

Lattice-based Σ -protocols

Lisa Kohl

Cryptology Group, CWI Amsterdam

Foundations and Applications of Zero-Knowledge Proofs, Edinburgh

- This talk: What if DLOG is no longer hard?
- Issue: Soundness does no longer hold!

Verifier (Vaquita)

Here we focus on soundness & ZK, but these can also be compressed! [AttemaCramerKohl' 21]

Application: Digital signatures

Application: Post-quantum signatures

$$pk = X$$

I know witness *w* for statement *X*

From Sigma-Protocols to Signatures [Schnorr signatures]:

Sign(pk,m):

- Choose/ compute 'commitment' a
- Compute c = H(pk, a, m)
- Compute third-round message z
- Output signature $\sigma = (a, z)$

(*H* modeled as a random oracle)

Post-quantum signatures:

С

Ζ

X

e.g.,

- [Lyubashevsky'09,'11]
- CRYSTALS-Dilithium

Recall: Σ -protocols

- Σ-protocols satisfy:
 - **Perfect completeness:** Every honest transcript is accepting (i.e., V outputs 1)
 - (2-)Special soundness: Giving two accepting transcripts (a, c, z), (a, c', z') with $c \neq c'$ one can efficiently compute a witness \tilde{w} for X
 - Honest verifier zero knowledge: Honest transcripts can be efficiently simulated (without knowing the witness w)

We already have a blue-print!

Instantiating Σ -protocols from lattices

Homomorphic commitments

Additional required properties:

- Homomorphic: w + v = w + v
- (Succinct:) $| w | \ll |w|$

Homomorphic Commitments from MSIS

Binding

Homomorphic Commitments from MSIS

DLOG vs SIS

DLOG:

G group w/ generator *g* & order *q*

- $w \in \mathbb{Z}_q$ is witness
- $X = g^w$ is statement

•
$$g^w \cdot g^{w'} = g^{w+w'}$$

•
$$(g^w)^c = g^{w \cdot c}$$

• (Recall: Extends to $w \in \mathbb{Z}_q^m$)

SIS:

- $A \in \mathbb{Z}_q^{k \times m}$ public matrix
- $\vec{w} \in \{-\beta, \dots, \beta\}^m$ is witness

•
$$X = A \cdot \vec{w}$$
 is statement

•
$$A \cdot \vec{w} + A \cdot \vec{w}' = A \cdot (\vec{w} + \vec{w}')$$

• $c \cdot A \cdot \vec{w} = A \cdot (c \cdot \vec{w})$

@Khanh

Lattice-based Σ -Protocols

Towards Soundness & ZK

Towards Soundness and ZK

Option 1: Choose very large parameters:

- $\vec{r} \leftarrow \{-B, ..., B\}^m$ for $B \gg \beta$ (such that β/B is negligible)
- Choose large modulus q (such that SIS holds for large bound $b \in \mathcal{O}(B)$)
- HVZK: \vec{z} only reveals something if $||\vec{z}|| > B \beta$ (only happens with negl probability) Soundness: Given $\vec{z} = \vec{r} + 0 \cdot \vec{w}$ $\vec{z}' = \vec{r} + 1 \cdot \vec{w}'$ $\vec{z}' - \vec{z}$ is valid opening for \vec{w} with norm $\leq 2B$ \checkmark **Option 2:**
- Choose smaller bound B
- Abort and restart if \vec{z} would leak something [Lyubashevsky09,11]

Soundness "Gap": Start with $\|\vec{w}\| \leq \beta$ but can only extract $\|\vec{w}'\| \leq 2B$

Rejection Sampling

Uniform distribution

• Small parameters

 $B \approx \beta$:

• Abort probability ≈ 1

Large parameters
Abort probability ≈ 0

 $B \gg \beta$:

Extending the Challenge Space

Extending the Challenge Space (1/3)

• **Problem:** Prover can cheat with probability ¹/₂

⇒ Either we

- What about challenge space $\mathcal{C} = \{-\delta, \dots, \delta\}$ for small δ ?
- **Example:** Extracting the witness for c = -1, c' = 1

$$\vec{z} \stackrel{?}{=} \vec{r} \stackrel{?}{=} - 1 \cdot \vec{w} \stackrel{?}{=} \vec{r} \stackrel{?}{=} \vec{r} \stackrel{+1}{=} + 1 \cdot \vec{w} \stackrel{.}{=} \vec{r} \stackrel{.}{=} \vec{r} \stackrel{.}{=} + 1 \cdot \vec{w} \stackrel{.}{=} \vec{r} \stackrel{.}{=} \vec{r} \stackrel{.}{=} + 1 \cdot \vec{w} \stackrel{.}{=} \vec{r} \stackrel{.}{=} \vec{r} \stackrel{.}{=} \vec{r} \stackrel{.}{=} + 1 \cdot \vec{w} \stackrel{.}{=} \vec{r} \stackrel{.}{=} \vec{$$

Extending the Challenge Space (2/3)

- Polynomial ring $R_q \coloneqq \mathbb{Z}_q[X]/(f(X))$, e.g., $f(X) = X^d + 1$
- Elements in $R_q: a = a_0 + a_1 \cdot X + \dots + a_{d-1} \cdot X^{d-1}$
- Some facts:

•
$$X^{d} = -1$$

• $a + b = (\sum_{i=0}^{d-1} a_{i} \cdot X^{i}) + (\sum_{i=0}^{d-1} b_{i} \cdot X^{i}) = \sum_{i=0}^{d-1} (a_{i} + b_{i}) \cdot X^{i}$
• $a \cdot b$
= $(\sum_{i=0}^{d-1} a_{i} \cdot X^{i}) \cdot (\sum_{i=0}^{d-1} b_{i} \cdot X^{i}) = \sum_{i=0}^{d-1} \left(\sum_{j,k:j+k=i} a_{j} \cdot b_{k} - \sum_{j,k:j+k=i+d} a_{j} \cdot b_{k} \right) \cdot X^{i}$
• $||a + b|| \le ||a|| + ||b||, ||a \cdot b|| \le d \cdot ||a|| \cdot ||b||$

Extending the Challenge Space (3/3)

Here: consider infinity norm $\|\vec{s}\| \coloneqq \max_{i} \|s_i\|$,

where $||s_i||$ denotes the larges coefficient of the polynomial s_i

- MSIS Assumption: It is difficult to find non-zero module short integer solution $\vec{s} \in R_q^m$ with $\|\vec{s}\| \le b$ and $A \cdot \vec{s} = 0 \mod q$, where $A \in R_q^{k \times m}$
- Have more flexibility with the challenge space!
- (But: Challenge difference not necessarily invertible anymore)
- For approximate proofs: Can choose $\mathcal{C} \coloneqq \{b_0 + b_1 X + \dots + b_{d-1} X^{d-1} : b_0, \dots, b_{d-1} \in \{0,1\}\}$
- For $d \in \mathcal{O}(\lambda)$ we have exponential challenge space $|\mathcal{C}| = 2^d$

Approximate vs exact proofs

$$A \cdot \vec{w} = X$$

Approximate [Lyu09,Lyu11]:

- $\exists \text{ small } \gamma, \overrightarrow{w} \text{ st. } A \cdot \overrightarrow{w} = \gamma \cdot X$
- Sufficient for **signatures** like CRYSTALS-Dilithium
- Small proof sizes ($\approx 3KB$)

Exact:

- $\exists \text{ small } \vec{w} \text{ st. } A \cdot \vec{w} = X$
- Necessary for more advanced building blocks, e.g., verifiable encryption
- Much larger proof sizes

Thank you!