Introduction to (Zero-Knowledge) Proofs

Jonathan Katz Google and University of Maryland

What is a proof of a (theorem) statement x?Static object

- Static object
- Verified by some deterministic procedure

- Static object
- Verified by some deterministic procedure
- False statements do not have proofs that verify

- Static object
- Verified by some deterministic procedure
- False statements do not have proofs that verify

- Static object
- Verified by some deterministic procedure
- False statements do not have proofs that verify

The class NP

A language $L \subseteq \{0,1\}^*$ is in NP if there is a deterministic verifier V_L running in polynomial time (in its first input) such that

 $x \in L \Leftrightarrow \exists \pi \text{ s.t. } V_L(x,\pi) = 1$

The class NP

A language $L \subseteq \{0,1\}^*$ is in NP if there is a deterministic verifier V_L running in polynomial time (in its first input) such that

$$x \in L \Leftrightarrow \exists \pi \text{ s.t. } V_L(x,\pi) = 1$$

l.e.,

- Completeness: If $x \in L$ then there is a proof (aka a witness) π such that $V_L(x,\pi) = 1$
- Soundness: If $x \notin L$ then for all π^* we have $V_L(x, \pi^*) = 0$

Why limit ourselves?

Why limit ourselves?

Traditional view

- Static object
- Deterministic verification
- False statements do not have proofs that verify

New view

- Interactive process!
- Allow randomization!
- Might accept proofs for false statements*

*with small probability

Accept/reject

A proof system for a language *L* is a pair of algorithms (P, V), where *V* runs in probabilistic, polynomial time (PPT), such that **Oppleteness:** if $x \in L$ then for all λ we have

 $\mathsf{Pr}[\langle P, V \rangle(1^{\lambda}, x) = 1] = 1$

2 Soundness: if $x \notin L$ then for all P^*, λ we have

 $\Pr[\langle P^*, V \rangle(1^{\lambda}, x) = 1] \le 2^{-\lambda}$

A proof system for a language *L* is a pair of algorithms (P, V), where *V* runs in probabilistic, polynomial time (PPT), such that ① Completeness: if $x \in L$ then for all λ we have

$$\Pr[\langle P, V \rangle(1^{\lambda}, x) = 1] = 1$$

2 Soundness: if $x \notin L$ then for all P^* , λ we have

$$\mathsf{Pr}[\langle P^*, V \rangle(1^{\lambda}, x) = 1] \leq 2^{-\lambda}$$

IP is the class of languages L that have a proof system

A proof system for a language *L* is a pair of algorithms (P, V), where *V* runs in probabilistic, polynomial time (PPT), such that ① Completeness: if $x \in L$ then for all λ we have

$$\Pr[\langle P, V \rangle(1^{\lambda}, x) = 1] = 1$$

2 Soundness: if $x \notin L$ then for all P^*, λ we have

$$\Pr[\langle P^*, V \rangle(1^{\lambda}, x) = 1] \le 2^{-\lambda}$$

IP is the class of languages L that have a proof system
Clearly NP ⊆ IP

A proof system for a language *L* is a pair of algorithms (P, V), where *V* runs in probabilistic, polynomial time (PPT), such that ① Completeness: if $x \in L$ then for all λ we have

$$\Pr[\langle P, V \rangle(1^{\lambda}, x) = 1] = 1$$

2 Soundness: if $x \notin L$ then for all P^*, λ we have

$$\mathsf{Pr}[\langle P^*, V
angle(1^{\lambda}, x) = 1] \leq 2^{-\lambda}$$

IP is the class of languages L that have a proof system
Clearly NP ⊂ IP

Notes:

• (P, V) is an argument system if soundness only holds for PPT P^*

A proof system for a language *L* is a pair of algorithms (P, V), where *V* runs in probabilistic, polynomial time (PPT), such that ① Completeness: if $x \in L$ then for all λ we have

$$\Pr[\langle P, V \rangle(1^{\lambda}, x) = 1] = 1$$

2 Soundness: if $x \notin L$ then for all P^*, λ we have

$$\mathsf{Pr}[\langle P^*, V
angle(1^{\lambda}, x) = 1] \leq 2^{-\lambda}$$

IP is the class of languages L that have a proof system

• Clearly $NP \subseteq IP$

Notes:

(P, V) is an argument system if soundness only holds for PPT P*
If L ∈ NP and x ∈ L, would like P to be efficient (given a witness)

(Potential) advantages?

(Potential) advantages?

Applicable to languages beyond NP¹

(Potential) advantages?

- Applicable to languages beyond NP
- Stronger properties (e.g., zero knowledge)
- More-efficient verification

(Potential) advantages?

- Applicable to languages beyond NP
- Stronger properties (e.g., zero knowledge)
- More-efficient verification

Zero-knowledge (ZK) proofs

Goal:

• Convince a verifier that some statement is true (i.e., $x \in L$)...

Zero-knowledge (ZK) proofs

Goal:

- Convince a verifier that some statement is true (i.e., $x \in L$)...
- ... without revealing any information beyond that!

How to define ...?

How to define ...?

Main idea: *The verifier can simulate (by itself) its interaction with the prover!*⇒ Anything the verifier learns from its interaction with the prover, it could have learned on its own

Let $\mathcal{X}, \mathcal{X}'$ be such that $\mathcal{X}(1^{\lambda}, x)$, $\mathcal{X}'(1^{\lambda}, x)$ are probability distributions for any $\lambda \in \mathbb{N}$ and $x \in S$

Let $\mathcal{X}, \mathcal{X}'$ be such that $\mathcal{X}(1^{\lambda}, x)$, $\mathcal{X}'(1^{\lambda}, x)$ are probability distributions for any $\lambda \in \mathbb{N}$ and $x \in S$

 $\mathcal{X}, \mathcal{X}'$ are computationally indistinguishable if for all D running in poly (λ) time and all $\lambda, x \in S$, and $z \in \{0, 1\}^*$

$$\left| \mathsf{Pr}\left[D(1^{\lambda}, x, \mathcal{X}(1^{\lambda}, x), z) = 1 \right] - \mathsf{Pr}\left[D(1^{\lambda}, x, \mathcal{X}'(1^{\lambda}, x), z) = 1 \right] \right| \leq \mathsf{negl}(\lambda)$$

Let $\mathcal{X}, \mathcal{X}'$ be such that $\mathcal{X}(1^{\lambda}, x)$, $\mathcal{X}'(1^{\lambda}, x)$ are probability distributions for any $\lambda \in \mathbb{N}$ and $x \in S$

 $\mathcal{X}, \mathcal{X}'$ are computationally indistinguishable if for all D running in poly (λ) time and all $\lambda, x \in S$, and $z \in \{0, 1\}^*$

$$\left|\mathsf{Pr}\left[D(1^{\lambda},x,\mathcal{X}(1^{\lambda},x),z)=1\right]-\mathsf{Pr}\left[D(1^{\lambda},x,\mathcal{X}'(1^{\lambda},x),z)=1\right]\right|\leq\mathsf{negl}(\lambda)$$

Write ${\mathcal{X}(1^{\lambda}, x)}_{x \in S} \approx {\mathcal{X}'(1^{\lambda}, x)}_{x \in S}$

Let (P, V) be a proof/argument system for a language L with relation R

Let (P, V) be a proof/argument system for a language L with relation R

Honest-verifier zero knowledge

(P, V) is (computational) honest-verifier zero knowledge if there is a PPT simulator S such that

$$\{\langle P(w), V \rangle (1^{\lambda}, x)\}_{(x,w) \in R} \approx \{\mathcal{S}(1^{\lambda}, x)\}_{(x,w) \in R}$$

i.e., S can simulate the (transcript of the) interaction of the prover with the honest verifier, without the witness

Let (P, V) be a proof/argument system for a language L with relation R

Zero knowledge

(P, V) is (computational) zero knowledge if for every PPT V^* there is an expected polynomial-time simulator S_{V^*} such that

$$\{\langle P(w), V^* \rangle (1^\lambda, x)\}_{(x,w) \in R} \approx \{S_{V^*}(1^\lambda, x)\}_{(x,w) \in R}$$

i.e., the (transcript of the) interaction of the prover with any verifier can be simulated

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Intuition: If a (malicious) prover can successfully convince the honest verifier, then the prover must know a witness

Knowledge soundness/proofs of knowledge (PoKs)

It is often useful to also have a stronger notion of soundness

Intuition:

If a (malicious) prover can successfully convince the honest verifier, then the prover must know a witness

Why is this useful?

- "Trivial" languages, e.g., $L = \{y \mid \exists x : y = g^x\}$
- When proofs are used as a building block for larger protocols
Proofs of knowledge

Let (P, V) be a proof/argument system for a language $L \in NP$ with associated relation R

Proofs of knowledge

Let (P, V) be a proof/argument system for a language $L \in NP$ with associated relation R

Proof of knowledge

(P, V) is a proof of knowledge (PoK) with respect to R if for every PPT P^* there is an expected polynomial-time knowledge extractor \mathcal{E} such that

- $\mathsf{Pr}[(v,w) \leftarrow \overline{\mathcal{E}(1^{\lambda},x)} : v \text{ is accepting } \land (x,w) \not\in R] \leq \mathsf{negl}(\lambda)$
- $\{\langle P^*, V \rangle (1^{\lambda}, x)\}_{x \in \{0,1\}^*} \approx \{\mathcal{E}_1(1^{\lambda}, x)\}_{x \in \{0,1\}^*}$

Proofs of knowledge

Let (P, V) be a proof/argument system for a language $L \in NP$ with associated relation R

Proof of knowledge

(P, V) is a proof of knowledge (PoK) with respect to R if for every PPT P^* there is an expected polynomial-time knowledge extractor \mathcal{E} such that

- $\mathsf{Pr}[(v,w) \leftarrow \overline{\mathcal{E}(1^{\lambda},x)}: v \text{ is accepting } \land \ (x,w) \not\in R] \leq \mathsf{negl}(\lambda)$
- $\{\langle P^*, V \rangle (1^{\lambda}, x)\}_{x \in \{0,1\}^*} \approx \{\mathcal{E}_1(1^{\lambda}, x)\}_{x \in \{0,1\}^*}$

$\mathsf{Proof} \text{ of knowledge} \Rightarrow \mathsf{soundness}$

An aside

If $(x, w) \in R$, set b := 1else set b := 0

An aside

If $(x, w) \in R$, set b := 1else set b := 0

Secure computation of this function \iff a ZKPoK for relation R

Constructing ZKPoKs

ZKPoKs for NP

Properties:

 Binding: Sender cannot send a commitment that it can later open to two different values x, x'

• Hiding: Receiver cannot learn anything about *x* from the commitment Either property can be computational or perfect/statistical

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this implies a ZKPoK for any language in NP

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this implies a ZKPoK for any language in NP

We show a ZKPoK for the NP-complete Hamiltonian cycle problem; this implies a ZKPoK for any language in NP

Inputs: the prover and verifier share a directed graph G; the prover also knows a Hamiltonian cycle c in G

Three-round subroutine

Prover chooses uniform permutation π, and commits entrywise to the adjacency matrix of π(G)

Inputs: the prover and verifier share a directed graph G; the prover also knows a Hamiltonian cycle c in G

Three-round subroutine

- Prover chooses uniform permutation π, and commits entrywise to the adjacency matrix of π(G)
- 2 Verifier sends a uniform challenge $b \in \{0, 1\}$

Inputs: the prover and verifier share a directed graph G; the prover also knows a Hamiltonian cycle c in G

Three-round subroutine

- Prover chooses uniform permutation π, and commits entrywise to the adjacency matrix of π(G)
- 2 Verifier sends a uniform challenge $b \in \{0, 1\}$
- Prover does:
 - If b= 0, open all commitments and send π
 - If b = 1, open $\pi(c)$ only
- 4 Verifier checks:
 - If b = 0, check that committed graph corresponds to $\pi(G)$
 - If b = 1, check that opened entries are a cycle

$$G = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

$$G = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

$$G=\left(egin{array}{ccc} 0 & 0 & 1 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight)$$

G

$$G=\left(egin{array}{ccc} 0 & 0 & 1 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight)$$

To obtain soundness error $2^{-\lambda}$, sequentially repeat this 3-round subroutine λ times

To obtain soundness error $2^{-\lambda}$, sequentially repeat this 3-round subroutine λ times

Theorem

If the commitment scheme is statistically binding and computationally hiding, this is a ZKPoK for graph Hamiltonicity

Key property of 3-round subroutine:

• Given an initial message and correct responses to both challenges, possible to efficiently compute a cycle in *G*

Note: assume P^* is deterministic (if not, fix its randomness)

Extractor \mathcal{E}

- - If v is not accepting, output (v, \perp) ; otherwise, continue

2 For $i = 1, ..., \lambda$:

- Run $P^*(G)$ using $(b_1, \ldots, b_{\underline{i}-1}, \overline{b}_i)$
- If P^* responds correctly to \overline{b}_i , compute cycle c in G; output (v, c)

3 Output (*v*, fail)

v is identically distributed to an interaction of P^* with V

- v is identically distributed to an interaction of P^* with V
- Need to show $\Pr[v \text{ is accepting } \land (x, w) \notin R] \leq 2^{-\lambda}$:

v is identically distributed to an interaction of P^* with V

Need to show $\Pr[v \text{ is accepting } \land (x, w) \notin R] \leq 2^{-\lambda}$.

- If P^* responds correctly to no sequence of challenges, trivial
- If P^* responds correctly to exactly one sequence of challenges, then $\Pr[v \text{ is accepting}] \leq 2^{-\lambda}$
- If P* responds correctly to two or more sequences of challenges, then
 E will compute a correct witness when v is accepting

(Assume perfectly hiding commitments for simplicity)

Key property of 3-round subroutine:

- Easy to simulate if we know the verifier's challenge in advance
 - If the challenge will be 0, commit to a random permutation of G
 - If the challenge will be 1, commit to a random cycle

ZK analysis

Simulator \mathcal{S}

For $i = 1, \ldots, \lambda$ do:

- Repeat up to λ times:
 - Choose uniform *b_i*
 - If $b_i = 0$, choose uniform π and send commitments to $\pi(G)$ to V^*
 - If $b_i = 1$, send commitments to a random cycle to V^*
 - If V^* responds with b_i , answer correctly and continue to next i

ZK analysis

If inner loop never fails, simulation is perfect
ZK analysis

If inner loop never fails, simulation is perfect

(Assuming perfectly hiding commitments) $Pr[\text{inner loop fails in any given iteration}] = 2^{-\lambda}$ $\Rightarrow Pr[\text{inner loop fails in some iteration}] \leq \lambda \cdot 2^{-\lambda}$

ZKPoKs

The ZKPoK we presented has $\Theta(\lambda)$ rounds

Constant-round ZKPoKs for NP are possible

Running the 3-round subroutine in parallel does not (seem to) work...why?

ZKPoKs

The ZKPoK we presented has $\Theta(\lambda)$ rounds

Constant-round ZKPoKs for NP are possible

Running the 3-round subroutine in parallel does not (seem to) work...why?

Possible to show (assuming commitment schemes) that every language in IP has a zero-knowledge proof...

Thank you!