Introduction to (Zero-Knowledge) Proofs

Jonathan Katz
Google and University of Maryland

ZK Proofs—Lecture 1 1/35

Background

Jonathan Katz ZK Proofs—Lecture 1 2/35

Background

What is a proof of a (theorem) statement x?

Jonathan Katz ZK Proofs—Lecture 1 2/35

Background

What is a proof of a (theorem) statement x?

» Static object

Jonathan Katz ZK Proofs—Lecture 1 2/35

Background

What is a proof of a (theorem) statement x?
» Static object

» Verified by some deterministic procedure

Jonathan Katz ZK Proofs—Lecture 1 2/35

Background

What is a proof of a (theorem) statement x?
» Static object
» Verified by some deterministic procedure

» False statements do not have proofs that verify

Jonathan Katz ZK Proofs—Lecture 1 2/35

Background

What is a proof of a (theorem) statement x?
» Static object
» Verified by some deterministic procedure

» False statements do not have proofs that verify

Jonathan Katz ZK Proofs—Lecture 1 2/35

Background

What is a proof of a (theorem) statement x?
» Static object
» Verified by some deterministic procedure

» False statements do not have proofs that verify

Jonathan Katz ZK Proofs—Lecture 1 2/35

Background

A language L C {0,1}* is in NP if there is a deterministic verifier V;
running in polynomial time (in its first input) such that

xel&sdnst. Vi(x,m)=1

Jonathan Katz ZK Proofs—Lecture 1 3/35

Background

A language L C {0,1}* is in NP if there is a deterministic verifier V;
running in polynomial time (in its first input) such that

xel&sdnst. Vi(x,m)=1

le.,

e Completeness: If x € L then there is a proof (aka a witness) 7 such
that Vi (x,m) =1

® Soundness: If x & L then for all 7* we have V| (x,7*) =0

Jonathan Katz ZK Proofs—Lecture 1 3/35

Background

Why limit ourselves?

Jonathan Katz ZK Proofs—Lecture 1 4/35

Why limit ourselves?

Traditional view

» Static object
+ Deterministic verification

+ False statements do not have
proofs that verify

Background

New view

» Interactive process!
* Allow randomization!

* Might accept proofs for false
statements™
*with small probability

Jonathan Katz ZK Proofs—Lecture 1 4/35

Background

. @ ’
:

Accept/reject

Jonathan Katz ZK Proofs—Lecture 1 5/35

Definitions

Proof systems and the class |IP

A proof system for a language L is a pair of algorithms (P, V), where V
runs in probabilistic, polynomial time (PPT), such that

® Completeness: if x € L then for all A we have
Pri(P, V)(1",x) =1] =1
® Soundness: if x & L then for all P*, A\ we have
Pri(P*, V)(1*, x) =1] < 27

Jonathan Katz ZK Proofs—Lecture 1 6/35

Definitions

Proof systems and the class |IP

A proof system for a language L is a pair of algorithms (P, V), where V
runs in probabilistic, polynomial time (PPT), such that

® Completeness: if x € L then for all A we have
Pr[(P, V)1, x)=1] =1
® Soundness: if x & L then for all P*, A\ we have

Pr[(P*, V)(1},x) =1] <27

IP is the class of languages L that have a proof system

Jonathan Katz ZK Proofs—Lecture 1

6/35

Definitions

Proof systems and the class |IP

A proof system for a language L is a pair of algorithms (P, V), where V
runs in probabilistic, polynomial time (PPT), such that

® Completeness: if x € L then for all A we have

Pr[(P, V)1, x)=1] =1
® Soundness: if x & L then for all P*, A\ we have

Pr[(P*, V)(1},x) =1] <27

IP is the class of languages L that have a proof system
e Clearly NP C IP

Jonathan Katz ZK Proofs—Lecture 1

6/35

Definitions

Proof systems and the class |IP

A proof system for a language L is a pair of algorithms (P, V), where V

runs in probabilistic, polynomial time (PPT), such that
® Completeness: if x € L then for all A we have

Pr[(P, V)1, x)=1] =1
® Soundness: if x & L then for all P*, A\ we have
Pr[(P*, V)(1},x) =1] <27

IP is the class of languages L that have a proof system
e Clearly NP C IP

Notes:

e (P, V) is an argument system if soundness only holds for pPT P*

Jonathan Katz ZK Proofs—Lecture 1

6/35

Definitions

Proof systems and the class |IP

A proof system for a language L is a pair of algorithms (P, V), where V
runs in probabilistic, polynomial time (PPT), such that

® Completeness: if x € L then for all A we have
Pri(P, V)(1",x) =1] =1
® Soundness: if x & L then for all P*, A\ we have
Pri(P*, V)(1*, x) =1] < 27

IP is the class of languages L that have a proof system
e Clearly NP C IP

Notes:

e (P, V) is an argument system if soundness only holds for pPT P*
e If L € NP and x € L, would like P to be efficient (given a witness)

Jonathan Katz ZK Proofs—Lecture 1 6/35

Definitions

Advantages?

(Potential) advantages?

Jonathan Katz ZK Proofs—Lecture 1 7/35

Definitions

Advantages?

(Potential) advantages?
® Applicable to languages beyond NP

Jonathan Katz ZK Proofs—Lecture 1 7/35

Definitions

Advantages?

(Potential) advantages?
® Applicable to languages beyond NP
® Stronger properties (e.g., zero knowledge)

® More-efficient verification

Jonathan Katz ZK Proofs—Lecture 1 7/35

Definitions

Advantages?

(Potential) advantages?
® Applicable to languages beyond NP

® ’Stronger properties (e.g., zero knowledge)‘

® More-efficient verification

Jonathan Katz ZK Proofs—Lecture 1 8/35

Definitions

Zero-knowledge (ZK) proofs

Goal:

» Convince a verifier that some statement is true (i.e., x € L). ..

Jonathan Katz ZK Proofs—Lecture 1 9/35

Definitions

Zero-knowledge (ZK) proofs

Goal:
» Convince a verifier that some statement is true (i.e., x € L). ..

» ...without revealing any information beyond that!

Jonathan Katz ZK Proofs—Lecture 1 9/35

Definitions

How to define...?

Jonathan Katz ZK Proofs—Lecture 1 10/35

Definitions

How to define...?

Main idea:
The verifier can simulate (by itself) its interaction with the prover!

= Anything the verifier learns from its interaction with the prover, it could
have learned on its own

Jonathan Katz ZK Proofs—Lecture 1 10/35

Definitions

Computational indistinguishability

Jonathan Katz ZK Proofs—Lecture 1 11/35

Definitions

Computational indistinguishability

Let X, X’ be such that X'(1*, x), X’(1, x) are probability distributions for
any A\e Nand xe S

Jonathan Katz ZK Proofs—Lecture 1 11/35

Definitions

Computational indistinguishability

Let X, X’ be such that X'(1*, x), X’(1, x) are probability distributions for
any AeNand xe S

X, X' are computationally indistinguishable if for all D running in poly())
time and all \, x € S, and z € {0,1}*

‘Pr [D(l)‘,x, X(1),x),) = 1} —Pr [D(1A,X, X'(1)x), 2) = 1” < negl(\)

Jonathan Katz ZK Proofs—Lecture 1 11/35

Definitions

Computational indistinguishability

Let X, X’ be such that X'(1*, x), X’(1, x) are probability distributions for
any AeNand xe S

X, X' are computationally indistinguishable if for all D running in poly())
time and all \, x € S, and z € {0,1}*
‘Pr [D(l)‘,x, X(1),x),) = 1} — Pr [D(1A,X, X'(1), %), z) = 1” < negl()\)

Write {X (1, x)}xes =~ {X' (17, x) }xes

Jonathan Katz ZK Proofs—Lecture 1 11/35

Definitions

Let (P, V) be a proof/argument system for a language L with relation R

Jonathan Katz ZK Proofs—Lecture 1 12/35

Definitions

Let (P, V) be a proof/argument system for a language L with relation R

Honest-verifier zero knowledge

(P, V) is (computational) honest-verifier zero knowledge if there is a PPT
simulator S such that

{<P(W)’ V>(1>\7X)}(X,W)€R & {S(lA’X)}(X,W)GR

i.e., S can simulate the (transcript of the) interaction of the prover with
the honest verifier, without the witness

Jonathan Katz ZK Proofs—Lecture 1 12/35

Definitions

Let (P, V) be a proof/argument system for a language L with relation R

Zero knowledge

(P, V) is (computational) zero knowledge if for every PPT V* there is an
expected polynomial-time simulator Sy« such that

{(P(w), VY1, X)} xwyer = {Sv-(1% X)} myer

i.e., the (transcript of the) interaction of the prover with any verifier can
be simulated

Jonathan Katz ZK Proofs—Lecture 1 13/35

Definitions

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Jonathan Katz ZK Proofs—Lecture 1 14 /35

Definitions

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Intuition:
If a (malicious) prover can successfully convince the honest verifier,

then the prover must know a witness

Jonathan Katz ZK Proofs—Lecture 1 14 /35

Definitions

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Intuition:

If a (malicious) prover can successfully convince the honest verifier,
then the prover must know a witness

Why is this useful?

e “Trivial" languages, e.g., L={y | Ix:y = g*}
® When proofs are used as a building block for larger protocols

Jonathan Katz ZK Proofs—Lecture 1 14 /35

Definitions

Proofs of knowledge

Let (P, V) be a proof/argument system for a language L € NP with
associated relation R

Jonathan Katz ZK Proofs—Lecture 1 15/35

Definitions

Proofs of knowledge

Let (P, V) be a proof/argument system for a language L € NP with
associated relation R

Proof of knowledge

(P, V) is a proof of knowledge (PoK) with respect to R if for every PPT
P* there is an expected polynomial-time knowledge extractor £ such that

e Pr[(v,w) < £(1*,x) : v is accepting A (x,w) & R] < negl()\)
o {<'D*7 V>(1>\’X)}X€{O,1}* ~ {gl(lkax)}xe{o,l}*

Jonathan Katz ZK Proofs—Lecture 1 15/35

Definitions

Proofs of knowledge

Let (P, V) be a proof/argument system for a language L € NP with
associated relation R

Proof of knowledge

(P, V) is a proof of knowledge (PoK) with respect to R if for every PPT
P* there is an expected polynomial-time knowledge extractor £ such that

e Pr[(v,w) < £(1*,x) : v is accepting A (x,w) & R] < negl()\)
o {<'D*7 V>(1>\’X)}X€{O,1}* ~ {gl(lkax)}xe{o,l}*

Proof of knowledge = soundness

Jonathan Katz ZK Proofs—Lecture 1 15/35

Definitions

An aside

If (x,w) € R, set b:=1
else set b:=10

Jonathan Katz ZK Proofs—Lecture 1 16 /35

Definitions

An aside

If (x,w) € R, set b:=1
else set b:=10

Secure computation of this function <= a ZKPoK for relation R

Jonathan Katz ZK Proofs—Lecture 1 16 /35

/KPoKs for NP

ZK Proofs—Lecture 1

Constructing ZKPoKs

Commitment schemes

Jonathan Katz ZK Proofs—Lecture 1 18 /35

Constructing ZKPoKs

Commitment schemes

Jonathan Katz ZK Proofs—Lecture 1 18 /35

Constructing ZKPoKs

Commitment schemes

Jonathan Katz ZK Proofs—Lecture 1 18 /35

Constructing ZKPoKs

Commitment schemes

Properties:

e Binding: Sender cannot send a commitment that it can later open to
two different values x, x’

e Hiding: Receiver cannot learn anything about x from the commitment

Either property can be computational or perfect/statistical

Jonathan Katz ZK Proofs—Lecture 1 18 /35

Constructing ZKPoKs

/KPoK from commitments

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this
implies a ZKPoK for any language in NP

Jonathan Katz ZK Proofs—Lecture 1 19/35

Constructing ZKPoKs

/KPoK from commitments

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this
implies a ZKPoK for any language in NP

/S

/.

Jonathan Katz ZK Proofs—Lecture 1 19/35

Constructing ZKPoKs

/KPoK from commitments

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this
implies a ZKPoK for any language in NP

o °

Jonathan Katz ZK Proofs—Lecture 1 20/35

Constructing ZKPoKs

ZKPoK from commitments

Inputs: the prover and verifier share a directed graph G; the prover also
knows a Hamiltonian cycle c in G

Three-round subroutine

© Prover chooses uniform permutation 7, and commits entrywise to the
adjacency matrix of m(G)

Jonathan Katz ZK Proofs—Lecture 1 21/35

Constructing ZKPoKs

ZKPoK from commitments

Inputs: the prover and verifier share a directed graph G; the prover also
knows a Hamiltonian cycle c in G

Three-round subroutine

© Prover chooses uniform permutation 7, and commits entrywise to the
adjacency matrix of m(G)

@ \Verifier sends a uniform challenge b € {0,1}

Jonathan Katz ZK Proofs—Lecture 1 21/35

Constructing ZKPoKs

ZKPoK from commitments

Inputs: the prover and verifier share a directed graph G; the prover also
knows a Hamiltonian cycle c in G

Three-round subroutine

© Prover chooses uniform permutation 7, and commits entrywise to the
adjacency matrix of m(G)
@ \Verifier sends a uniform challenge b € {0,1}

© Prover does:
« If b =0, open all commitments and send 7
« If b=1, open 7(c) only
@ Verifier checks:
« If b= 0, check that committed graph corresponds to 7(G)
« If b =1, check that opened entries are a cycle

Jonathan Katz ZK Proofs—Lecture 1 21/35

Constructing ZKPoKs

/KPoK from commitments

Jonathan Katz ZK Proofs—Lecture 1 22/35

Constructing ZKPoKs

/KPoK from commitments

Jonathan Katz ZK Proofs—Lecture 1 22/35

Constructing ZKPoKs

/KPoK from commitments

Jonathan Katz ZK Proofs—Lecture 1 22/35

Constructing ZKPoKs
ZKPoK from commitments

0 01
G=1101
010

, m=(2,3)

= O O
= O
o = O

Jonathan Katz ZK Proofs—Lecture 1 22/35

Constructing ZKPoKs

/KPoK from commitments

Jonathan Katz ZK Proofs—Lecture 1 23/35

Constructing ZKPoKs

/KPoK from commitments

I
HE
1 |

Jonathan Katz ZK Proofs—Lecture 1 23 /35

Constructing ZKPoKs

/KPoK from commitments

To obtain soundness error 27, sequentially repeat this 3-round
subroutine A times

Jonathan Katz ZK Proofs—Lecture 1 24 /35

Constructing ZKPoKs

/KPoK from commitments

To obtain soundness error 27, sequentially repeat this 3-round
subroutine A times

Theorem

If the commitment scheme is statistically binding and computationally
hiding, this is a ZKPoK for graph Hamiltonicity

Jonathan Katz ZK Proofs—Lecture 1 24 /35

Constructing ZKPoKs

PoK analysis

Jonathan Katz ZK Proofs—Lecture 1

Constructing ZKPoKs

PoK analysis

Key property of 3-round subroutine:

e Given an initial message and correct responses to both challenges,
possible to efficiently compute a cycle in G

Jonathan Katz ZK Proofs—Lecture 1 25/35

Constructing ZKPoKs

PoK analysis

Note: assume P* is deterministic (if not, fix its randomness)

Extractor &£

Run P*(G) using uniform (b1, ..., by) to obtain transcript v

« If v is not accepting, output (v, L); otherwise, continue
e Fori=1,..., X\

* Run P*(G) using (bl,...,bi_l,l;,-)

« If P* responds correctly to b;, compute cycle ¢ in G; output (v, ¢)
& Output (v, fail)

Jonathan Katz ZK Proofs—Lecture 1 26 /35

Constructing ZKPoKs

PoK Analysis

v is identically distributed to an interaction of P* with V

Jonathan Katz ZK Proofs—Lecture 1 27 /35

Constructing ZKPoKs

PoK Analysis

v is identically distributed to an interaction of P* with V

Need to show Pr[v is accepting A (x, w) & R] <27

Jonathan Katz ZK Proofs—Lecture 1 27 /35

Constructing ZKPoKs

PoK Analysis

v is identically distributed to an interaction of P* with V

Need to show Pr[v is accepting A (x, w) ¢ R] < 27
® If P* responds correctly to no sequence of challenges, trivial

e If P* responds correctly to exactly one sequence of challenges, then
Pr[v is accepting] < 27

® If P* responds correctly to two or more sequences of challenges, then
& will compute a correct witness when v is accepting

Jonathan Katz ZK Proofs—Lecture 1 27 /35

Constructing ZKPoKs

PoK Analysis

AN

Jonathan Katz ZK Proofs—Lecture 1

Constructing ZKPoKs

PoK Analysis

AN

Jonathan Katz ZK Proofs—Lecture 1

Constructing ZKPoKs

PoK Analysis

Jonathan Katz ZK Proofs—Lecture 1 30/35

Constructing ZKPoKs

(Assume perfectly hiding commitments for simplicity)

Key property of 3-round subroutine:
® Easy to simulate if we know the verifier's challenge in advance

e If the challenge will be 0, commit to a random permutation of G
e If the challenge will be 1, commit to a random cycle

Jonathan Katz ZK Proofs—Lecture 1 31/35

Constructing ZKPoKs

Fori=1,...,) do:
* Repeat up to A times:
+ Choose uniform b;

« If b =0, choose uniform 7 and send commitments to 7w(G) to V*
« If b; = 1, send commitments to a random cycle to V*

« If V* responds with b;, answer correctly and continue to next i

Jonathan Katz ZK Proofs—Lecture 1 32/35

Constructing ZKPoKs

If inner loop never fails, simulation is perfect

Jonathan Katz ZK Proofs—Lecture 1 33/35

Constructing ZKPoKs

If inner loop never fails, simulation is perfect

(Assuming perfectly hiding commitments)

Pr[inner loop fails in any given iteration] = 272

= Prlinner loop fails in some iteration] < -2

Jonathan Katz ZK Proofs—Lecture 1 33/35

Constructing ZKPoKs

The ZKPoK we presented has ©(\) rounds

Constant-round ZKPoKs for NP are possible

® Running the 3-round subroutine in parallel does not (seem to)
work. . . why?

Jonathan Katz ZK Proofs—Lecture 1 34 /35

Constructing ZKPoKs

The ZKPoK we presented has ©(\) rounds

Constant-round ZKPoKs for NP are possible

® Running the 3-round subroutine in parallel does not (seem to)
work. . . why?

Possible to show (assuming commitment schemes) that every language
in /P has a zero-knowledge proof. . .

Jonathan Katz ZK Proofs—Lecture 1 34 /35

Thank you!

ZK Proofs—Lecture 1

	Background
	Definitions
	Constructing ZKPoKs

