polynomial. Goal: prove x ∈ 𝔽[T1, …, Tℓ] y = f(x) = Σt1,…,tℓ∈{0,1} x(t1, …, tℓ)

16

𝒫(x, y) 𝒱(y)

r1

⋮

f1(T1) = Σt2,…,tℓ∈{0,1} x(T1, t2, …, tℓ)

fℓ(Tℓ) = x(r1, r2, …, rℓ−1, Tℓ)

rℓ
⋀

i

[fi(0) + fi(1) ?= fi−1(ri−1)]

cx ← x(r1, …, rℓ)
∧ x(r1, …, rℓ) ?= fℓ(rℓ)

Sumcheck protocol as VE-based IP [LFKN92]
 multilinear polynomial. Goal: prove x ∈ 𝔽[T1, …, Tℓ] y = f(x) = Σt1,…,tℓ∈{0,1} x(t1, …, tℓ)

16

𝒫(x, y) 𝒱(y)

r1

⋮

f1(T1) = Σt2,…,tℓ∈{0,1} x(T1, t2, …, tℓ)

fℓ(Tℓ) = x(r1, r2, …, rℓ−1, Tℓ)

cx, rx = (r1, …, rℓ)

rℓ
⋀

i

[fi(0) + fi(1) ?= fi−1(ri−1)]

cx ← x(r1, …, rℓ)
cx, rx = (r1, …, rℓ)

∧ x(r1, …, rℓ) ?= fℓ(rℓ)

Sumcheck protocol as VE-based IP [LFKN92]
 multilinear polynomial. Goal: prove x ∈ 𝔽[T1, …, Tℓ] y = f(x) = Σt1,…,tℓ∈{0,1} x(t1, …, tℓ)

16

𝒫(x, y) 𝒱(y)

r1

⋮

f1(T1) = Σt2,…,tℓ∈{0,1} x(T1, t2, …, tℓ)

fℓ(Tℓ) = x(r1, r2, …, rℓ−1, Tℓ)

cx, rx = (r1, …, rℓ)

rℓ
⋀

i

[fi(0) + fi(1) ?= fi−1(ri−1)]

cx ← x(r1, …, rℓ)
cx, rx = (r1, …, rℓ)

∧ cx
?= fℓ(rℓ)

Sumcheck protocol as VE-based IP [LFKN92]
 multilinear polynomial. Goal: prove x ∈ 𝔽[T1, …, Tℓ] y = f(x) = Σt1,…,tℓ∈{0,1} x(t1, …, tℓ)

16

𝒫(x, y) 𝒱(y)

r1

⋮

f1(T1) = Σt2,…,tℓ∈{0,1} x(T1, t2, …, tℓ)

fℓ(Tℓ) = x(r1, r2, …, rℓ−1, Tℓ)

cx, rx = (r1, …, rℓ)

rℓ
⋀

i

[fi(0) + fi(1) ?= fi−1(ri−1)]

b ∧ cx
?= x(r1, …, rℓ) = 𝖧(x, rx)

cx ← x(r1, …, rℓ)
cx, rx = (r1, …, rℓ)

∧ cx
?= fℓ(rℓ)

Return

b ←

Sumcheck protocol as VE-based IP [LFKN92]
 multilinear polynomial. Goal: prove x ∈ 𝔽[T1, …, Tℓ] y = f(x) = Σt1,…,tℓ∈{0,1} x(t1, …, tℓ)

16

𝒫(x, y) 𝒱(y)

r1

⋮

f1(T1) = Σt2,…,tℓ∈{0,1} x(T1, t2, …, tℓ)

fℓ(Tℓ) = x(r1, r2, …, rℓ−1, Tℓ)

cx, rx = (r1, …, rℓ)

rℓ
⋀

i

[fi(0) + fi(1) ?= fi−1(ri−1)]

b ∧ cx
?= x(r1, …, rℓ) = 𝖧(x, rx)

cx ← x(r1, …, rℓ)
cx, rx = (r1, …, rℓ)

ry

cy ← 𝖧(y, ry) = ỹ(ry) = y

∧ cx
?= fℓ(rℓ)

Return

b ←

GKR as VE-based IP

17

𝒫(f, x, y) 𝒱(f, x, y)

cy ← ỹ(ry)

ry

cy ← ỹ(ry)

GKR as VE-based IP

17

𝒫(f, x, y) 𝒱(f, x, y)

cy ← ỹ(ry)

ry

x̃(rx)

cy = Ṽd(ry) = ∑
b1,b2∈{0,1}ℓ

˜addd−1(ry, b1, b2)(Ṽd−1(b1) + Ṽd−1(b2)) + ˜multd−1(ry, b1, b2)(Ṽd−1(b1) ⋅ Ṽd−1(b2))

no need to know x

cy ← ỹ(ry)
Sumcheck claim:

c1 = Ṽ1(r1) = ∑
b1,b2∈{0,1}ℓ

˜add1(r1, b1, b2)(x̃(b1) + x̃(b2)) + ˜mult1(r1, b1, b2)(x̃(b1) ⋅ x̃(b2))Sumcheck claim:

⋮

GKR as VE-based IP

17

𝒫(f, x, y) 𝒱(f, x, y)

cy ← ỹ(ry)

ry

cx, rx, bcx, rx

x̃(rx)

GKR no need to know x

cy ← ỹ(ry)

GKR as VE-based IP

17

𝒫(f, x, y) 𝒱(f, x, y)

cy ← ỹ(ry)

ry

cx, rx, bcx, rx

x̃(rx)

GKR

= 𝖧(x, rx)
?= cx

no need to know x

= 𝖧(y, ry)cy ← ỹ(ry)

GKR as VE-based IP

And even the layer subprotocols of GKR can be seen as VEs

17

𝒫(f, x, y) 𝒱(f, x, y)

cy ← ỹ(ry)

ry

cx, rx, bcx, rx

x̃(rx)

GKR

= 𝖧(x, rx)
?= cx

no need to know x

= 𝖧(y, ry)cy ← ỹ(ry)

Sequential composition of VEs

18

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2(f1(x), w)

Sequential composition of VEs

18

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2(f1(x), w)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry)

Sequential composition of VEs

18

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2
⟨𝒫VE(x2), 𝒱VE⟩(f3, cy, ry)

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2(f1(x), w)

If then c2 = 𝖧(x2, r2)
cy = 𝖧(f3(x2), ry)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry)

Sequential composition of VEs

18

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2
⟨𝒫VE(x2), 𝒱VE⟩(f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩(f2, c2, r2)

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2(f1(x), w)

If then c2 = 𝖧(x2, r2)
cy = 𝖧(f3(x2), ry)

If then c1 = 𝖧(x1, r1)
c2 = 𝖧(f2(x1), r2)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry)

Sequential composition of VEs

18

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2
⟨𝒫VE(x2), 𝒱VE⟩(f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩(f2, c2, r2)

⟨𝒫VE(x), 𝒱VE⟩(f1, c1, r1) cx, rx, b0cx, rx

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2(f1(x), w)

If then c2 = 𝖧(x2, r2)
cy = 𝖧(f3(x2), ry)

If then c1 = 𝖧(x1, r1)
c2 = 𝖧(f2(x1), r2)

If then cx = 𝖧(x, rx)
c1 = 𝖧(f1(x), r1)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry)

Sequential composition of VEs

18

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2

Return b ∧ cx
?= 𝖧(x, rx)

⟨𝒫VE(x2), 𝒱VE⟩(f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩(f2, c2, r2)

⟨𝒫VE(x), 𝒱VE⟩(f1, c1, r1) cx, rx, b0cx, rx

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2(f1(x), w)

If then c2 = 𝖧(x2, r2)
cy = 𝖧(f3(x2), ry)

If then c1 = 𝖧(x1, r1)
c2 = 𝖧(f2(x1), r2)

If then cx = 𝖧(x, rx)
c1 = 𝖧(f1(x), r1)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry)

cx, rx, b = b0 ∧ b1 ∧ b2cx, rx

Sequential composition of VEs

18

𝒫(f, x, y) 𝒱(f, x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

c2, r2, b2c2, r2

Return b ∧ cx
?= 𝖧(x, rx)

⟨𝒫VE(x2), 𝒱VE⟩(f3, cy, ry)

c1, r1, b1c1, r1
⟨𝒫VE(x1), 𝒱VE⟩(f2, c2, r2)

⟨𝒫VE(x), 𝒱VE⟩(f1, c1, r1) cx, rx, b0cx, rx

VE1 for z = f1(x) VE2 for y = f2(z, w) VE for y = f(x, w) = f2(f1(x), w)

If then c2 = 𝖧(x2, r2)
cy = 𝖧(f3(x2), ry)

If then c1 = 𝖧(x1, r1)
c2 = 𝖧(f2(x1), r2)

If then cx = 𝖧(x, rx)
c1 = 𝖧(f1(x), r1)

f1

x

x1

f2

x2

f3

x3 = y

f

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry)

cx, rx, b = b0 ∧ b1 ∧ b2cx, rx

If then cx = 𝖧(x, rx)
cy = 𝖧(f1(f2(f3(x))), ry)

From VE-based IP to AoK [vSQL]

19

VE
y = f(x)

SNARK 𝝥

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

+
Fiat-Shamir

From VE-based IP to AoK [vSQL]

19

Π . 𝒫(f, x, y) Π . 𝒱(f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

VE
y = f(x)

SNARK 𝝥

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry)

VE-based IP

+
Fiat-Shamir

From VE-based IP to AoK [vSQL]

19

Π . 𝒫(f, x, y) Π . 𝒱(f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

Return b ∧ Π𝖧 . Ver(𝖼𝗆x, cx, rx, πx)
πx = Π𝖧 . 𝒫((𝖼𝗆x, cx, rx), x, πx)

VE
y = f(x)

SNARK 𝝥

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx = 𝖧(x, rx)
∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

VE-based IP

Prove that input
fingerprint is
correct w.r.t. 𝖼𝗆x

+
Fiat-Shamir

From VE-based IP to AoK [vSQL]

19

Π . 𝒫(f, x, y) Π . 𝒱(f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

Return b ∧ Π𝖧 . Ver(𝖼𝗆x, cx, rx, πx)
πx = Π𝖧 . 𝒫((𝖼𝗆x, cx, rx), x, πx)

VE
y = f(x)

SNARK 𝝥

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

When , 𝝥H can be instantiated with a multilinear polynomial commitment𝖧(x, rx) = x̃(rx)

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx = 𝖧(x, rx)
∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

VE-based IP

Prove that input
fingerprint is
correct w.r.t. 𝖼𝗆x

+
Fiat-Shamir

From VE-based IP to AoK [vSQL]

19

Π . 𝒫(f, x, y) Π . 𝒱(f, 𝖼𝗆x, y)

cy ← 𝖧(y, ry) cy ← 𝖧(y, ry)

ry

cx, rx, bcx, rx

Return b ∧ Π𝖧 . Ver(𝖼𝗆x, cx, rx, πx)
πx = Π𝖧 . 𝒫((𝖼𝗆x, cx, rx), x, πx)

VE
y = f(x)

SNARK 𝝥

y = f(x) ∧
y = f(x) ∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

𝝥H
cx = 𝖧(x, rx) ∧
𝖼𝗆x = 𝖢𝗈𝗆(x)

When , 𝝥H can be instantiated with a multilinear polynomial commitment𝖧(x, rx) = x̃(rx)
To get ZK: hiding of Com + ZK of 𝝥H + “ZK of the IP” [Libra] (or “committed IP” [zk-vSQL, Hyrax])

⟨𝒫VE(x), 𝒱VE⟩(f, cy, ry) cx = 𝖧(x, rx)
∧ 𝖼𝗆x = 𝖢𝗈𝗆(x)

VE-based IP

Prove that input
fingerprint is
correct w.r.t. 𝖼𝗆x

+
Fiat-Shamir

Modular approach for CNNs

Sumcheck-based VEs for subroutines of CNNs

20

X W0

f (1)

X1 W1

f (2)

f (L)

Y=XL

XL-1 WL-1

…

Y = F(X, W=W0|…|WL-1)
IP

Y=F(X, W)

SNARK
Y=F(X, W) ∧

cmW=Com(W)

PolyCom

cm=Com(.)
1

VE for 𝖷1 = f (1)(𝖷𝟢, 𝖶𝟢)2

VE for 𝖷L = f (L)(𝖷𝖫−𝟣, 𝖶𝖫−𝟣)

…

3

Verifiable Evaluation schemes

Convolution

21

Input
()

X
n × n

Kernel
()

W
m × m

Output
()

Y
n′ × n′

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1

Convolution

22

Input
()

X
n × n

Kernel
()

W
m × m

Output
()

Y
n′ × n′

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1

Convolution

23

Input
()

X
n × n

Kernel
()

W
m × m

Output
()

Y
n′ × n′

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1

Convolution

24

Input
()

X
n × n

Kernel
()

W
m × m

Output
()

Y
n′ × n′

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1

Convolution

25

Input
()

X
n × n

Kernel
()

W
m × m

Output
()

Y
n′ × n′

Output Y[u, v] =
m−1

∑
i,j=0

X[u + i, v + j] ⋅ W[i, j]

n′ = n − m + 1

Multichannel Convolution of CNNs

26

Input
()

{X(k)
σ }c(k)−1

σ=0
n(k) × n(k)

Kernel
()

{W(k)
σ,τ}c(k)−1,c(k+1)−1

σ,τ=0
m(k) × m(k)

Output
()

{X(k+1)
τ }c(k+1)−1

τ=0
n(k+1) × n(k+1)

Output X(k+1)
τ [u, v] =

c(k)−1

∑
σ=0

m(k)−1

∑
i,j=0

X(k)
σ [u + i, v + j] ⋅ W(k)

σ,τ[i, j]

⋱

⋱

⋱

⋱

Proving convolution

 expensive as a circuit, Yτ[u, v] =
c−1

∑
σ=0

m−1

∑
i,j=0

Xσ[u + i, v + j] ⋅ Wσ,τ[i, j] O(cd |Yτ | ⋅ |Wσ,τ |)

27

Proving convolution

 expensive as a circuit, Yτ[u, v] =
c−1

∑
σ=0

m−1

∑
i,j=0

Xσ[u + i, v + j] ⋅ Wσ,τ[i, j] O(cd |Yτ | ⋅ |Wσ,τ |)

Special-purpose techniques: convolution → structured matrix multiplication

27

Proving convolution

 expensive as a circuit, Yτ[u, v] =
c−1

∑
σ=0

m−1

∑
i,j=0

Xσ[u + i, v + j] ⋅ Wσ,τ[i, j] O(cd |Yτ | ⋅ |Wσ,τ |)

Special-purpose techniques: convolution → structured matrix multiplication

zkCNN [LXZ21]

(2dim)Convolution → 1dim-convolution → poly mult → FFT → matrix multiplication

27

Proving convolution

 expensive as a circuit, Yτ[u, v] =
c−1

∑
σ=0

m−1

∑
i,j=0

Xσ[u + i, v + j] ⋅ Wσ,τ[i, j] O(cd |Yτ | ⋅ |Wσ,τ |)

Special-purpose techniques: convolution → structured matrix multiplication

zkCNN [LXZ21]

(2dim)Convolution → 1dim-convolution → poly mult → FFT → matrix multiplication

[BFGRS23]

Convolution → matrix multiplication with reshaped X, W

27

Reshaping convolution

Let and . Compact convolution as X =
x0 x1 x2
x3 x4 x5
x6 x7 x8

W = [w0 w1
w2 w3]

𝗏𝖾𝖼(Y) =

w0x0 + w1x1 + w2x3 + w3x4
w0x1 + w1x2 + w2x4 + w3x5
w0x3 + w1x4 + w2x6 + w3x7
w0x4 + w1x5 + w2x7 + w3x8

=

x0 x1 x3 x4
x1 x2 x4 x5
x3 x4 x6 x7
x4 x5 x7 x8

w0
w1
w2
w3

= X̂ ⋅ Ŵ

28

Reshaping multi-channel convolution

29

reshaped
()

X̂σ
(n′)2 × m2

reshaped
()

Ŵσ,τ
m2

⋱

⋱
⋱

⋱

Inputs
()

Xσ
n × n

Kernel
()

Wσ,τ
m × m

Outputs
()

Yτ
n′ × n′

()
𝗏𝖾𝖼(Yτ) = X̂σ ⋅ Ŵσ,τ

(n′)2

Reshaping multi-channel convolution

For multiple channels

 sum of matrix multiplicationsY = [Y1 |⋯ |Yd] = ∑
σ

X̂σ ⋅ [Ŵσ,1 |⋯ |Ŵσ,d] = ∑
σ

X̂σ ⋅ Ŵσ

29

reshaped
()

X̂σ
(n′)2 × m2

reshaped
()

Ŵσ,τ
m2

⋱

⋱
⋱

⋱

Inputs
()

Xσ
n × n

Kernel
()

Wσ,τ
m × m

Outputs
()

Yτ
n′ × n′

()
𝗏𝖾𝖼(Yτ) = X̂σ ⋅ Ŵσ,τ

(n′)2

Reshaping multi-channel convolution

For multiple channels

 sum of matrix multiplicationsY = [Y1 |⋯ |Yd] = ∑
σ

X̂σ ⋅ [Ŵσ,1 |⋯ |Ŵσ,d] = ∑
σ

X̂σ ⋅ Ŵσ

VE for convolution ← VE for (sum of) matrix multiplications
29

reshaped
()

X̂σ
(n′)2 × m2

reshaped
()

Ŵσ,τ
m2

⋱

⋱
⋱

⋱

Inputs
()

Xσ
n × n

Kernel
()

Wσ,τ
m × m

Outputs
()

Yτ
n′ × n′

()
𝗏𝖾𝖼(Yτ) = X̂σ ⋅ Ŵσ,τ

(n′)2

VE for matrix multiplication [Thaler13]
Prove for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃(⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã(⃗i , ⃗j) ⋅ B̃(⃗j , ⃗k)

30
VE efficiency: communication&verification O(log n), prover O(n2), faster than computing in O(n3)A ⋅ B

VE for matrix multiplication [Thaler13]
Prove for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃(⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã(⃗i , ⃗j) ⋅ B̃(⃗j , ⃗k)

30
VE efficiency: communication&verification O(log n), prover O(n2), faster than computing in O(n3)A ⋅ B

𝒫mm(A, B, C) 𝒱mm(A, B, C)

VE for matrix multiplication [Thaler13]
Prove for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃(⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã(⃗i , ⃗j) ⋅ B̃(⃗j , ⃗k)

30

⃗rC = (⃗r1, ⃗r2)cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2) cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2)

VE efficiency: communication&verification O(log n), prover O(n2), faster than computing in O(n3)A ⋅ B

𝒫mm(A, B, C) 𝒱mm(A, B, C)

VE for matrix multiplication [Thaler13]
Prove for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃(⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã(⃗i , ⃗j) ⋅ B̃(⃗j , ⃗k)

30

⃗rC = (⃗r1, ⃗r2)cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2) cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2)

VE efficiency: communication&verification O(log n), prover O(n2), faster than computing in O(n3)A ⋅ B

𝒫mm
VE (A, B, C) 𝒱mm

VE (cC, rC)

𝒫mm(A, B, C) 𝒱mm(A, B, C)

VE for matrix multiplication [Thaler13]
Prove for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃(⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã(⃗i , ⃗j) ⋅ B̃(⃗j , ⃗k)

30

⃗rC = (⃗r1, ⃗r2)cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2) cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2)

cC = ∑
⃗j∈{0,1}log n

Ã(⃗r1, ⃗j)⋅B̃(⃗j , ⃗r2)⏞
X̃(⃗j)

VE efficiency: communication&verification O(log n), prover O(n2), faster than computing in O(n3)A ⋅ B

𝒫mm
VE (A, B, C) 𝒱mm

VE (cC, rC)

𝒫mm(A, B, C) 𝒱mm(A, B, C)

VE for matrix multiplication [Thaler13]
Prove for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃(⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã(⃗i , ⃗j) ⋅ B̃(⃗j , ⃗k)

30

cx = (cA, cB), b

⃗rC = (⃗r1, ⃗r2)cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2) cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2)

cC = ∑
⃗j∈{0,1}log n

Ã(⃗r1, ⃗j)⋅B̃(⃗j , ⃗r2)⏞
X̃(⃗j)

rx = (rA = (⃗r1, ⃗r3), rB = (⃗r2, ⃗r3))
cx = (cA, cB), b

rx = (rA = (⃗r1, ⃗r3), rB = (⃗r2, ⃗r3))

VE efficiency: communication&verification O(log n), prover O(n2), faster than computing in O(n3)A ⋅ B

𝒫mm
VE (A, B, C) 𝒱mm

VE (cC, rC)

𝒫mm(A, B, C) 𝒱mm(A, B, C)

⟨𝒫sc
VE(X̃), 𝒱sc

VE⟩(cC, rC)

VE for matrix multiplication [Thaler13]
Prove for . Using MLE: C = A ⋅ B A, B, C ∈ 𝔽n×n ∀ ⃗i , ⃗k ∈ {0,1}log n : C̃(⃗i , ⃗k) = ∑

⃗j∈{0,1}log n

Ã(⃗i , ⃗j) ⋅ B̃(⃗j , ⃗k)

30

cx = (cA, cB), b

cA
?= 𝖧(A, rA) = Ã(⃗r1, ⃗r3)

⃗rC = (⃗r1, ⃗r2)cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2) cC = 𝖧(C, ⃗rC) = C̃(⃗r1, ⃗r2)

cC = ∑
⃗j∈{0,1}log n

Ã(⃗r1, ⃗j)⋅B̃(⃗j , ⃗r2)⏞
X̃(⃗j)

rx = (rA = (⃗r1, ⃗r3), rB = (⃗r2, ⃗r3))
cx = (cA, cB), b

rx = (rA = (⃗r1, ⃗r3), rB = (⃗r2, ⃗r3))

cB
?= 𝖧(B, rB) = B̃(⃗r2, ⃗r3)

VE efficiency: communication&verification O(log n), prover O(n2), faster than computing in O(n3)A ⋅ B

𝒫mm
VE (A, B, C) 𝒱mm

VE (cC, rC)

𝒫mm(A, B, C) 𝒱mm(A, B, C)

⟨𝒫sc
VE(X̃), 𝒱sc

VE⟩(cC, rC)

Proofs for convolution

zkCNN [LXZ21]

(2dim)Convolution → 1dim-convolution → poly mult → FFT → matrix multiplication

[BFGRS23]

Convolution → matrix multiplication with reshaped X, W

Performance for c input channels, d output channels

• Very efficient for small kernels m2≤d
(VGG16 m=3, d→512)

• Confirmed experimentally
(proving VGG11 ~5s)

31

[BFGRS23] zkCNN [LXZ21]

Prover O(c |W| (|Y| + d)) O(c d |X|)

Verifier O(log(c |Y|)) O(log2(c d |X|))

Proof size O(log(c |Y|)) O(log2(c d |X|))

ZKPs for Decision Trees

[zkDT] J. Zhang, Z. Fang, Y. Zhang, D. Song. Zero Knowledge Proofs for Decision Tree Predictions and Accuracy.
CCS 2020.

Merkle hash of T. Proving inference = proving traversal from leaf (class) to root

[CFFLL24] M. Campanelli, A. Faonio, D. Fiore, T. Li, H. Lipmaa. Lookup Arguments: Improvements,
Extensions and Applications to Zero-Knowledge Decision Trees. PKC 2024

Matrix-encoding of T. Proving inference = proving matrix lookup (reduced to vector lookup)

32

att1, thr1

att2, thr2

x[att1]≤thr1 x[att1]>thr1

x[att2]≤thr2 x[att2]>thr2

Tree
Height H, #nodes N
Classify x=(x[att1],…,x[attd])

𝒯 : 𝔽d → [M]

ZKPs for secure ML

How to use ZKPs and Commitments to prove ML inference

Efficient solutions for CNNs and Decision Trees

33

This talk:

ZKPs for secure ML

How to use ZKPs and Commitments to prove ML inference

Efficient solutions for CNNs and Decision Trees

Other related problems

33

This talk:

ZKPs for secure ML

How to use ZKPs and Commitments to prove ML inference

Efficient solutions for CNNs and Decision Trees

Other related problems

Proofs of accuracy: prove that model W achieves a claimed accuracy level

Prove Yi=F(Xi, W) over dataset of labeled samples {Xi} and compares results to labels

33

This talk:

ZKPs for secure ML

How to use ZKPs and Commitments to prove ML inference

Efficient solutions for CNNs and Decision Trees

Other related problems

Proofs of accuracy: prove that model W achieves a claimed accuracy level

Prove Yi=F(Xi, W) over dataset of labeled samples {Xi} and compares results to labels

Proofs of training: prove W=NN-Train(Data)

Challenge: several iterations of inference-like computations

[GGJMMP23] S. Garg, A. Goel, S. Jha, S. Mahloujifar, M. Mahmoody, G. Policharla, M. Wang. Experimenting with Zero-
Knowledge Proofs of Training. CCS 2023

[APKP24] K. Abbaszadeh, C. Pappas, J. Katz, D. Papadopoulos. Zero-Knowledge Proofs of Training for Deep Neural
Networks. CCS 2024

33

This talk:

Thanks!

Questions ?

34

