

Lattice-based Σ-protocols

Lisa Kohl

Cryptology Group, CWI Amsterdam

Foundations and Applications of Zero-Knowledge Proofs, Edinburgh

- **This talk:** What if DLOG is no longer hard?
- **Issue:** Soundness does no longer hold!

Here we focus on soundness & ZK, but these can also be compressed! [AttemaCramer**Kohl**' 21]

Application: Digital signatures

Application: Post-quantum signatures \boldsymbol{a} X, W a X

 $pk = X$

I know witness w for statement X

From Sigma-Protocols to Signatures [Schnorr signatures]:

 $Sign(pk, m)$:

- Choose/ compute 'commitment' a
- Compute $c = H(pk, a, m)$
- *Compute third-round message z*
- Output signature $\sigma = (a, z)$

(*modeled as a random oracle)*

Post-quantum signatures:

 \mathcal{C}

 Z

e.g.,

- [Lyubashevsky'09,'11]
- CRYSTALS-Dilithium

Recall: Σ-protocols

- Σ-protocols satisfy:
	- **Perfect completeness:** Every honest transcript is accepting (i.e., V outputs 1)
	- (2-)Special soundness: Giving two accepting transcripts (a, c, z) , (a, c', z') with $c \neq c'$ one can efficiently compute a witness \widetilde{w} for X
	- **Honest verifier zero knowledge:** Honest transcripts can be efficiently simulated (without knowing the witness w)

We already have a blue-print!

Instantiating Σ-protocols from lattices

Homomorphic commitments

Additional required properties:

- Homomorphic: $\begin{vmatrix} w & + & v \end{vmatrix} = w + v$
- (Succinct:) $\left|\left|\swarrow\right|\right| \ll \left|w\right|$

Homomorphic Commitments from MSIS

Binding

Homomorphic Commitments from MSIS

DLOG vs SIS

DLOG:

G group w/ generator q & order q

- $w \in \mathbb{Z}_q$ is witness
- $X = g^W$ is statement

$$
\bullet g^w \cdot g^{w'} = g^{w+w'}
$$

$$
\bullet \ (g^w)^c = g^{w \cdot c}
$$

• (Recall: Extends to $w \in \mathbb{Z}_q^m$)

SIS:

- $A \in \mathbb{Z}_q^{k \times m}$ public matrix
- $\vec{w} \in \{-\beta, ..., \beta\}^m$ is witness
- $X = A \cdot \vec{w}$ is statement

•
$$
A \cdot \overrightarrow{w} + A \cdot \overrightarrow{w}' = A \cdot (\overrightarrow{w} + \overrightarrow{w}')
$$

\n• $c \cdot A \cdot \overrightarrow{w} = A \cdot (c \cdot \overrightarrow{w})$

@Khanh

Lattice-based Σ-Protocols

Towards Soundness & ZK

Towards Soundness and ZK

Option 1: Choose very large parameters:

- $\vec{r} \leftarrow \{-B,...,B\}^m$ for $B \gg \beta$ (such that β/B is negligible)
- Choose large modulus q (such that SIS holds for large bound $b \in \mathcal{O}(B)$)
- HVZK: \vec{z} only reveals something if $\|\vec{z}\| > B \beta$ (only happens with negl probability)
- **Soundness:** Given **Option 2:** \dot{z} = \dot{x} +0 \dot{w} ? \vec{z} ['] = \vec{v} +1 \vec{w} ' ? $\vec{z}' - \vec{z}$ is valid opening for \vec{w} with norm $\leq 2B$
- Choose smaller bound B
- Abort and restart if \vec{z} would leak something [Lyubashevsky09,11]

Soundness "Gap": Start with $\|\vec{w}\| \leq \beta$ but can only extract $\|\vec{w}'\| \leq 2B$

Rejection Sampling

Uniform distribution

- $B \approx \beta$:
- Small parameters
- Abort probability ≈ 1
- $B \gg \beta$:
- Large parameters
- Abort probability ≈ 0

Extending the Challenge Space

Extending the Challenge Space (1/3)

- **Problem:** Prover can cheat with probability ½
- What about challenge space $\mathcal{C} = \{-\delta, ..., \delta\}$ for small δ ?
- **Example:** Extracting the witness for $c = -1$, $c' = 1$

$$
rac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} - 1 \cdot \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} + 1 \cdot \frac{2
$$

Extending the Challenge Space (2/3)

- **Polynomial ring** $R_q := \mathbb{Z}_q[X]/(f(X))$, e.g., $f(X) = X^d + 1$
- **Elements in** R_q : $a = a_0 + a_1 \cdot X + \cdots + a_{d-1} \cdot X^{d-1}$
- **Some facts:**
	- $X^d = -1$ • $a + b = (\sum_{i=0}^{d-1} a_i \cdot X^i) + (\sum_{i=0}^{d-1} b_i \cdot X^i) = \sum_{i=0}^{d-1} (a_i + b_i) \cdot X^i$ $\sim \alpha$ \sim

•
$$
a \cdot b
$$

\n
$$
= (\sum_{i=0}^{d-1} a_i \cdot X^i) \cdot (\sum_{i=0}^{d-1} b_i \cdot X^i) = \sum_{i=0}^{d-1} (\sum_{j,k: j+k=i} a_j \cdot b_k - \sum_{j,k: j+k=i+d} a_j \cdot b_k) \cdot X^i
$$

\n• $||a+b|| \le ||a|| + ||b||, ||a \cdot b|| \le d \cdot ||a|| \cdot ||b||$

Extending the Challenge Space (3/3)

Here: consider infinity norm $\|\vec{s}\| := \max_{i} \|s_i\|$,

where $||s_i||$ denotes the larges coefficient of the polynomial s_i

- **MSIS Assumption:** It is difficult to find non-zero **module short integer** ${\sf solution}\ \vec{s}\in R^m_q$ with $\|\vec{s}\|\leq b$ and $A\cdot\vec{s}=0\ {\rm mod}\ q$, where $A\in R_q^{k\times m}$
- Have more flexibility with the challenge space!
- (But: Challenge difference not necessarily invertible anymore)
- **For approximate proofs:** Can choose $C := \{b_0 + b_1X + \cdots + b_{d-1}X^{d-1}$: $b_0, ..., b_{d-1} \in \{0,1\}$
- For $d \in \mathcal{O}(\lambda)$ we have exponential challenge space $|\mathcal{C}| = 2^d$

Approximate vs exact proofs

$$
A\cdot \vec{w}=X
$$

Approximate [Lyu09,Lyu11]:

- \exists small γ , \overrightarrow{w} st. $A \cdot \overrightarrow{w} = \gamma \cdot X$
- Sufficient for **signatures** like CRYSTALS-Dilithium
- Small proof sizes (\approx 3KB)

Exact:

- \exists small \overrightarrow{w} st. $A \cdot \overrightarrow{w} = X$
- Necessary for more advanced building blocks, e.g., verifiable encryption
- Much larger proof sizes

Thank you!