
Lisa Kohl
Cryptology Group, CWI Amsterdam
Foundations and Applications of Zero-Knowledge Proofs, Edinburgh

Compressed Σ-protocols

• How can the prover convince the verifier with communication ≪ n ?

Succinct Arguments of Knowledge
I know witness 𝑤𝑤
for statement 𝑋𝑋

Prover Verifier (Vaquita)

Today: Succinct Arguments of Knowledge
via Compressed Σ-protocols

E.g., I know 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 such that 𝑋𝑋 = 𝑓𝑓(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) for
some function 𝑓𝑓

Disclaimer: No zero-knowledge for now

Bulletproofs vs. Compressed Σ-protocols

Bulletproofs [BCC+’16, BBB+’18]: Compressed 𝚺𝚺-Protocols [AC’20]:

Linear Relations:
I know 𝑤𝑤 ∈ ℤ𝑝𝑝𝑛𝑛 such that
𝑋𝑋 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑤𝑤 and 𝑦𝑦 = 𝐿𝐿 𝑤𝑤
(where L is a linear form
𝐿𝐿:ℤ𝑝𝑝𝑛𝑛 → ℤ𝑝𝑝)

Inner Product Relations:
I know 𝑢𝑢, �⃗�𝑣 ∈ ℤ𝑝𝑝𝑛𝑛 such that
𝑋𝑋 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑢𝑢 ,𝑌𝑌 = 𝐶𝐶𝐶𝐶𝐶𝐶 �⃗�𝑣 ,
and 𝑐𝑐 = ⟨𝑢𝑢, �⃗�𝑣⟩
(where 𝑐𝑐 is a scalar 𝑐𝑐 ∈ ℤ𝑝𝑝)

Intuition/ high-level recipe

• Blue-print: (Here: Σ − protocol)
1. The prover P sends a commitment (this has to be succinct!)
2. The verifier challenges the prover
3. The prover P replies to the challenge (this also has to be succinct!)

• Main ingredient:
• Here: Succinct homomorphic commitments

• Knowledge Soundness: If P convinces , it must “know” a witness
• Succinctness: |Communication| ≪ |Witness 𝑤𝑤|

Arguments vs Proofs (often used interchangeably)
Arguments: Soundness against bounded adversaries
Proofs: Soundness against unbounded adversaries
Here: Arguments (this is inherent for NP)

repeat

Recall: Σ-protocols

Recall: Σ-protocols

• Σ-protocols satisfy:
• Perfect completeness: Every honest transcript is accepting (i.e., V outputs 1)
• (2-)Special soundness: Giving two accepting transcripts 𝑎𝑎, 𝑐𝑐, 𝑧𝑧 , (𝑎𝑎, 𝑐𝑐𝑐, 𝑧𝑧′) with
𝑐𝑐 ≠ 𝑐𝑐′ one can efficiently compute a witness �𝑤𝑤 for 𝑋𝑋

• [Honest verifier zero knowledge: Honest transcripts can be efficiently simulated
(without knowing the witness 𝑤𝑤)]

𝑐𝑐

𝑎𝑎

𝑧𝑧
𝑏𝑏 ∈ {0,1}
𝑐𝑐 ← 𝒞𝒞

$

Prover Verifier (Vaquita)

Intuition: If the prover can successfully answer on two
different challenges it must know the witness

Knowledge error: �1 |𝒞𝒞|
I know witness 𝑤𝑤
for statement 𝑋𝑋

Homomorphic commitments

Homomorphic commitments

Commitment scheme: Commit to 𝑤𝑤 via such that:

• Hiding: hides 𝑤𝑤

• Binding: can only be opened to 𝑤𝑤

Additional required properties:

• Homomorphic: + =

• Succinct: | | ≪ |𝑤𝑤|

𝑤𝑤

𝑤𝑤

𝑤𝑤

𝑤𝑤 𝑣𝑣 𝑤𝑤 + 𝑣𝑣

𝑤𝑤

Example

Commitment scheme (almost): 𝐺𝐺 group with generator 𝑔𝑔, ∶= 𝑔𝑔𝑤𝑤

• Hiding: not really (can be made hiding by multiplying ℎ𝑟𝑟 → Pedersen Commitments)

• Binding: 𝑔𝑔𝑤𝑤 uniquely determines 𝑤𝑤

Additional required properties:

• Homomorphic: 𝑔𝑔𝑤𝑤 ⋅ 𝑔𝑔𝑣𝑣 = 𝑔𝑔𝑤𝑤+𝑣𝑣

• Succinct:

𝑤𝑤

Example

Commitment scheme (almost): 𝑔𝑔1, …𝑔𝑔𝑛𝑛 generators of 𝐺𝐺, ≔ 𝑔𝑔1
𝑤𝑤1 ⋅ ⋯ ⋅ 𝑔𝑔𝑤𝑤𝑛𝑛

• Hiding: somewhat (can be made fully hiding by multiplying ℎ𝑟𝑟)

• Binding: Yes, if DLOG is hard (𝑔𝑔1
𝑤𝑤1 ⋅ 𝑔𝑔2

𝑤𝑤2 = 𝑔𝑔1
𝑤𝑤1′ ⋅ 𝑔𝑔2

𝑤𝑤2′ ⇒ 𝑔𝑔1

𝑤𝑤1−𝑤𝑤1
′

𝑤𝑤2
′ −𝑤𝑤2 = 𝑔𝑔2)

Additional required properties:

• Homomorphic: 𝑔𝑔𝑤𝑤 ⋅ 𝑔𝑔𝑣𝑣 = 𝑔𝑔1
𝑤𝑤1 ⋅ ⋯ ⋅ 𝑔𝑔𝑛𝑛

𝑤𝑤𝑛𝑛 ⋅ 𝑔𝑔1
𝑣𝑣1 ⋅ ⋯ ⋅ 𝑔𝑔𝑛𝑛

𝑣𝑣𝑛𝑛 = 𝑔𝑔𝑤𝑤+𝑣𝑣

• Succinct: | | is independent of 𝑛𝑛!

𝑤𝑤

𝑤𝑤

(Non-Zero-Knowledge)
Σ-Protocol for Commitment Opening
[AttemaCramer’20]

Goal: Σ-Protocol for Commitment Opening

Prover Verifier (Vaquita)

In this talk:
G group with
order p,
𝑔𝑔1, … , 𝑔𝑔𝑛𝑛
known
generators

I know 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 ∈ ℤ𝑝𝑝𝑛𝑛 such that 𝑋𝑋 = 𝑔𝑔1
𝑤𝑤1 ⋅ ⋯ ⋅ 𝑔𝑔𝑛𝑛

𝑤𝑤𝑛𝑛

• Completeness: Every honest transcript is accepting (i.e., V outputs 1)
• k-Special soundness: Giving 𝑘𝑘 accepting transcripts 𝑎𝑎𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑖𝑖 with 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑗𝑗 one can

efficiently compute a witness �𝑤𝑤 for 𝑋𝑋
• Succinctness: |Communication| ≪𝑛𝑛

𝑐𝑐

𝑎𝑎

𝑧𝑧
𝑐𝑐 ← 𝒞𝒞

Σ-Protocol for Commitment Opening

• Complete:
• Special Sound:
• Succinct:

I know value 𝑤𝑤 such
that
can be opened to 𝑤𝑤

Prover Verifier (Vaquita)

𝑤𝑤

∅

∅

𝑤𝑤

Idea: Fold 𝑤𝑤
[BCC+’16, BBB+’18]

𝑤𝑤

Σ-Protocol for Commitment Opening

• Well-defined:

I know value 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2
such that
can be opened to 𝑤𝑤

Prover Verifier (Vaquita)

𝑤𝑤 𝑤𝑤

∅

∅

1. Attempt

Can’t verify𝑧𝑧 ≔ 𝑤𝑤1 + 𝑤𝑤2

Can check:

Σ-Protocol for Commitment Opening

• Complete:
• Special Sound:

I know value 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2
such that
can be opened to 𝑤𝑤

Prover Verifier (Vaquita)

𝑤𝑤 𝑤𝑤

∅
𝑧𝑧 ≔ 𝑤𝑤1 + 𝑤𝑤2

2. Attempt

𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣

𝑤𝑤

𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣: =

𝑧𝑧
𝑧𝑧

valid
opening for

𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣 +

Breaking soundness:
Prover can cheat
using homomorphic
property by sending

𝑤𝑤 +-
𝑧𝑧
𝑧𝑧Problem: this linear

combination is fixed

𝑤𝑤2
𝑤𝑤1

More high-level: Need
random challenge (if

the reply of the prover is
fixed we cannot hope to
extract the witness, as
the information carried
in 𝑧𝑧 is smaller than 𝑤𝑤

Can check:

Σ-Protocol for Commitment Opening

• Succinct:

I know value 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2
such that
can be opened to 𝑤𝑤

Prover Verifier (Vaquita)

𝑤𝑤 𝑤𝑤

𝑑𝑑
??

3. Attempt

valid
opening for? ?

Issue:
Would need to send
𝑤𝑤2 + 𝑑𝑑 ⋅ 𝑤𝑤1
and
𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2
→ back to size 𝑛𝑛‼

Observation: [BCC+’16, BBB+’18]
𝑑𝑑 ⋅ 𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2 = d2 ⋅ 𝑤𝑤2 + d ⋅ 𝑤𝑤1

𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣 +𝑑𝑑 ⋅

𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣: =
𝑤𝑤2
𝑤𝑤1

𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣

Σ-Protocol for Commitment Opening

• Well-defined:

I know value 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2
such that
can be opened to 𝑤𝑤

Prover Verifier (Vaquita)

𝑤𝑤 𝑤𝑤

𝑑𝑑

4. Attempt 𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣: =
𝑑𝑑2 ⋅ 𝑤𝑤2
𝑤𝑤1

Can check:

valid
opening for

𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣 +𝑑𝑑 ⋅

𝑧𝑧 ≔ 𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2
𝑑𝑑 ⋅ 𝑧𝑧
𝑧𝑧

𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣

Problem:
• either: prover doesn’t know d in

first round and can’t generate
first message

• or: prover does know d in first
round and can cheat (as before)

Completeness:
𝑑𝑑 ⋅ (𝑤𝑤1 + d ⋅ 𝑤𝑤2)
𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2

=
𝑑𝑑2 ⋅ 𝑤𝑤2 + 𝑑𝑑 ⋅ 𝑤𝑤1
𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2

valid opening!

Σ-Protocol for Commitment Opening
I know value 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2
such that
can be opened to 𝑤𝑤

Prover Verifier (Vaquita)

𝑤𝑤 𝑤𝑤

𝑑𝑑

5. Attempt 𝑤𝑤𝐿𝐿: =
0
𝑤𝑤1

Can check:

valid
opening for

𝑤𝑤𝑤𝑤𝐿𝐿 +𝑑𝑑 ⋅

Completeness:

𝑑𝑑 ⋅ 𝑤𝑤1 + 𝑑𝑑2 ⋅ 𝑤𝑤2
𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2

valid opening!

𝑧𝑧 ≔ 𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2
𝑑𝑑 ⋅ 𝑧𝑧
𝑧𝑧

𝑤𝑤𝑟𝑟: =
𝑤𝑤2

0𝑤𝑤𝐿𝐿 𝑤𝑤𝑅𝑅

+𝑑𝑑2 ⋅ 𝑤𝑤𝑅𝑅

• Complete:
• (3-)Special Sound:
• Succinct:

(see next slide)

3-Special Soundness

3-Special Soundness

Assume to be given 3 accepting transcripts
• (, 𝑑𝑑1 , 𝑧𝑧1)
• (, 𝑑𝑑2 , 𝑧𝑧2)
• (, 𝑑𝑑3 , 𝑧𝑧3) s.t.

• I.e., we know an opening for
1 𝑑𝑑1 𝑑𝑑12

1 𝑑𝑑2 𝑑𝑑22

1 𝑑𝑑3 𝑑𝑑32
⋅
𝑤𝑤𝐿𝐿
𝑤𝑤
𝑤𝑤𝑅𝑅

and thus also for

= 0 1 0 ⋅ 𝑉𝑉−1 ⋅

𝑤𝑤𝐿𝐿 𝑤𝑤𝑅𝑅
𝑤𝑤𝐿𝐿 𝑤𝑤𝑅𝑅
𝑤𝑤𝐿𝐿 𝑤𝑤𝑅𝑅 𝑤𝑤𝑤𝑤𝐿𝐿 +𝑑𝑑𝑖𝑖 ⋅ +𝑑𝑑𝑖𝑖2 ⋅ 𝑤𝑤𝑅𝑅

𝑑𝑑𝑖𝑖 ⋅ 𝑧𝑧𝑖𝑖
𝑧𝑧𝑖𝑖

=

𝑤𝑤

Vandermonde Matrix 𝑉𝑉

From communication 𝒪𝒪(𝑛𝑛/2) to 𝒪𝒪(log 𝑛𝑛)

Another View

• Recall: P proves knowledge of 𝑧𝑧 such that

• Alternatively: 𝑧𝑧 is valid opening for under new generators:

𝑔𝑔1
𝑑𝑑⋅𝑧𝑧1 ⋅ ⋯ ⋅ 𝑔𝑔𝑛𝑛/2

𝑑𝑑⋅𝑧𝑧𝑛𝑛/2 ⋅ 𝑔𝑔𝑛𝑛/2+1
𝑧𝑧1 ⋅ ⋯ ⋅ 𝑔𝑔𝑛𝑛

𝑑𝑑⋅𝑧𝑧𝑛𝑛/2 = (𝑔𝑔1𝑑𝑑⋅ 𝑔𝑔𝑛𝑛/2+1)𝑧𝑧1 ⋅ ⋯ ⋅ (𝑔𝑔𝑛𝑛/2
𝑑𝑑 ⋅ 𝑔𝑔𝑛𝑛)𝑧𝑧𝑛𝑛/2

valid
opening for

𝑑𝑑 ⋅ 𝑧𝑧
𝑧𝑧

𝑤𝑤𝑤𝑤𝐿𝐿 +𝑑𝑑 ⋅

+𝑑𝑑2 ⋅ 𝑤𝑤𝑅𝑅

𝑧𝑧

Recursive Folding

• Now: P proves knowledge of 𝑧𝑧 ∈ ℤ𝑝𝑝
𝑛𝑛/2 s.t. opens to 𝑧𝑧

• Instead of sending 𝑧𝑧 we can repeat the folding procedure!
• Important: Use fresh challenge each time → more communication rounds
• After 𝐥𝐥𝐥𝐥𝐥𝐥 𝐧𝐧 repetitions: Only have to send z ∈ ℤ𝑝𝑝
• Overall communication: 2 ⋅ log 𝑛𝑛 ⋅ + log 𝑝𝑝

𝑧𝑧

𝑤𝑤𝑤𝑤𝐿𝐿 +𝑑𝑑 ⋅

+𝑑𝑑2 ⋅ 𝑤𝑤𝑅𝑅

Size of a group element

What did we get?

Result: Σ-Protocol for Commitment Opening

Prover Verifier (Vaquita)

In this talk:
G group with
order p,
𝑔𝑔1, … , 𝑔𝑔𝑛𝑛
known
generators

I know 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 ∈ ℤ𝑝𝑝𝑛𝑛 such that 𝑋𝑋 = 𝑔𝑔1
𝑤𝑤1 ⋅ ⋯ ⋅ 𝑔𝑔𝑛𝑛

𝑤𝑤𝑛𝑛

• Completeness: Every honest transcript is accepting (i.e., V outputs 1)
• (𝟑𝟑,𝟑𝟑, … , 𝟑𝟑)-Special soundness: Giving a “tree of accepting transcripts” one can efficiently

compute a witness �𝑤𝑤 for 𝑋𝑋
• Succinctness: |Communication| ≈ log 𝑛𝑛 ⋅ |𝐺𝐺| [AttemaCramerKohl’21] Tight Analysis

of Knowledge Extractor
→ Knowledge Error ≤ 2 log 𝑛𝑛/𝑝𝑝

𝑐𝑐

𝑎𝑎

𝑧𝑧
𝑐𝑐 ← 𝒞𝒞

Succinctness & Zero Knowledge?

Adding Zero-Knowledge

• Simply start with a standard (non-succinct) Σ-protocol → HVZK

Prover Verifier (Vaquita)

𝑐𝑐
𝑧𝑧 = 𝑟𝑟 + 𝑐𝑐 ⋅ 𝑤𝑤

𝑔𝑔𝑟𝑟
𝑤𝑤,𝑋𝑋 = 𝑔𝑔𝑤𝑤 𝑋𝑋 = 𝑔𝑔𝑤𝑤

𝑔𝑔𝑧𝑧 = 𝑔𝑔𝑟𝑟 ⋅ 𝑔𝑔𝑤𝑤 𝑐𝑐?

𝑤𝑤

𝑤𝑤𝑟𝑟

𝑟𝑟 +𝑐𝑐 ⋅ 𝑤𝑤𝑧𝑧 =

𝑟𝑟 ← ℤ𝑝𝑝

𝑐𝑐 ← ℤ𝑝𝑝

?

Adding Zero-Knowledge

• Can generalize this to homomorphic commitments!

• Instead of sending the third round message:
• P proves knowledge of opening of

Prover Verifier (Vaquita)

𝑐𝑐
𝑧𝑧 = 𝑟𝑟 + 𝑐𝑐 ⋅ 𝑤𝑤

𝑟𝑟

𝑟𝑟 + 𝑐𝑐 ⋅ 𝑤𝑤

𝑟𝑟 +𝑐𝑐 ⋅ 𝑤𝑤𝑧𝑧 =
?

𝑤𝑤 𝑤𝑤

𝑐𝑐 ← ℤ𝑝𝑝

𝑤𝑤
𝑟𝑟 ← ℤ𝑝𝑝

Compressed Σ-protocols for Proving
Linear Forms
[AttemaCramer’20]

Goal: Σ-Protocol for Linear Relations

Prover Verifier (Vaquita)

𝑐𝑐

𝑎𝑎

𝑧𝑧
𝑐𝑐 ← 𝒞𝒞

Linear Relations:
I know 𝑤𝑤 ∈ ℤ𝑝𝑝𝑛𝑛 such that
𝑋𝑋 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑤𝑤 and 𝑦𝑦 = 𝐿𝐿 𝑤𝑤
(where L is a linear form
𝐿𝐿:ℤ𝑝𝑝𝑛𝑛 → ℤ𝑝𝑝)

Σ-Protocol for Linear Relations
I know value 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2 such
that
can be opened to 𝑤𝑤 and 𝑦𝑦 = 𝐿𝐿 𝑤𝑤

Prover Verifier (Vaquita)

𝑤𝑤 𝑤𝑤

𝑑𝑑

𝑤𝑤𝐿𝐿: =
0
𝑤𝑤1

Can check:

valid
opening for

𝑤𝑤𝑤𝑤𝐿𝐿 +𝑑𝑑 ⋅

𝑧𝑧 ≔ 𝑤𝑤1 + 𝑑𝑑 ⋅ 𝑤𝑤2
𝑑𝑑 ⋅ 𝑧𝑧
𝑧𝑧

𝑤𝑤𝑟𝑟: =
𝑤𝑤2

0𝑤𝑤𝐿𝐿 𝑤𝑤𝑅𝑅

+𝑑𝑑2 ⋅ 𝑤𝑤𝑅𝑅

𝑦𝑦

L is a linear form
𝐿𝐿:ℤ𝑝𝑝𝑛𝑛 → ℤ𝑝𝑝

𝐿𝐿 𝑤𝑤𝐿𝐿 , 𝐿𝐿 𝑤𝑤𝑅𝑅

And:

𝐿𝐿() = 𝐿𝐿 𝑤𝑤𝐿𝐿 +

𝑑𝑑 ⋅ 𝑦𝑦 + 𝑑𝑑2 ⋅ 𝐿𝐿 𝑤𝑤𝑅𝑅

𝑑𝑑 ⋅ 𝑧𝑧
𝑧𝑧

Σ-protocols for Circuit ZK
The missing part: How to prove correctness of multiplication gates

Goal: Σ-Protocol for Circuit ZK

Prover Verifier (Vaquita)

• Completeness: Every honest transcript is accepting (i.e., V outputs 1)
• Knowledge soundness: A successful prover must “know” the witness
• Succinctness: |Communication| ≪ 𝑛𝑛

I know 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 such that 𝑓𝑓 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 = 0 for some
function 𝑓𝑓

Here: Consider 𝑓𝑓 to be an arithmetic
circuit, i.e., only to consist of additions
and multiplications over a (large) finite

field 𝔽𝔽, known to all parties

+
+⋅

𝑤𝑤1 𝑤𝑤2

A blue print for zero knowledge proofs
[CramerDamgård’97]

Goal: Prove 𝑓𝑓 𝑤𝑤 = 0 without revealing 𝑤𝑤
1. Write 𝑓𝑓:𝔽𝔽𝑚𝑚 → 𝔽𝔽 as arithmetic circuit

with multiplication and addition gates
2. Extend witness 𝑤𝑤 to all intermediary

results of multiplication gates
3. Commit to the extended witness using a

homomorphic commitment scheme
4. Evaluate addition gates homomorphically

and open final result
5. Prove correctness of multiplication gates 𝑓𝑓 𝑤𝑤1,𝑤𝑤2 = 𝑤𝑤1 ⋅ 𝑤𝑤2 + 𝑤𝑤2 + 𝑤𝑤2 + 1

Witness: 𝑤𝑤1 = −1,𝑤𝑤2 = −1

1

, 𝑤𝑤3 ≔ 1

−1

0

0

1−1

0

𝑤𝑤3

Note: Not succinct!

Compressed Σ-protocols for Proving
Many Multiplications
[CramerDamgård’97, CramerDamgårdMaurer’00, CramerDamgårdPastro’12
AttemaCramer’20]

Linearizing Multiplication Gates
[CramerDamgård’97]

Shamir secret sharing: (assume 𝔽𝔽 = ℤ𝑝𝑝 for large prime 𝑝𝑝)
1. P chooses random 𝑓𝑓(𝑋𝑋), 𝑔𝑔(𝑋𝑋) of degree 1 such that

• 𝑓𝑓 0 = 𝛼𝛼,𝑔𝑔 0 = 𝛽𝛽

2. P sets ℎ 𝑋𝑋 ≔ 𝑓𝑓 𝑋𝑋 ⋅ 𝑔𝑔 𝑋𝑋
3. P commits to:

• 𝑓𝑓 1 ,𝑔𝑔(1) (note: together with 𝛼𝛼,𝛽𝛽 this fully determines 𝑓𝑓,𝑔𝑔)
• ℎ(1), ℎ(2) (note: together with 𝛾𝛾 this fully determines ℎ)

4. sends a challenge 𝑐𝑐 ← ℤ𝑝𝑝 ∖ {0}
5. P sends the opening 𝑓𝑓 𝑐𝑐 ,𝑔𝑔 𝑐𝑐 ,ℎ(𝑐𝑐)
6. checks if openings are correct & ℎ 𝑐𝑐 = 𝑓𝑓 𝑐𝑐 ⋅ 𝑔𝑔(𝑐𝑐)

𝛾𝛾

𝛼𝛼 𝛽𝛽

𝑋𝑋3 ⋅

𝑓𝑓(1) 𝑔𝑔(1)

ℎ(1)

ℎ(2)
ℎ(𝑐𝑐)

𝑓𝑓(𝑐𝑐)

𝑔𝑔(𝑐𝑐)
Zero knowledge: hiding of commitments +
𝑓𝑓, 𝑔𝑔 random → 𝑓𝑓 𝑐𝑐 ,𝑔𝑔(𝑐𝑐) random

Soundness: binding of commitments +
ℎ − 𝑓𝑓 ⋅ 𝑔𝑔 ≠ 0 has at most 2 zero positions

𝛼𝛼 𝛽𝛽

Lagrange
Interpolation

Lagrange
Interpolation

ℎ 𝑐𝑐
= ℒ0 ⋅ 𝛾𝛾
+ ℒ1 ⋅ ℎ 1
+ ℒ2 ⋅ ℎ(2)

𝑓𝑓 𝑐𝑐
= ℓ0 ⋅ 𝛼𝛼
+ ℓ1 ⋅ 𝑓𝑓 1

Proving Many Multiplication Gates (1/2)
[CramerDamgård’97, CramerDamgårdMaurer’00, CramerDamgårdPastro’12, AttemaCramer’20]

Now: 𝐶𝐶 multiplication gates 𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖 ,𝛾𝛾𝑖𝑖 = 𝛼𝛼𝑖𝑖 ⋅ 𝛽𝛽𝑖𝑖 (0 ≤ 𝑖𝑖 < 𝐶𝐶)
1. Packed secret sharing: P chooses random 𝑓𝑓,𝑔𝑔 of degree 𝐶𝐶 s.t. 𝑓𝑓 𝑖𝑖 = 𝛼𝛼𝑖𝑖 ,𝑔𝑔 𝑖𝑖 = 𝛽𝛽𝑖𝑖
2. P sets ℎ 𝑋𝑋 ≔ 𝑔𝑔 𝑋𝑋 ⋅ 𝑓𝑓(𝑋𝑋)
3. P additionally commits to 𝑓𝑓 𝐶𝐶 ,𝑔𝑔 𝐶𝐶 , ℎ 𝐶𝐶 , … , ℎ(2𝐶𝐶)
4. sends a challenge 𝑐𝑐 ← ℤ𝑝𝑝 ∖ {0}
5. P sends the opening 𝑓𝑓 𝑐𝑐 ,𝑔𝑔 𝑐𝑐 ,ℎ(𝑐𝑐)
6. checks if openings are correct & ℎ 𝑐𝑐 = 𝑓𝑓 𝑐𝑐 ⋅ 𝑔𝑔(𝑐𝑐)
Observation:

Can pack all values in succinct vector commitment and use
𝚺𝚺-protocols for linear forms to prove correct openings 𝑓𝑓 𝑐𝑐 ,𝑔𝑔 𝑐𝑐 ,ℎ(𝑐𝑐)

𝛼𝛼0
⋮

ℎ(2𝐶𝐶)

Issue: Communication scales with
the size of the circuit

Proving Many Multiplication Gates (2/2)
[CramerDamgård’97, CramerDamgårdMaurer’00, CramerDamgårdPastro’12, AttemaCramer’20]

• More precisely, we have to prove three linear forms 𝐿𝐿1,𝐿𝐿2, 𝐿𝐿3:

(ℓ0 ℓ1 … ℓ𝑚𝑚 0 … … 0) = 𝑓𝑓(𝑐𝑐) (0 … 0 ℓ0 ℓ1 … ℓ𝑚𝑚 0 … 0) = g(𝑐𝑐)

(0 … … 0 ℒ0 ℒ1 …ℒ2𝑚𝑚) = ℎ(𝑐𝑐)

𝛼𝛼0
⋮

𝑓𝑓(𝐶𝐶)
⋮

𝛽𝛽0
⋮

ℎ(𝐶𝐶)

⋮

⋮

𝛾𝛾0
⋮

ℎ(2𝐶𝐶)

⋮ Only need Σ-protocols for
linear forms

Σ-protocols for Circuit ZK
[AttemaCramer’20]

From Multiplications to Circuit ZK
[AttemaCramer’20]

Observation:
1. Wires 𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖 are determined by affine forms

𝑢𝑢𝑖𝑖 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛, 𝛾𝛾1, … , 𝛾𝛾𝑚𝑚 , 𝑣𝑣𝑖𝑖(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛, 𝛾𝛾1, … ,𝛾𝛾𝑚𝑚)
2. Same for the output value f 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛
Strategy:
1. Instead of committing to 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 use the affine forms to define 𝑓𝑓,𝑔𝑔
2. Finally, show f 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 = 0 as required

Fiat-Shamir and Parallel Repetition

Some Notes on Multi-Round Σ-Protocols

• Parallel repetition of 𝚺𝚺-protocols:
• 𝟐𝟐-special soundness: 𝑡𝑡-fold parallel repetition also satisfies 2-special soundness
→ knowledge error decreases exponentially to 1/ 𝒞𝒞 𝑡𝑡

• k-special soundness: 𝑡𝑡-fold parallel repetition only satisfies (𝑘𝑘 − 1 𝑡𝑡+1)-special
soundness → extractor becomes inefficient for large 𝑡𝑡

• (𝒌𝒌𝟏𝟏, … ,𝒌𝒌𝒏𝒏)-special soundness: not clear if it satisfies meaningful notion of
special soundness

• [AttemaFehr’22]: Parallel repetition reduces the knowledge error to 𝜅𝜅𝑡𝑡

• [AttemaFehrKlooss’22]:
• Fiat Shamir of (𝒌𝒌𝟏𝟏, … ,𝒌𝒌𝒏𝒏)-special sound protocols has linear soundness loss Q
• Fiat Shamir of t-fold (𝒌𝒌𝟏𝟏, … ,𝒌𝒌𝒏𝒏)-special sound protocols has exponential

soundness loss 𝑄𝑄𝜇𝜇 if 𝑡𝑡 > 𝜇𝜇

Thank you!

	Slide Number 1
	Succinct Arguments of Knowledge
	Bulletproofs vs. Compressed Σ-protocols
	Intuition/ high-level recipe
	Recall: Σ-protocols
	Recall: Σ-protocols
	Homomorphic commitments
	Homomorphic commitments
	Example
	Example
	(Non-Zero-Knowledge) �Σ-Protocol for Commitment Opening
	Goal: Σ-Protocol for Commitment Opening
	Σ-Protocol for Commitment Opening
	Σ-Protocol for Commitment Opening
	Σ-Protocol for Commitment Opening
	Σ-Protocol for Commitment Opening
	Σ-Protocol for Commitment Opening
	Σ-Protocol for Commitment Opening
	3-Special Soundness
	3-Special Soundness
	From communication 𝒪(𝑛/2) to 𝒪(log 𝑛)
	Another View
	Recursive Folding
	What did we get?
	Result: Σ-Protocol for Commitment Opening
	Succinctness & Zero Knowledge?
	Adding Zero-Knowledge
	Adding Zero-Knowledge
	Compressed Σ-protocols for Proving Linear Forms
	Goal: Σ-Protocol for Linear Relations
	Σ-Protocol for Linear Relations
	Σ-protocols for Circuit ZK
	Goal: Σ-Protocol for Circuit ZK
	A blue print for zero knowledge proofs�[CramerDamgård’97]
	Compressed Σ-protocols for Proving Many Multiplications
	Linearizing Multiplication Gates �[CramerDamgård’97]
	Proving Many Multiplication Gates (1/2)�[CramerDamgård’97, CramerDamgårdMaurer’00, CramerDamgårdPastro’12, AttemaCramer’20]
	Proving Many Multiplication Gates (2/2)�[CramerDamgård’97, CramerDamgårdMaurer’00, CramerDamgårdPastro’12, AttemaCramer’20]
	Σ-protocols for Circuit ZK
	From Multiplications to Circuit ZK�[AttemaCramer’20]
	Fiat-Shamir and Parallel Repetition
	Some Notes on Multi-Round Σ-Protocols
	Thank you!

