
Introduction to (Zero-Knowledge) Proofs

Jonathan Katz
Google and University of Maryland

Jonathan Katz ZK Proofs—Lecture 1 1 / 35



Background

Proofs

What is a proof of a (theorem) statement x?

Static object

Verified by some deterministic procedure

False statements do not have proofs that verify

x

Jonathan Katz ZK Proofs—Lecture 1 2 / 35



Background

Proofs

What is a proof of a (theorem) statement x?

Static object

Verified by some deterministic procedure

False statements do not have proofs that verify

x

Jonathan Katz ZK Proofs—Lecture 1 2 / 35



Background

Proofs

What is a proof of a (theorem) statement x?

Static object

Verified by some deterministic procedure

False statements do not have proofs that verify

x

Jonathan Katz ZK Proofs—Lecture 1 2 / 35



Background

Proofs

What is a proof of a (theorem) statement x?

Static object

Verified by some deterministic procedure

False statements do not have proofs that verify

x

Jonathan Katz ZK Proofs—Lecture 1 2 / 35



Background

Proofs

What is a proof of a (theorem) statement x?

Static object

Verified by some deterministic procedure

False statements do not have proofs that verify

x

Jonathan Katz ZK Proofs—Lecture 1 2 / 35



Background

Proofs

What is a proof of a (theorem) statement x?

Static object

Verified by some deterministic procedure

False statements do not have proofs that verify

x

Jonathan Katz ZK Proofs—Lecture 1 2 / 35



Background

Proofs

What is a proof of a (theorem) statement x?

Static object

Verified by some deterministic procedure

False statements do not have proofs that verify

x

Jonathan Katz ZK Proofs—Lecture 1 2 / 35



Background

The class NP

A language L ⊆ {0, 1}∗ is in NP if there is a deterministic verifier VL

running in polynomial time (in its first input) such that

x ∈ L⇔ ∃π s.t. VL(x , π) = 1

I.e.,

Completeness: If x ∈ L then there is a proof (aka a witness) π such
that VL(x , π) = 1

Soundness: If x ̸∈ L then for all π∗ we have VL(x , π
∗) = 0

Jonathan Katz ZK Proofs—Lecture 1 3 / 35



Background

The class NP

A language L ⊆ {0, 1}∗ is in NP if there is a deterministic verifier VL

running in polynomial time (in its first input) such that

x ∈ L⇔ ∃π s.t. VL(x , π) = 1

I.e.,

Completeness: If x ∈ L then there is a proof (aka a witness) π such
that VL(x , π) = 1

Soundness: If x ̸∈ L then for all π∗ we have VL(x , π
∗) = 0

Jonathan Katz ZK Proofs—Lecture 1 3 / 35



Background

Proofs

Why limit ourselves?

Traditional view New view

Static object

Deterministic verification

False statements do not have
proofs that verify

Interactive process!

Allow randomization!

Might accept proofs for false
statements∗

∗with small probability

Jonathan Katz ZK Proofs—Lecture 1 4 / 35



Background

Proofs

Why limit ourselves?

Traditional view New view

Static object

Deterministic verification

False statements do not have
proofs that verify

Interactive process!

Allow randomization!

Might accept proofs for false
statements∗

∗with small probability

Jonathan Katz ZK Proofs—Lecture 1 4 / 35



Background

Proofs

x

Accept/reject

Jonathan Katz ZK Proofs—Lecture 1 5 / 35



Definitions

Proof systems and the class IP

A proof system for a language L is a pair of algorithms (P,V ), where V
runs in probabilistic, polynomial time (ppt), such that

1 Completeness: if x ∈ L then for all λ we have

Pr[⟨P,V ⟩(1λ, x) = 1] = 1

2 Soundness: if x ̸∈ L then for all P∗, λ we have

Pr[⟨P∗,V ⟩(1λ, x) = 1] ≤ 2−λ

IP is the class of languages L that have a proof system

Clearly NP ⊆ IP

Notes:

(P,V ) is an argument system if soundness only holds for ppt P∗

If L ∈ NP and x ∈ L, would like P to be efficient (given a witness)

Jonathan Katz ZK Proofs—Lecture 1 6 / 35



Definitions

Proof systems and the class IP

A proof system for a language L is a pair of algorithms (P,V ), where V
runs in probabilistic, polynomial time (ppt), such that

1 Completeness: if x ∈ L then for all λ we have

Pr[⟨P,V ⟩(1λ, x) = 1] = 1

2 Soundness: if x ̸∈ L then for all P∗, λ we have

Pr[⟨P∗,V ⟩(1λ, x) = 1] ≤ 2−λ

IP is the class of languages L that have a proof system

Clearly NP ⊆ IP

Notes:

(P,V ) is an argument system if soundness only holds for ppt P∗

If L ∈ NP and x ∈ L, would like P to be efficient (given a witness)

Jonathan Katz ZK Proofs—Lecture 1 6 / 35



Definitions

Proof systems and the class IP

A proof system for a language L is a pair of algorithms (P,V ), where V
runs in probabilistic, polynomial time (ppt), such that

1 Completeness: if x ∈ L then for all λ we have

Pr[⟨P,V ⟩(1λ, x) = 1] = 1

2 Soundness: if x ̸∈ L then for all P∗, λ we have

Pr[⟨P∗,V ⟩(1λ, x) = 1] ≤ 2−λ

IP is the class of languages L that have a proof system

Clearly NP ⊆ IP

Notes:

(P,V ) is an argument system if soundness only holds for ppt P∗

If L ∈ NP and x ∈ L, would like P to be efficient (given a witness)

Jonathan Katz ZK Proofs—Lecture 1 6 / 35



Definitions

Proof systems and the class IP

A proof system for a language L is a pair of algorithms (P,V ), where V
runs in probabilistic, polynomial time (ppt), such that

1 Completeness: if x ∈ L then for all λ we have

Pr[⟨P,V ⟩(1λ, x) = 1] = 1

2 Soundness: if x ̸∈ L then for all P∗, λ we have

Pr[⟨P∗,V ⟩(1λ, x) = 1] ≤ 2−λ

IP is the class of languages L that have a proof system

Clearly NP ⊆ IP

Notes:

(P,V ) is an argument system if soundness only holds for ppt P∗

If L ∈ NP and x ∈ L, would like P to be efficient (given a witness)

Jonathan Katz ZK Proofs—Lecture 1 6 / 35



Definitions

Proof systems and the class IP

A proof system for a language L is a pair of algorithms (P,V ), where V
runs in probabilistic, polynomial time (ppt), such that

1 Completeness: if x ∈ L then for all λ we have

Pr[⟨P,V ⟩(1λ, x) = 1] = 1

2 Soundness: if x ̸∈ L then for all P∗, λ we have

Pr[⟨P∗,V ⟩(1λ, x) = 1] ≤ 2−λ

IP is the class of languages L that have a proof system

Clearly NP ⊆ IP

Notes:

(P,V ) is an argument system if soundness only holds for ppt P∗

If L ∈ NP and x ∈ L, would like P to be efficient (given a witness)

Jonathan Katz ZK Proofs—Lecture 1 6 / 35



Definitions

Advantages?

(Potential) advantages?

Applicable to languages beyond NP

Stronger properties (e.g., zero knowledge)

More-efficient verification

Jonathan Katz ZK Proofs—Lecture 1 7 / 35



Definitions

Advantages?

(Potential) advantages?

Applicable to languages beyond NP

Stronger properties (e.g., zero knowledge)

More-efficient verification

Jonathan Katz ZK Proofs—Lecture 1 7 / 35



Definitions

Advantages?

(Potential) advantages?

Applicable to languages beyond NP

Stronger properties (e.g., zero knowledge)

More-efficient verification

Jonathan Katz ZK Proofs—Lecture 1 7 / 35



Definitions

Advantages?

(Potential) advantages?

Applicable to languages beyond NP

Stronger properties (e.g., zero knowledge)

More-efficient verification

Jonathan Katz ZK Proofs—Lecture 1 8 / 35



Definitions

Zero-knowledge (ZK) proofs

Goal:

Convince a verifier that some statement is true (i.e., x ∈ L). . .

. . . without revealing any information beyond that!

Jonathan Katz ZK Proofs—Lecture 1 9 / 35



Definitions

Zero-knowledge (ZK) proofs

Goal:

Convince a verifier that some statement is true (i.e., x ∈ L). . .

. . . without revealing any information beyond that!

Jonathan Katz ZK Proofs—Lecture 1 9 / 35



Definitions

ZK proofs

How to define...?

Main idea:
The verifier can simulate (by itself) its interaction with the prover!

⇒ Anything the verifier learns from its interaction with the prover, it could
have learned on its own

Jonathan Katz ZK Proofs—Lecture 1 10 / 35



Definitions

ZK proofs

How to define...?

Main idea:
The verifier can simulate (by itself) its interaction with the prover!

⇒ Anything the verifier learns from its interaction with the prover, it could
have learned on its own

Jonathan Katz ZK Proofs—Lecture 1 10 / 35



Definitions

Computational indistinguishability

Let X ,X ′ be such that X (1λ, x), X ′(1λ, x) are probability distributions for
any λ ∈ N and x ∈ S

X ,X ′ are computationally indistinguishable if for all D running in poly(λ)
time and all λ, x ∈ S , and z ∈ {0, 1}∗∣∣∣Pr [D(1λ, x ,X (1λ, x), z) = 1

]
− Pr

[
D(1λ, x ,X ′(1λ, x), z) = 1

]∣∣∣ ≤ negl(λ)

Write {X (1λ, x)}x∈S ≈ {X ′(1λ, x)}x∈S

Jonathan Katz ZK Proofs—Lecture 1 11 / 35



Definitions

Computational indistinguishability

Let X ,X ′ be such that X (1λ, x), X ′(1λ, x) are probability distributions for
any λ ∈ N and x ∈ S

X ,X ′ are computationally indistinguishable if for all D running in poly(λ)
time and all λ, x ∈ S , and z ∈ {0, 1}∗∣∣∣Pr [D(1λ, x ,X (1λ, x), z) = 1

]
− Pr

[
D(1λ, x ,X ′(1λ, x), z) = 1

]∣∣∣ ≤ negl(λ)

Write {X (1λ, x)}x∈S ≈ {X ′(1λ, x)}x∈S

Jonathan Katz ZK Proofs—Lecture 1 11 / 35



Definitions

Computational indistinguishability

Let X ,X ′ be such that X (1λ, x), X ′(1λ, x) are probability distributions for
any λ ∈ N and x ∈ S

X ,X ′ are computationally indistinguishable if for all D running in poly(λ)
time and all λ, x ∈ S , and z ∈ {0, 1}∗∣∣∣Pr [D(1λ, x ,X (1λ, x), z) = 1

]
− Pr

[
D(1λ, x ,X ′(1λ, x), z) = 1

]∣∣∣ ≤ negl(λ)

Write {X (1λ, x)}x∈S ≈ {X ′(1λ, x)}x∈S

Jonathan Katz ZK Proofs—Lecture 1 11 / 35



Definitions

Computational indistinguishability

Let X ,X ′ be such that X (1λ, x), X ′(1λ, x) are probability distributions for
any λ ∈ N and x ∈ S

X ,X ′ are computationally indistinguishable if for all D running in poly(λ)
time and all λ, x ∈ S , and z ∈ {0, 1}∗∣∣∣Pr [D(1λ, x ,X (1λ, x), z) = 1

]
− Pr

[
D(1λ, x ,X ′(1λ, x), z) = 1

]∣∣∣ ≤ negl(λ)

Write {X (1λ, x)}x∈S ≈ {X ′(1λ, x)}x∈S

Jonathan Katz ZK Proofs—Lecture 1 11 / 35



Definitions

ZK proofs

Let (P,V ) be a proof/argument system for a language L with relation R

Honest-verifier zero knowledge

(P,V ) is (computational) honest-verifier zero knowledge if there is a ppt
simulator S such that

{⟨P(w),V ⟩(1λ, x)}(x ,w)∈R ≈ {S(1λ, x)}(x ,w)∈R

i.e., S can simulate the (transcript of the) interaction of the prover with
the honest verifier, without the witness

Jonathan Katz ZK Proofs—Lecture 1 12 / 35



Definitions

ZK proofs

Let (P,V ) be a proof/argument system for a language L with relation R

Honest-verifier zero knowledge

(P,V ) is (computational) honest-verifier zero knowledge if there is a ppt
simulator S such that

{⟨P(w),V ⟩(1λ, x)}(x ,w)∈R ≈ {S(1λ, x)}(x ,w)∈R

i.e., S can simulate the (transcript of the) interaction of the prover with
the honest verifier, without the witness

Jonathan Katz ZK Proofs—Lecture 1 12 / 35



Definitions

ZK proofs

Let (P,V ) be a proof/argument system for a language L with relation R

Zero knowledge

(P,V ) is (computational) zero knowledge if for every ppt V ∗ there is an
expected polynomial-time simulator SV ∗ such that

{⟨P(w),V ∗⟩(1λ, x)}(x ,w)∈R ≈ {SV ∗(1λ, x)}(x ,w)∈R

i.e., the (transcript of the) interaction of the prover with any verifier can
be simulated

Jonathan Katz ZK Proofs—Lecture 1 13 / 35



Definitions

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Intuition:
If a (malicious) prover can successfully convince the honest verifier,
then the prover must know a witness

Why is this useful?

“Trivial” languages, e.g., L = {y | ∃x : y = g x}
When proofs are used as a building block for larger protocols

Jonathan Katz ZK Proofs—Lecture 1 14 / 35



Definitions

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Intuition:
If a (malicious) prover can successfully convince the honest verifier,
then the prover must know a witness

Why is this useful?

“Trivial” languages, e.g., L = {y | ∃x : y = g x}
When proofs are used as a building block for larger protocols

Jonathan Katz ZK Proofs—Lecture 1 14 / 35



Definitions

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Intuition:
If a (malicious) prover can successfully convince the honest verifier,
then the prover must know a witness

Why is this useful?

“Trivial” languages, e.g., L = {y | ∃x : y = g x}
When proofs are used as a building block for larger protocols

Jonathan Katz ZK Proofs—Lecture 1 14 / 35



Definitions

Proofs of knowledge

Let (P,V ) be a proof/argument system for a language L ∈ NP with
associated relation R

Proof of knowledge

(P,V ) is a proof of knowledge (PoK) with respect to R if for every ppt
P∗ there is an expected polynomial-time knowledge extractor E such that

Pr[(v ,w)← E(1λ, x) : v is accepting ∧ (x ,w) ̸∈ R] ≤ negl(λ)

{⟨P∗,V ⟩(1λ, x)}x∈{0,1}∗ ≈ {E1(1λ, x)}x∈{0,1}∗

Proof of knowledge ⇒ soundness

Jonathan Katz ZK Proofs—Lecture 1 15 / 35



Definitions

Proofs of knowledge

Let (P,V ) be a proof/argument system for a language L ∈ NP with
associated relation R

Proof of knowledge

(P,V ) is a proof of knowledge (PoK) with respect to R if for every ppt
P∗ there is an expected polynomial-time knowledge extractor E such that

Pr[(v ,w)← E(1λ, x) : v is accepting ∧ (x ,w) ̸∈ R] ≤ negl(λ)

{⟨P∗,V ⟩(1λ, x)}x∈{0,1}∗ ≈ {E1(1λ, x)}x∈{0,1}∗

Proof of knowledge ⇒ soundness

Jonathan Katz ZK Proofs—Lecture 1 15 / 35



Definitions

Proofs of knowledge

Let (P,V ) be a proof/argument system for a language L ∈ NP with
associated relation R

Proof of knowledge

(P,V ) is a proof of knowledge (PoK) with respect to R if for every ppt
P∗ there is an expected polynomial-time knowledge extractor E such that

Pr[(v ,w)← E(1λ, x) : v is accepting ∧ (x ,w) ̸∈ R] ≤ negl(λ)

{⟨P∗,V ⟩(1λ, x)}x∈{0,1}∗ ≈ {E1(1λ, x)}x∈{0,1}∗

Proof of knowledge ⇒ soundness

Jonathan Katz ZK Proofs—Lecture 1 15 / 35



Definitions

An aside

If (x ,w) ∈ R, set b := 1
else set b := 0

Secure computation of this function ⇐⇒ a ZKPoK for relation R

Jonathan Katz ZK Proofs—Lecture 1 16 / 35



Definitions

An aside

If (x ,w) ∈ R, set b := 1
else set b := 0

Secure computation of this function ⇐⇒ a ZKPoK for relation R

Jonathan Katz ZK Proofs—Lecture 1 16 / 35



Constructing ZKPoKs

ZKPoKs for NP

Jonathan Katz ZK Proofs—Lecture 1 17 / 35



Constructing ZKPoKs

Commitment schemes

Properties:

Binding: Sender cannot send a commitment that it can later open to
two different values x , x ′

Hiding: Receiver cannot learn anything about x from the commitment

Either property can be computational or perfect/statistical

Jonathan Katz ZK Proofs—Lecture 1 18 / 35



Constructing ZKPoKs

Commitment schemes

Properties:

Binding: Sender cannot send a commitment that it can later open to
two different values x , x ′

Hiding: Receiver cannot learn anything about x from the commitment

Either property can be computational or perfect/statistical

Jonathan Katz ZK Proofs—Lecture 1 18 / 35



Constructing ZKPoKs

Commitment schemes

Properties:

Binding: Sender cannot send a commitment that it can later open to
two different values x , x ′

Hiding: Receiver cannot learn anything about x from the commitment

Either property can be computational or perfect/statistical

Jonathan Katz ZK Proofs—Lecture 1 18 / 35



Constructing ZKPoKs

Commitment schemes

Properties:

Binding: Sender cannot send a commitment that it can later open to
two different values x , x ′

Hiding: Receiver cannot learn anything about x from the commitment

Either property can be computational or perfect/statistical

Jonathan Katz ZK Proofs—Lecture 1 18 / 35



Constructing ZKPoKs

ZKPoK from commitments

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this
implies a ZKPoK for any language in NP

Jonathan Katz ZK Proofs—Lecture 1 19 / 35



Constructing ZKPoKs

ZKPoK from commitments

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this
implies a ZKPoK for any language in NP

Jonathan Katz ZK Proofs—Lecture 1 19 / 35



Constructing ZKPoKs

ZKPoK from commitments

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this
implies a ZKPoK for any language in NP

Jonathan Katz ZK Proofs—Lecture 1 20 / 35



Constructing ZKPoKs

ZKPoK from commitments

Inputs: the prover and verifier share a directed graph G ; the prover also
knows a Hamiltonian cycle c in G

Three-round subroutine

1 Prover chooses uniform permutation π, and commits entrywise to the
adjacency matrix of π(G )

2 Verifier sends a uniform challenge b ∈ {0, 1}
3 Prover does:

If b = 0, open all commitments and send π
If b = 1, open π(c) only

4 Verifier checks:

If b = 0, check that committed graph corresponds to π(G )
If b = 1, check that opened entries are a cycle

Jonathan Katz ZK Proofs—Lecture 1 21 / 35



Constructing ZKPoKs

ZKPoK from commitments

Inputs: the prover and verifier share a directed graph G ; the prover also
knows a Hamiltonian cycle c in G

Three-round subroutine

1 Prover chooses uniform permutation π, and commits entrywise to the
adjacency matrix of π(G )

2 Verifier sends a uniform challenge b ∈ {0, 1}

3 Prover does:

If b = 0, open all commitments and send π
If b = 1, open π(c) only

4 Verifier checks:

If b = 0, check that committed graph corresponds to π(G )
If b = 1, check that opened entries are a cycle

Jonathan Katz ZK Proofs—Lecture 1 21 / 35



Constructing ZKPoKs

ZKPoK from commitments

Inputs: the prover and verifier share a directed graph G ; the prover also
knows a Hamiltonian cycle c in G

Three-round subroutine

1 Prover chooses uniform permutation π, and commits entrywise to the
adjacency matrix of π(G )

2 Verifier sends a uniform challenge b ∈ {0, 1}
3 Prover does:

If b = 0, open all commitments and send π
If b = 1, open π(c) only

4 Verifier checks:

If b = 0, check that committed graph corresponds to π(G )
If b = 1, check that opened entries are a cycle

Jonathan Katz ZK Proofs—Lecture 1 21 / 35



Constructing ZKPoKs

ZKPoK from commitments

G =

 0 0 1
1 0 1
0 1 0



 
0 0 1 0

0 0 1
1 1 0

, π = (2, 3)

Jonathan Katz ZK Proofs—Lecture 1 22 / 35



Constructing ZKPoKs

ZKPoK from commitments

G =

 0 0 1
1 0 1
0 1 0


 

0 0 1 0
0 0 1
1 1 0

, π = (2, 3)

Jonathan Katz ZK Proofs—Lecture 1 22 / 35



Constructing ZKPoKs

ZKPoK from commitments

G =

 0 0 1
1 0 1
0 1 0


 

0

 0 1 0
0 0 1
1 1 0

, π = (2, 3)

Jonathan Katz ZK Proofs—Lecture 1 22 / 35



Constructing ZKPoKs

ZKPoK from commitments

G =

 0 0 1
1 0 1
0 1 0


 

0 0 1 0
0 0 1
1 1 0

, π = (2, 3)

Jonathan Katz ZK Proofs—Lecture 1 22 / 35



Constructing ZKPoKs

ZKPoK from commitments

G =

 0 0 1
1 0 1
0 1 0


 

1

 1
1

1



Jonathan Katz ZK Proofs—Lecture 1 23 / 35



Constructing ZKPoKs

ZKPoK from commitments

G =

 0 0 1
1 0 1
0 1 0


 

1 1
1

1



Jonathan Katz ZK Proofs—Lecture 1 23 / 35



Constructing ZKPoKs

ZKPoK from commitments

To obtain soundness error 2−λ, sequentially repeat this 3-round
subroutine λ times

Theorem

If the commitment scheme is statistically binding and computationally
hiding, this is a ZKPoK for graph Hamiltonicity

Jonathan Katz ZK Proofs—Lecture 1 24 / 35



Constructing ZKPoKs

ZKPoK from commitments

To obtain soundness error 2−λ, sequentially repeat this 3-round
subroutine λ times

Theorem

If the commitment scheme is statistically binding and computationally
hiding, this is a ZKPoK for graph Hamiltonicity

Jonathan Katz ZK Proofs—Lecture 1 24 / 35



Constructing ZKPoKs

PoK analysis

Key property of 3-round subroutine:

Given an initial message and correct responses to both challenges,
possible to efficiently compute a cycle in G

Jonathan Katz ZK Proofs—Lecture 1 25 / 35



Constructing ZKPoKs

PoK analysis

Key property of 3-round subroutine:

Given an initial message and correct responses to both challenges,
possible to efficiently compute a cycle in G

Jonathan Katz ZK Proofs—Lecture 1 25 / 35



Constructing ZKPoKs

PoK analysis

Note: assume P∗ is deterministic (if not, fix its randomness)

Extractor E
1 Run P∗(G ) using uniform (b1, . . . , bλ) to obtain transcript v

If v is not accepting, output (v ,⊥); otherwise, continue
2 For i = 1, . . . , λ:

Run P∗(G ) using (b1, . . . , bi−1, b̄i )
If P∗ responds correctly to b̄i , compute cycle c in G ; output (v , c)

3 Output (v , fail)

Jonathan Katz ZK Proofs—Lecture 1 26 / 35



Constructing ZKPoKs

PoK Analysis

v is identically distributed to an interaction of P∗ with V

Need to show Pr[v is accepting ∧ (x ,w) ̸∈ R] ≤ 2−λ:

If P∗ responds correctly to no sequence of challenges, trivial

If P∗ responds correctly to exactly one sequence of challenges, then
Pr[v is accepting] ≤ 2−λ

If P∗ responds correctly to two or more sequences of challenges, then
E will compute a correct witness when v is accepting

Jonathan Katz ZK Proofs—Lecture 1 27 / 35



Constructing ZKPoKs

PoK Analysis

v is identically distributed to an interaction of P∗ with V

Need to show Pr[v is accepting ∧ (x ,w) ̸∈ R] ≤ 2−λ:

If P∗ responds correctly to no sequence of challenges, trivial

If P∗ responds correctly to exactly one sequence of challenges, then
Pr[v is accepting] ≤ 2−λ

If P∗ responds correctly to two or more sequences of challenges, then
E will compute a correct witness when v is accepting

Jonathan Katz ZK Proofs—Lecture 1 27 / 35



Constructing ZKPoKs

PoK Analysis

v is identically distributed to an interaction of P∗ with V

Need to show Pr[v is accepting ∧ (x ,w) ̸∈ R] ≤ 2−λ:

If P∗ responds correctly to no sequence of challenges, trivial

If P∗ responds correctly to exactly one sequence of challenges, then
Pr[v is accepting] ≤ 2−λ

If P∗ responds correctly to two or more sequences of challenges, then
E will compute a correct witness when v is accepting

Jonathan Katz ZK Proofs—Lecture 1 27 / 35



Constructing ZKPoKs

PoK Analysis

Jonathan Katz ZK Proofs—Lecture 1 28 / 35



Constructing ZKPoKs

PoK Analysis

Jonathan Katz ZK Proofs—Lecture 1 29 / 35



Constructing ZKPoKs

PoK Analysis

Jonathan Katz ZK Proofs—Lecture 1 30 / 35



Constructing ZKPoKs

ZK analysis

(Assume perfectly hiding commitments for simplicity)

Key property of 3-round subroutine:

Easy to simulate if we know the verifier’s challenge in advance

If the challenge will be 0, commit to a random permutation of G
If the challenge will be 1, commit to a random cycle

Jonathan Katz ZK Proofs—Lecture 1 31 / 35



Constructing ZKPoKs

ZK analysis

Simulator S
For i = 1, . . . , λ do:

Repeat up to λ times:
Choose uniform bi

If bi = 0, choose uniform π and send commitments to π(G) to V ∗

If bi = 1, send commitments to a random cycle to V ∗

If V ∗ responds with bi , answer correctly and continue to next i

Jonathan Katz ZK Proofs—Lecture 1 32 / 35



Constructing ZKPoKs

ZK analysis

If inner loop never fails, simulation is perfect

(Assuming perfectly hiding commitments)

Pr[inner loop fails in any given iteration] = 2−λ

⇒ Pr[inner loop fails in some iteration] ≤ λ · 2−λ

Jonathan Katz ZK Proofs—Lecture 1 33 / 35



Constructing ZKPoKs

ZK analysis

If inner loop never fails, simulation is perfect

(Assuming perfectly hiding commitments)

Pr[inner loop fails in any given iteration] = 2−λ

⇒ Pr[inner loop fails in some iteration] ≤ λ · 2−λ

Jonathan Katz ZK Proofs—Lecture 1 33 / 35



Constructing ZKPoKs

ZKPoKs

The ZKPoK we presented has Θ(λ) rounds

Constant-round ZKPoKs for NP are possible

Running the 3-round subroutine in parallel does not (seem to)
work. . . why?

Possible to show (assuming commitment schemes) that every language
in IP has a zero-knowledge proof. . .

Jonathan Katz ZK Proofs—Lecture 1 34 / 35



Constructing ZKPoKs

ZKPoKs

The ZKPoK we presented has Θ(λ) rounds

Constant-round ZKPoKs for NP are possible

Running the 3-round subroutine in parallel does not (seem to)
work. . . why?

Possible to show (assuming commitment schemes) that every language
in IP has a zero-knowledge proof. . .

Jonathan Katz ZK Proofs—Lecture 1 34 / 35



Constructing ZKPoKs

Thank you!

Jonathan Katz ZK Proofs—Lecture 1 35 / 35


	Background
	Definitions
	Constructing ZKPoKs

