
The Sum-Check Protocol

and Applications

Jonathan Katz
Google and University of Maryland

Jonathan Katz ZK Proofs—Lecture 1 1 / 33

Background

Outline

The sum-check protocol

The power of IP (e.g., showing #P ⊆ IP)

The Goldwasser-Kalai-Rothblum protocol

Jonathan Katz ZK Proofs—Lecture 1 2 / 33

Preliminaries

Mathematical preliminaries

Theorem

Let F be a field, and let p ∈ F[x] be a nonzero polynomial of degree ≤ d .
Then p has at most d roots.

Theorem

Let F be a field, and let p ∈ F[x1, . . . , xn] be a nonzero polynomial of total
degree ≤ d . Then p has at most d · |F|n−1 roots.

Proof.

By induction, writing p(x1, . . . , xn) =
∑d

i=0 x
i
n · pi (x1, . . . , xn−1) where

pi ∈ F[x1, . . . , xn−1] has total degree at most d − i .

Jonathan Katz ZK Proofs—Lecture 1 3 / 33

Preliminaries

Mathematical preliminaries

Theorem

Let F be a field, and let p ∈ F[x] be a nonzero polynomial of degree ≤ d .
Then p has at most d roots.

Theorem

Let F be a field, and let p ∈ F[x1, . . . , xn] be a nonzero polynomial of total
degree ≤ d . Then p has at most d · |F|n−1 roots.

Proof.

By induction, writing p(x1, . . . , xn) =
∑d

i=0 x
i
n · pi (x1, . . . , xn−1) where

pi ∈ F[x1, . . . , xn−1] has total degree at most d − i .

Jonathan Katz ZK Proofs—Lecture 1 3 / 33

Preliminaries

Mathematical preliminaries

Theorem

Let F be a field, and let p ∈ F[x] be a nonzero polynomial of degree ≤ d .
Then p has at most d roots.

Theorem

Let F be a field, and let p ∈ F[x1, . . . , xn] be a nonzero polynomial of total
degree ≤ d . Then p has at most d · |F|n−1 roots.

Proof.

By induction, writing p(x1, . . . , xn) =
∑d

i=0 x
i
n · pi (x1, . . . , xn−1) where

pi ∈ F[x1, . . . , xn−1] has total degree at most d − i .

Jonathan Katz ZK Proofs—Lecture 1 3 / 33

Preliminaries

Mathematical preliminaries

Schwartz–Zippel lemma

Let F be a field, and let p ∈ F[x1, . . . , xn] be a nonzero polynomial of total
degree ≤ d . Then Prr1,...,rn←F[p(r1, . . . , rn) = 0] ≤ d/|F|.

Corollary

Let F be a field, and let p, p′ ∈ F[x1, . . . , xn] be nonequal polynomials of
total degree ≤ d . Then Prr1,...,rn←F[p(r1, . . . , rn) = p′(r1, . . . , rn)] ≤ d/|F|.

Proof.

If p ̸= p′ then p − p′ is a nonzero polynomial.

Jonathan Katz ZK Proofs—Lecture 1 4 / 33

Preliminaries

Mathematical preliminaries

Schwartz–Zippel lemma

Let F be a field, and let p ∈ F[x1, . . . , xn] be a nonzero polynomial of total
degree ≤ d . Then Prr1,...,rn←F[p(r1, . . . , rn) = 0] ≤ d/|F|.

Corollary

Let F be a field, and let p, p′ ∈ F[x1, . . . , xn] be nonequal polynomials of
total degree ≤ d . Then Prr1,...,rn←F[p(r1, . . . , rn) = p′(r1, . . . , rn)] ≤ d/|F|.

Proof.

If p ̸= p′ then p − p′ is a nonzero polynomial.

Jonathan Katz ZK Proofs—Lecture 1 4 / 33

Sum-check protocol

The sum-check protocol

Jonathan Katz ZK Proofs—Lecture 1 5 / 33

Sum-check protocol

Overview

The prover and verifier have common input p ∈ F[x1, . . . , xn]

The prover wants to convince the verifier that

H0 =
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn).

Note: the verifier could check this in time Ω(2n), but we want a
polynomial-time verifier. (For now, think of the prover as all-powerful.)

Jonathan Katz ZK Proofs—Lecture 1 6 / 33

Sum-check protocol

Overview

The prover and verifier have common input p ∈ F[x1, . . . , xn]

The prover wants to convince the verifier that

H0 =
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn).

Note: the verifier could check this in time Ω(2n), but we want a
polynomial-time verifier. (For now, think of the prover as all-powerful.)

Jonathan Katz ZK Proofs—Lecture 1 6 / 33

Sum-check protocol

Sum-check protocol

Sum-check protocol

Common inputs: p ∈ F[x1, . . . , xn], sum

H0 :=
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn)

1 For i = 1, . . . , n do:

1 P sends pi (xi) :=
∑

xi+1
· · ·

∑
xn
p(r1, . . . , ri−1, xi , . . . , xn)

2 V checks the degree of pi and that pi (0) + pi (1) = Hi−1

3 V chooses ri ← F, sets Hi := pi (ri), and sends ri to P

2 V checks that Hn = p(r1, . . . , rn)

Completeness is clear. . .

Jonathan Katz ZK Proofs—Lecture 1 7 / 33

Sum-check protocol

Sum-check protocol

Sum-check protocol

Common inputs: p ∈ F[x1, . . . , xn], sum

H0 :=
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn)

1 For i = 1, . . . , n do:

1 P sends pi (xi) :=
∑

xi+1
· · ·

∑
xn
p(r1, . . . , ri−1, xi , . . . , xn)

2 V checks the degree of pi and that pi (0) + pi (1) = Hi−1

3 V chooses ri ← F, sets Hi := pi (ri), and sends ri to P

2 V checks that Hn = p(r1, . . . , rn)

Completeness is clear. . .

Jonathan Katz ZK Proofs—Lecture 1 7 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Base case (n = 1): Say H0 ̸=
∑

x1∈{0,1} p(x1)

If p1 = p then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p, V accepts with probability Prr1 [p1(r1) = p(r1)] ≤ d1/|F|

Jonathan Katz ZK Proofs—Lecture 1 8 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Base case (n = 1): Say H0 ̸=
∑

x1∈{0,1} p(x1)

If p1 = p then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p, V accepts with probability Prr1 [p1(r1) = p(r1)] ≤ d1/|F|

Jonathan Katz ZK Proofs—Lecture 1 8 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Base case (n = 1): Say H0 ̸=
∑

x1∈{0,1} p(x1)

If p1 = p then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p, V accepts with probability Prr1 [p1(r1) = p(r1)] ≤ d1/|F|

Jonathan Katz ZK Proofs—Lecture 1 8 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Base case (n = 1): Say H0 ̸=
∑

x1∈{0,1} p(x1)

If p1 = p then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p, V accepts with probability Prr1 [p1(r1) = p(r1)] ≤ d1/|F|

Jonathan Katz ZK Proofs—Lecture 1 8 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Inductive step: Say H0 ̸=
∑

x1∈{0,1} · · ·
∑

xn∈{0,1} p(x1, . . . , xn). Let
p∗1(x1) =

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn)

If p1 = p∗1 , then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p∗1 , then Prr1 [p1(r1) ̸= p∗1(r1)] ≥ 1− d1/|F|
When that is the case, H1 ̸=

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(r1, x2, . . . , xn)

and we can apply the induction hypothesis

Jonathan Katz ZK Proofs—Lecture 1 9 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Inductive step: Say H0 ̸=
∑

x1∈{0,1} · · ·
∑

xn∈{0,1} p(x1, . . . , xn). Let
p∗1(x1) =

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn)

If p1 = p∗1 , then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p∗1 , then Prr1 [p1(r1) ̸= p∗1(r1)] ≥ 1− d1/|F|
When that is the case, H1 ̸=

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(r1, x2, . . . , xn)

and we can apply the induction hypothesis

Jonathan Katz ZK Proofs—Lecture 1 9 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Inductive step: Say H0 ̸=
∑

x1∈{0,1} · · ·
∑

xn∈{0,1} p(x1, . . . , xn). Let
p∗1(x1) =

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn)

If p1 = p∗1 , then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p∗1 , then Prr1 [p1(r1) ̸= p∗1(r1)] ≥ 1− d1/|F|

When that is the case, H1 ̸=
∑

x2∈{0,1} · · ·
∑

xn∈{0,1} p(r1, x2, . . . , xn)
and we can apply the induction hypothesis

Jonathan Katz ZK Proofs—Lecture 1 9 / 33

Sum-check protocol

Analysis of sum-check protocol

Theorem

Let p be an n-variate polynomial of degree di in each variable. Then the
sum-check protocol has soundness error ≤

∑
i di/|F|.

Proof.

By induction on n. . .

Inductive step: Say H0 ̸=
∑

x1∈{0,1} · · ·
∑

xn∈{0,1} p(x1, . . . , xn). Let
p∗1(x1) =

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn)

If p1 = p∗1 , then p1(0) + p1(1) ̸= H0 and V rejects

If p1 ̸= p∗1 , then Prr1 [p1(r1) ̸= p∗1(r1)] ≥ 1− d1/|F|
When that is the case, H1 ̸=

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(r1, x2, . . . , xn)

and we can apply the induction hypothesis

Jonathan Katz ZK Proofs—Lecture 1 9 / 33

Sum-check protocol

Complexity of the sum-check protocol

Let T be the time to evaluate p

rounds O(n)

communication O(
∑

i di) field elements

verifier time O(
∑

i di) + T

prover time O(2n · T ·
∑

i di)

Notes:

V does not need to know anything about p (besides bounds on the
degrees) until the end of the protocol

In fact, V does not ever need to know p; it just needs the ability to
evaluate p at a (random) point

Jonathan Katz ZK Proofs—Lecture 1 10 / 33

Sum-check protocol

Complexity of the sum-check protocol

Let T be the time to evaluate p

rounds O(n)

communication O(
∑

i di) field elements

verifier time O(
∑

i di) + T

prover time O(2n · T ·
∑

i di)

Notes:

V does not need to know anything about p (besides bounds on the
degrees) until the end of the protocol

In fact, V does not ever need to know p; it just needs the ability to
evaluate p at a (random) point

Jonathan Katz ZK Proofs—Lecture 1 10 / 33

Sum-check protocol

Complexity of the sum-check protocol

Let T be the time to evaluate p

rounds O(n)

communication O(
∑

i di) field elements

verifier time O(
∑

i di) + T

prover time O(2n · T ·
∑

i di)

Notes:

V does not need to know anything about p (besides bounds on the
degrees) until the end of the protocol

In fact, V does not ever need to know p; it just needs the ability to
evaluate p at a (random) point

Jonathan Katz ZK Proofs—Lecture 1 10 / 33

Sum-check protocol

#P ⊆ IP

P can prove to V how many satisfying assignments a 3CNF formula ϕ has

Step 1: “arithmetize” ϕ by turning it into a polynomial Φ

xi → xi , x̄i → 1− xi

ϕ1 ∧ ϕ2 → Φ1 · Φ2

ϕ1 ∨ ϕ2 → 1− (1− Φ1) · (1− Φ2)

Note ϕ(b1, . . . , bn) = false⇒ Φ(b1, . . . , bn) = 0 and
ϕ(b1, . . . , bn) = true⇒ Φ(b1, . . . , bn) = 1

So, the number of satisfying assignments is exactly∑
b1,...,bn∈{0,1}Φ(b1, . . . , bn)

Jonathan Katz ZK Proofs—Lecture 1 11 / 33

Sum-check protocol

#P ⊆ IP

P can prove to V how many satisfying assignments a 3CNF formula ϕ has

Step 1: “arithmetize” ϕ by turning it into a polynomial Φ

xi → xi , x̄i → 1− xi

ϕ1 ∧ ϕ2 → Φ1 · Φ2

ϕ1 ∨ ϕ2 → 1− (1− Φ1) · (1− Φ2)

Note ϕ(b1, . . . , bn) = false⇒ Φ(b1, . . . , bn) = 0 and
ϕ(b1, . . . , bn) = true⇒ Φ(b1, . . . , bn) = 1

So, the number of satisfying assignments is exactly∑
b1,...,bn∈{0,1}Φ(b1, . . . , bn)

Jonathan Katz ZK Proofs—Lecture 1 11 / 33

Sum-check protocol

#P ⊆ IP

P can prove to V how many satisfying assignments a 3CNF formula ϕ has

Step 1: “arithmetize” ϕ by turning it into a polynomial Φ

xi → xi , x̄i → 1− xi

ϕ1 ∧ ϕ2 → Φ1 · Φ2

ϕ1 ∨ ϕ2 → 1− (1− Φ1) · (1− Φ2)

Note ϕ(b1, . . . , bn) = false⇒ Φ(b1, . . . , bn) = 0 and
ϕ(b1, . . . , bn) = true⇒ Φ(b1, . . . , bn) = 1

So, the number of satisfying assignments is exactly∑
b1,...,bn∈{0,1}Φ(b1, . . . , bn)

Jonathan Katz ZK Proofs—Lecture 1 11 / 33

Sum-check protocol

#P ⊆ IP

P can prove to V how many satisfying assignments a 3CNF formula ϕ has

Step 1: “arithmetize” ϕ by turning it into a polynomial Φ

xi → xi , x̄i → 1− xi

ϕ1 ∧ ϕ2 → Φ1 · Φ2

ϕ1 ∨ ϕ2 → 1− (1− Φ1) · (1− Φ2)

Note ϕ(b1, . . . , bn) = false⇒ Φ(b1, . . . , bn) = 0 and
ϕ(b1, . . . , bn) = true⇒ Φ(b1, . . . , bn) = 1

So, the number of satisfying assignments is exactly∑
b1,...,bn∈{0,1}Φ(b1, . . . , bn)

Jonathan Katz ZK Proofs—Lecture 1 11 / 33

Sum-check protocol

#P ⊆ IP

A prover can prove to a verifier how many satisfying assignments a 3CNF
formula ϕ has

Choose prime q > max{2n, 2λ ·
∑

i di} and view Φ as a polynomial in
Fq[x1, . . . , xn]

Although we defined Φ based on its values on {0, 1}n, nothing stops
us from evaluating it on points in Fn

q!

Step 2: run the sum-check protocol with H0 the claimed number of
satisfying assignments

Jonathan Katz ZK Proofs—Lecture 1 12 / 33

Sum-check protocol

#P ⊆ IP

A prover can prove to a verifier how many satisfying assignments a 3CNF
formula ϕ has

Choose prime q > max{2n, 2λ ·
∑

i di} and view Φ as a polynomial in
Fq[x1, . . . , xn]

Although we defined Φ based on its values on {0, 1}n, nothing stops
us from evaluating it on points in Fn

q!

Step 2: run the sum-check protocol with H0 the claimed number of
satisfying assignments

Jonathan Katz ZK Proofs—Lecture 1 12 / 33

Sum-check protocol

IP = PSPACE

Possible to extend the previous result (using one additional idea) to show
that PSPACE ⊆ IP

This is tight, since it is also possible to show IP ⊆ PSPACE

Jonathan Katz ZK Proofs—Lecture 1 13 / 33

GKR protocol

The GKR protocol

Jonathan Katz ZK Proofs—Lecture 1 14 / 33

GKR protocol

Motivating the GKR protocol

Say a prover wants to convince a verifier about some computation done by
a machine M running in (polynomial) time T and (polynomial) space S

It is possible to reduce the computation of M to a PSPACE-complete
problem, and then use PSPACE ⊆ IP

The reduction results in a formula on n = O(S logT) variables

So the prover would require time TO(S)!

Problem: IP focuses entirely on keeping the verifier time polynomial,
without regard for the prover time

We want “doubly efficient” proofs

Jonathan Katz ZK Proofs—Lecture 1 15 / 33

GKR protocol

Motivating the GKR protocol

Say a prover wants to convince a verifier about some computation done by
a machine M running in (polynomial) time T and (polynomial) space S

It is possible to reduce the computation of M to a PSPACE-complete
problem, and then use PSPACE ⊆ IP

The reduction results in a formula on n = O(S logT) variables

So the prover would require time TO(S)!

Problem: IP focuses entirely on keeping the verifier time polynomial,
without regard for the prover time

We want “doubly efficient” proofs

Jonathan Katz ZK Proofs—Lecture 1 15 / 33

GKR protocol

Motivating the GKR protocol

Say a prover wants to convince a verifier about some computation done by
a machine M running in (polynomial) time T and (polynomial) space S

It is possible to reduce the computation of M to a PSPACE-complete
problem, and then use PSPACE ⊆ IP

The reduction results in a formula on n = O(S logT) variables

So the prover would require time TO(S)!

Problem: IP focuses entirely on keeping the verifier time polynomial,
without regard for the prover time

We want “doubly efficient” proofs

Jonathan Katz ZK Proofs—Lecture 1 15 / 33

GKR protocol

Mathematical preliminaries

Let f : {0, 1}n → F be a function

p ∈ F[x1, . . . , xn] is an extension of f if p(b) = f (b) for all b ∈ {0, 1}n

p ∈ F[x1, . . . , xn] is multilinear if the degree of each variable is at most 1

Jonathan Katz ZK Proofs—Lecture 1 16 / 33

GKR protocol

Mathematical preliminaries

Let f : {0, 1}n → F be a function

p ∈ F[x1, . . . , xn] is an extension of f if p(b) = f (b) for all b ∈ {0, 1}n

p ∈ F[x1, . . . , xn] is multilinear if the degree of each variable is at most 1

Jonathan Katz ZK Proofs—Lecture 1 16 / 33

GKR protocol

Mathematical preliminaries

Let f : {0, 1}n → F be a function

p ∈ F[x1, . . . , xn] is an extension of f if p(b) = f (b) for all b ∈ {0, 1}n

p ∈ F[x1, . . . , xn] is multilinear if the degree of each variable is at most 1

Jonathan Katz ZK Proofs—Lecture 1 16 / 33

GKR protocol

Mathematical preliminaries

Let f : {0, 1}n → F be a function

p ∈ F[x1, . . . , xn] is an extension of f if p(b) = f (b) for all b ∈ {0, 1}n

p ∈ F[x1, . . . , xn] is multilinear if the degree of each variable is at most 1

Jonathan Katz ZK Proofs—Lecture 1 16 / 33

GKR protocol

Mathematical preliminaries

Lemma

If p ∈ F[x1, . . . , xn] is a multilinear polynomial such that p(b) = 0 for all
b ∈ {0, 1}n, then p is the zero polynomial.

Proof.

Assume not, and let t = c ·
∏

i∈S xi be a nonzero term in p with minimal
total degree. Then when setting all variables in S to 1, t is nonzero but all
other terms are 0. So p is nonzero in that case, a contradiction.

Jonathan Katz ZK Proofs—Lecture 1 17 / 33

GKR protocol

Mathematical preliminaries

Lemma

If p ∈ F[x1, . . . , xn] is a multilinear polynomial such that p(b) = 0 for all
b ∈ {0, 1}n, then p is the zero polynomial.

Proof.

Assume not, and let t = c ·
∏

i∈S xi be a nonzero term in p with minimal
total degree.

Then when setting all variables in S to 1, t is nonzero but all
other terms are 0. So p is nonzero in that case, a contradiction.

Jonathan Katz ZK Proofs—Lecture 1 17 / 33

GKR protocol

Mathematical preliminaries

Lemma

If p ∈ F[x1, . . . , xn] is a multilinear polynomial such that p(b) = 0 for all
b ∈ {0, 1}n, then p is the zero polynomial.

Proof.

Assume not, and let t = c ·
∏

i∈S xi be a nonzero term in p with minimal
total degree. Then when setting all variables in S to 1, t is nonzero but all
other terms are 0.

So p is nonzero in that case, a contradiction.

Jonathan Katz ZK Proofs—Lecture 1 17 / 33

GKR protocol

Mathematical preliminaries

Lemma

If p ∈ F[x1, . . . , xn] is a multilinear polynomial such that p(b) = 0 for all
b ∈ {0, 1}n, then p is the zero polynomial.

Proof.

Assume not, and let t = c ·
∏

i∈S xi be a nonzero term in p with minimal
total degree. Then when setting all variables in S to 1, t is nonzero but all
other terms are 0. So p is nonzero in that case, a contradiction.

Jonathan Katz ZK Proofs—Lecture 1 17 / 33

GKR protocol

Mathematical preliminaries

Theorem

Every function f : {0, 1}n → F has a unique multilinear extension f̃ .

Proof.

For b ∈ {0, 1}n, define the multilinear polynomial

χb(x1, . . . , xn) =
n∏

i=1

(bixi + (1− bi) · (1− xi))

=

{
1 x = b
0 x ∈ {0, 1}n \ b

Let f̃ =
∑

b∈{0,1}n f (b) · χb(x1, . . . , xn).

Jonathan Katz ZK Proofs—Lecture 1 18 / 33

GKR protocol

Mathematical preliminaries

Theorem

Every function f : {0, 1}n → F has a unique multilinear extension f̃ .

Proof.

For b ∈ {0, 1}n, define the multilinear polynomial

χb(x1, . . . , xn) =
n∏

i=1

(bixi + (1− bi) · (1− xi))

=

{
1 x = b
0 x ∈ {0, 1}n \ b

Let f̃ =
∑

b∈{0,1}n f (b) · χb(x1, . . . , xn).

Jonathan Katz ZK Proofs—Lecture 1 18 / 33

GKR protocol

Mathematical preliminaries

Theorem

Every function f : {0, 1}n → F has a unique multilinear extension f̃ .

Proof.

To see uniqueness, note that if g , h are both multilinear extensions of f ,
then g − h is a multilinear polynomial that evaluates to 0 on {0, 1}n.

Jonathan Katz ZK Proofs—Lecture 1 19 / 33

GKR protocol

Mathematical preliminaries

Given {f (b)}b∈{0,1}n , how efficiently can we compute

f̃ (w) =
∑

b∈{0,1}n
f (b) · χb(w1, . . . ,wn)

(for arbitrary w ∈ Fn)?

Method 1: single pass over {f (b)}b∈{0,1}n , time O(n · 2n), space O(n)

Useful when streaming {f (b)}b∈{0,1}n and want to minimize space

Method 2: time and space O(2n)

Useful if {f (b)}b∈{0,1}n is stored anyway and want to minimize time

Main idea: compute {χb(w)}b∈{0,1}n using memoization and then
take the dot product with {f (b)}b∈{0,1}n

Jonathan Katz ZK Proofs—Lecture 1 20 / 33

GKR protocol

Mathematical preliminaries

Given {f (b)}b∈{0,1}n , how efficiently can we compute

f̃ (w) =
∑

b∈{0,1}n
f (b) · χb(w1, . . . ,wn)

(for arbitrary w ∈ Fn)?

Method 1: single pass over {f (b)}b∈{0,1}n , time O(n · 2n), space O(n)

Useful when streaming {f (b)}b∈{0,1}n and want to minimize space

Method 2: time and space O(2n)

Useful if {f (b)}b∈{0,1}n is stored anyway and want to minimize time

Main idea: compute {χb(w)}b∈{0,1}n using memoization and then
take the dot product with {f (b)}b∈{0,1}n

Jonathan Katz ZK Proofs—Lecture 1 20 / 33

GKR protocol

Mathematical preliminaries

Given {f (b)}b∈{0,1}n , how efficiently can we compute

f̃ (w) =
∑

b∈{0,1}n
f (b) · χb(w1, . . . ,wn)

(for arbitrary w ∈ Fn)?

Method 1: single pass over {f (b)}b∈{0,1}n , time O(n · 2n), space O(n)

Useful when streaming {f (b)}b∈{0,1}n and want to minimize space

Method 2: time and space O(2n)

Useful if {f (b)}b∈{0,1}n is stored anyway and want to minimize time

Main idea: compute {χb(w)}b∈{0,1}n using memoization and then
take the dot product with {f (b)}b∈{0,1}n

Jonathan Katz ZK Proofs—Lecture 1 20 / 33

GKR protocol

Overview of the GKR protocol

Let C be a fan-in 2, layered arithmetic circuit over F, with n
inputs/outputs

“Layered” = gates at a level only connected to gates at previous level

P and V agree on x ∈ Fn; P wants to convince V that C (x) = y

Jonathan Katz ZK Proofs—Lecture 1 21 / 33

GKR protocol

Overview of the GKR protocol

Let C be a fan-in 2, layered arithmetic circuit over F, with n
inputs/outputs

“Layered” = gates at a level only connected to gates at previous level

P and V agree on x ∈ Fn; P wants to convince V that C (x) = y

Jonathan Katz ZK Proofs—Lecture 1 21 / 33

GKR protocol

Notation

Number the layers of C from 0 (output layer) to d (input layer)

Let Si = 2si be the number of gates at level i

Let Wi : {0, 1}si → F be the function specifying the values on the output
wires at level i (for the given input x)

Note V knows Wd , and the claimed value of W0

Let addi : {0, 1}si+2si+1 → {0, 1} be the addition wiring predicate of layer i

addi (a, b, c) = 1 iff wire a is the sum of wires b and c

Define multi similarly

Jonathan Katz ZK Proofs—Lecture 1 22 / 33

GKR protocol

Notation

Number the layers of C from 0 (output layer) to d (input layer)

Let Si = 2si be the number of gates at level i

Let Wi : {0, 1}si → F be the function specifying the values on the output
wires at level i (for the given input x)

Note V knows Wd , and the claimed value of W0

Let addi : {0, 1}si+2si+1 → {0, 1} be the addition wiring predicate of layer i

addi (a, b, c) = 1 iff wire a is the sum of wires b and c

Define multi similarly

Jonathan Katz ZK Proofs—Lecture 1 22 / 33

GKR protocol

Notation

Key fact

W̃i (a) =
∑

b,c∈{0,1}si+1 ãdd(a, b, c) ·
(
W̃i+1(b) + W̃i+1(c)

)
+ m̃ult(a, b, c) ·

(
W̃i+1(b) · W̃i+1(c)

)
.

Proof.

Both sides are multilinear in a, and agree for all a ∈ {0, 1}si

Looks like the sum-check protocol might be useful!

Define p̃i+1(a, b, c) = ãddi (a, b, c) ·
(
W̃i+1(b) + W̃i+1(c)

)
+ m̃ulti (a, b, c) ·

(
W̃i+1(b) · W̃i+1(c)

)

Jonathan Katz ZK Proofs—Lecture 1 23 / 33

GKR protocol

Notation

Key fact

W̃i (a) =
∑

b,c∈{0,1}si+1 ãdd(a, b, c) ·
(
W̃i+1(b) + W̃i+1(c)

)
+ m̃ult(a, b, c) ·

(
W̃i+1(b) · W̃i+1(c)

)
.

Proof.

Both sides are multilinear in a, and agree for all a ∈ {0, 1}si

Looks like the sum-check protocol might be useful!

Define p̃i+1(a, b, c) = ãddi (a, b, c) ·
(
W̃i+1(b) + W̃i+1(c)

)
+ m̃ulti (a, b, c) ·

(
W̃i+1(b) · W̃i+1(c)

)
Jonathan Katz ZK Proofs—Lecture 1 23 / 33

GKR protocol

The GKR protocol—core idea

Common input: C and x, which defines Wd : {0, 1}sd → F

1 P sends y = C (x), which defines W ∗
0 : {0, 1}s0 → F

2 V chooses r ← Fs0 , sends r to P, and sets H0 := W̃ ∗
0 (r)

3 P,V run the sum-check protocol to show H0 =
∑

b,c p̃1(r , b, c)

Intuition:

Let W0 be the function corresponding to the correct output

If W ∗
0 ̸= W0, then W̃ ∗

0 (r) ̸= W̃0(r) w.h.p.

If W̃ ∗
0 (r) ̸= W̃0(r), V will reject in the sum-check protocol w.h.p.

Jonathan Katz ZK Proofs—Lecture 1 24 / 33

GKR protocol

The GKR protocol—core idea

Common input: C and x, which defines Wd : {0, 1}sd → F

1 P sends y, which defines W ∗
0 : {0, 1}s0 → F

2 V chooses r ← Fs0 , sends r to P, and sets H0 := W̃ ∗
0 (r)

3 P,V run the sum-check protocol to show H0 =
∑

b,c p̃1(r , b, c)

Problem: to run the sum-check protocol, V needs to evaluate p̃1(r , b1, c1)!

In particular, V requires W̃1(b1) and W̃1(c1)

We assume evaluating the rest of p̃1 is easy

If P sends W1, then P ends up sending the entire evaluation of C . . .

Instead, P sends z0 = W̃1(b1), z1 = W̃1(c1) and V recursively verifies

Jonathan Katz ZK Proofs—Lecture 1 24 / 33

GKR protocol

Recursing

How to recurse?

V could check that z0 = W̃1(b1) (or z1 = W̃1(c1)) using the sum-check
protocol as before

But if V checks both in the obvious way, then V will end up running the
sum-check protocol O(2d) times!

Need a better approach . . .

We show one approach; other approaches are possible

Jonathan Katz ZK Proofs—Lecture 1 25 / 33

GKR protocol

Recursing

How to recurse?

V could check that z0 = W̃1(b1) (or z1 = W̃1(c1)) using the sum-check
protocol as before

But if V checks both in the obvious way, then V will end up running the
sum-check protocol O(2d) times!

Need a better approach . . .

We show one approach; other approaches are possible

Jonathan Katz ZK Proofs—Lecture 1 25 / 33

GKR protocol

Recursing

How to recurse?

V could check that z0 = W̃1(b1) (or z1 = W̃1(c1)) using the sum-check
protocol as before

But if V checks both in the obvious way, then V will end up running the
sum-check protocol O(2d) times!

Need a better approach . . .

We show one approach; other approaches are possible

Jonathan Katz ZK Proofs—Lecture 1 25 / 33

GKR protocol

Recursing

Recall: V needs to know W̃1(b1) and W̃1(c1)

Let ℓ : F→ Fs1 be the unique line such that ℓ(0) = b1 and ℓ(1) = c1

P sends the univariate polynomial q = W̃1 ◦ ℓ
V checks that q has degree ≤ s1

V sets W̃1(b1) := q(0) and W̃1(c1) := q(1)

V chooses r∗ ← F, sets r1 := ℓ(r∗) and H1 := q(r∗), and has P prove that

H1 = W̃1(r1)

We have reduced checking the value of W̃1 at two points to checking
its value at one point!

Jonathan Katz ZK Proofs—Lecture 1 26 / 33

GKR protocol

Recursing

Recall: V needs to know W̃1(b1) and W̃1(c1)

Let ℓ : F→ Fs1 be the unique line such that ℓ(0) = b1 and ℓ(1) = c1

P sends the univariate polynomial q = W̃1 ◦ ℓ

V checks that q has degree ≤ s1

V sets W̃1(b1) := q(0) and W̃1(c1) := q(1)

V chooses r∗ ← F, sets r1 := ℓ(r∗) and H1 := q(r∗), and has P prove that

H1 = W̃1(r1)

We have reduced checking the value of W̃1 at two points to checking
its value at one point!

Jonathan Katz ZK Proofs—Lecture 1 26 / 33

GKR protocol

Recursing

Recall: V needs to know W̃1(b1) and W̃1(c1)

Let ℓ : F→ Fs1 be the unique line such that ℓ(0) = b1 and ℓ(1) = c1

P sends the univariate polynomial q = W̃1 ◦ ℓ
V checks that q has degree ≤ s1

V sets W̃1(b1) := q(0) and W̃1(c1) := q(1)

V chooses r∗ ← F, sets r1 := ℓ(r∗) and H1 := q(r∗), and has P prove that

H1 = W̃1(r1)

We have reduced checking the value of W̃1 at two points to checking
its value at one point!

Jonathan Katz ZK Proofs—Lecture 1 26 / 33

GKR protocol

Recursing

Recall: V needs to know W̃1(b1) and W̃1(c1)

Let ℓ : F→ Fs1 be the unique line such that ℓ(0) = b1 and ℓ(1) = c1

P sends the univariate polynomial q = W̃1 ◦ ℓ
V checks that q has degree ≤ s1

V sets W̃1(b1) := q(0) and W̃1(c1) := q(1)

V chooses r∗ ← F, sets r1 := ℓ(r∗) and H1 := q(r∗), and has P prove that

H1 = W̃1(r1)

We have reduced checking the value of W̃1 at two points to checking
its value at one point!

Jonathan Katz ZK Proofs—Lecture 1 26 / 33

GKR protocol

Overall GKR protocol

Overall, in the ith iteration

V has a value Hi claimed to be equal to W̃i (ri)

P proves that Hi =
∑

b,c p̃i+1(ri , b, c) using the sum-check protocol

To complete the protocol, V needs the evaluation of p̃i+1 at a random

point, which requires the evaluation of W̃i+1 at two random points

Using the previous method, we reduce this to a claim about the value

of W̃i+1 at a single random point

This results in a value Hi+1 claimed to be equal to W̃i+1(ri+1)

In the last iteration, V can verify the claimed value of W̃d on its own

Jonathan Katz ZK Proofs—Lecture 1 27 / 33

GKR protocol

Overall GKR protocol

Overall, in the ith iteration

V has a value Hi claimed to be equal to W̃i (ri)

P proves that Hi =
∑

b,c p̃i+1(ri , b, c) using the sum-check protocol

To complete the protocol, V needs the evaluation of p̃i+1 at a random

point, which requires the evaluation of W̃i+1 at two random points

Using the previous method, we reduce this to a claim about the value

of W̃i+1 at a single random point

This results in a value Hi+1 claimed to be equal to W̃i+1(ri+1)

In the last iteration, V can verify the claimed value of W̃d on its own

Jonathan Katz ZK Proofs—Lecture 1 27 / 33

GKR protocol

The GKR protocol

GKR protocol

Common input: C and x, which defines Wd : {0, 1}sd → F

P sends y , which defines W0 : {0, 1}s0 → F. V chooses r0 ← Fs0 , sets

H0 := W̃0(r0), and sends r0 to P. Then for i = 0, . . . , d − 1 do:

1 P,V run the sum-check protocol to show Hi =
∑

b,c p̃i+1(ri , b, c)

At the end of the protocol, V needs W̃i+1(bi), W̃i+1(ci)
Let ℓ : F→ Fsi+1 be the line with ℓ(0) = bi and ℓ(1) = ci
P sends qi+1 = W̃i+1 ◦ ℓ of degree at most si+1, and V uses
qi+1(0), qi+1(1) to complete the protocol

2 V chooses r∗ ← F, sets ri+1 := ℓ(r∗) and Hi+1 := qi+1(r
∗), and

sends ri+1 to P

V checks that Hd = W̃d(rd)

Jonathan Katz ZK Proofs—Lecture 1 28 / 33

GKR protocol

Analysis of the GKR protocol

There are now two sources of soundness error

If qi+1 is incorrect but qi+1(r
∗) = Hi+1

Each qi+1 has degree at most log |C |, so probability O(|F|−1 · log |C |)

The sum-check protocols

Each invocation of the sum-check protocol involves a polynomial in
≤ 2 log |C | variables, where each variable has degree O(1)
Soundness error O(|F|−1 · log |C |) per protocol

By a union bound, soundness error O(d · |F|−1 log |C |) overall

Jonathan Katz ZK Proofs—Lecture 1 29 / 33

GKR protocol

Analysis of the GKR protocol

There are now two sources of soundness error

If qi+1 is incorrect but qi+1(r
∗) = Hi+1

Each qi+1 has degree at most log |C |, so probability O(|F|−1 · log |C |)
The sum-check protocols

Each invocation of the sum-check protocol involves a polynomial in
≤ 2 log |C | variables, where each variable has degree O(1)
Soundness error O(|F|−1 · log |C |) per protocol

By a union bound, soundness error O(d · |F|−1 log |C |) overall

Jonathan Katz ZK Proofs—Lecture 1 29 / 33

GKR protocol

Analysis of the GKR protocol

There are now two sources of soundness error

If qi+1 is incorrect but qi+1(r
∗) = Hi+1

Each qi+1 has degree at most log |C |, so probability O(|F|−1 · log |C |)
The sum-check protocols

Each invocation of the sum-check protocol involves a polynomial in
≤ 2 log |C | variables, where each variable has degree O(1)
Soundness error O(|F|−1 · log |C |) per protocol

By a union bound, soundness error O(d · |F|−1 log |C |) overall

Jonathan Katz ZK Proofs—Lecture 1 29 / 33

GKR protocol

Complexity of the GKR protocol

Communication complexity (excluding the output)

p̃i+1(ri , b, c) is a 2si+1-variate polynomial of degree ≤ 2 in each
variable

Each invocation of sum-check uses O(log |C |) rounds, with O(1) field
elements sent per round

O(d log |C |) field elements sent overall

Round complexity O(d log |C |)

Jonathan Katz ZK Proofs—Lecture 1 30 / 33

GKR protocol

Complexity of the GKR protocol

Communication complexity (excluding the output)

p̃i+1(ri , b, c) is a 2si+1-variate polynomial of degree ≤ 2 in each
variable

Each invocation of sum-check uses O(log |C |) rounds, with O(1) field
elements sent per round

O(d log |C |) field elements sent overall

Round complexity O(d log |C |)

Jonathan Katz ZK Proofs—Lecture 1 30 / 33

GKR protocol

Complexity of the GKR protocol

Verifier time (assuming time for ãddi , m̃ulti is dominated by other costs)

O(n) time to read input/output (and evaluate W̃d)

O(d log |C |) additional work

Prover time

Naively: in the ith iteration, P needs to evaluate pi+1 at O(S2
i+1)

points; each evaluation takes time O(Si + Si+1)

Total time O(|C |3)

Can do better by observing that ãdd, m̃ult are sparse

Total time O(|C | log |C |)

Jonathan Katz ZK Proofs—Lecture 1 31 / 33

GKR protocol

Complexity of the GKR protocol

Verifier time (assuming time for ãddi , m̃ulti is dominated by other costs)

O(n) time to read input/output (and evaluate W̃d)

O(d log |C |) additional work

Prover time

Naively: in the ith iteration, P needs to evaluate pi+1 at O(S2
i+1)

points; each evaluation takes time O(Si + Si+1)

Total time O(|C |3)

Can do better by observing that ãdd, m̃ult are sparse

Total time O(|C | log |C |)

Jonathan Katz ZK Proofs—Lecture 1 31 / 33

GKR protocol

Recap

The sumcheck protocol is very powerful

Can be used to show that IP is very powerful!

IP does not care about prover complexity, but in practice we (also) want
the prover to be efficient (i.e., we want doubly efficient protocols)

Also want the verifier to be as efficient as possible, not just
“polynomial time”

The GKR protocol takes a big step in that direction

Note that the GKR protocol is a proof; can potentially gain more by
considering arguments and using cryptography. . .

Jonathan Katz ZK Proofs—Lecture 1 32 / 33

GKR protocol

Recap

The sumcheck protocol is very powerful

Can be used to show that IP is very powerful!

IP does not care about prover complexity, but in practice we (also) want
the prover to be efficient (i.e., we want doubly efficient protocols)

Also want the verifier to be as efficient as possible, not just
“polynomial time”

The GKR protocol takes a big step in that direction

Note that the GKR protocol is a proof; can potentially gain more by
considering arguments and using cryptography. . .

Jonathan Katz ZK Proofs—Lecture 1 32 / 33

GKR protocol

Recap

The sumcheck protocol is very powerful

Can be used to show that IP is very powerful!

IP does not care about prover complexity, but in practice we (also) want
the prover to be efficient (i.e., we want doubly efficient protocols)

Also want the verifier to be as efficient as possible, not just
“polynomial time”

The GKR protocol takes a big step in that direction

Note that the GKR protocol is a proof; can potentially gain more by
considering arguments and using cryptography. . .

Jonathan Katz ZK Proofs—Lecture 1 32 / 33

GKR protocol

Thank you!

Jonathan Katz ZK Proofs—Lecture 1 33 / 33

	Background
	Preliminaries
	Sum-check protocol
	GKR protocol

