

Compressed Σ -protocols

Lisa Kohl

Cryptology Group, CWI Amsterdam

Foundations and Applications of Zero-Knowledge Proofs, Edinburgh

Succinct Arguments of Knowledge

• How can the prover convince the verifier with communication $\ll n$?

Today: Succinct Arguments of Knowledge via Compressed Σ -protocols

Bulletproofs vs. Compressed Σ -protocols

Bulletproofs [BCC+'16, BBB+'18]:

Inner Product Relations: I know $\vec{u}, \vec{v} \in \mathbb{Z}_p^n$ such that $X = Com(\vec{u}), Y = Com(\vec{v}),$ and $c = \langle \vec{u}, \vec{v} \rangle$ (where c is a scalar $c \in \mathbb{Z}_p$)

Compressed Σ -Protocols [AC'20]:

Linear Relations:

•

I know $\vec{w} \in \mathbb{Z}_p^n$ such that $X = Com(\vec{w})$ and $y = L(\vec{w})$ (where L is a linear form $L: \mathbb{Z}_p^n \to \mathbb{Z}_p$

Lifts Bulletproof compression mechanism to Σ -protocol theory (Part 1) Uses linearization techniques from arithmetic secret sharing to prove general arithmetic circuits (Part 2, if time)

Intuition/ high-level recipe

- Knowledge Soundness: If a convinces *m*, it must "know" a witness
- Succinctness: |Communication| \ll |Witness w|

- repeat
- Blue-print: (Here: Σ protocol)
 1. The prover sends a commitment (this has to be succinct!)
 2. The verifier challenges the prover
 3. The prover replies to the challenge (this also has to be succinct!)
- Main ingredient:
 - Here: Succinct homomorphic commitments

Recall: Σ -protocols

• Σ-protocols satisfy:

- **Perfect completeness:** Every honest transcript is accepting (i.e., V outputs 1)
- (2-)Special soundness: Giving two accepting transcripts (a, c, z), (a, c', z') with $c \neq c'$ one can efficiently compute a witness \tilde{w} for X
- [Honest verifier zero knowledge: Honest transcripts can be efficiently simulated (without knowing the witness w)]

Homomorphic commitments

Homomorphic commitments

Additional required properties:

- Homomorphic: w + v = w + v
- Succinct: $|w| \ll |w|$

Example

Commitment scheme (almost): G group with generator g,

$$w := g^w$$

- Hiding: not really (can be made hiding by multiplying $h^r \rightarrow$ Pedersen Commitments) \checkmark
- **Binding:** g^w uniquely determines w \checkmark

Additional required properties:

• Homomorphic:
$$g^w \cdot g^v = g^{w+v}$$

• Succinct: X

Example

Commitment scheme (almost): $g_1, \dots g_n$ generators of G, $\overrightarrow{w} = g_1^{w_1} \cdots g^{w_n}$

- **Hiding:** somewhat (can be made fully hiding by multiplying h^r)
- **Binding:** Yes, if DLOG is hard

Additional required properties:

• Homomorphic:
$$g^{\vec{w}} \cdot g^{\vec{v}} = g_1^{w_1} \cdot \dots \cdot g_n^{w_n} \cdot g_1^{v_1} \cdot \dots \cdot g_n^{v_n} = g^{\vec{w} + \vec{v}}$$

(Non-Zero-Knowledge) Σ-Protocol for Commitment Opening

[AttemaCramer'20]

In this talk:

- **Completeness:** Every honest transcript is accepting (i.e., V outputs 1)
- **k-Special soundness:** Giving k accepting transcripts (a_i, c_i, z_i) with $c_i \neq c_j$ one can efficiently compute a witness \tilde{w} for X
- Succinctness: |Communication| $\ll n$

Idea: Fold \vec{w}

[BCC+'16, BBB+'18]

 \vec{w}

- Special Sound:
- Succinct: X

$\Sigma\text{-}\mathsf{Protocol}$ for Commitment Opening

• Well-defined: 🗙

$\Sigma\text{-}\mathsf{Protocol}$ for Commitment Opening

3-Special Soundness

3-Special Soundness

Assume to be given 3 accepting transcripts

• (
$$\overrightarrow{Wk}$$
, d_1 , $\overrightarrow{z_1}$)
• (\overrightarrow{Wk} , d_2 , $\overrightarrow{z_2}$)
• (\overrightarrow{Wk} , d_3 , $\overrightarrow{z_3}$) s.t.
 $\overrightarrow{Wk} + d_i \cdot \overrightarrow{Wk} + d_i^2 \cdot \overrightarrow{Wk} = \overrightarrow{d_i \cdot \overrightarrow{z_i}}$
• I.e., we know an opening for $\begin{pmatrix} 1 & d_1 & d_1^2 \\ 1 & d_2 & d_2^2 \\ 1 & d_3 & d_3^2 \end{pmatrix} \cdot \overrightarrow{Wk}$ and thus also for
 $\overrightarrow{Wk} = (0\ 1\ 0) \cdot V^{-1}$.

From communication $\mathcal{O}(n/2)$ to $\mathcal{O}(\log n)$

Another View

• **Recall:** P proves knowledge of \vec{z} such that

• Alternatively: \vec{z} is valid opening for \overrightarrow{z} under new generators:

$$g_1^{d \cdot z_1} \cdot \dots \cdot g_{n/2}^{d \cdot z_{n/2}} \cdot g_{n/2+1}^{z_1} \cdot \dots \cdot g_n^{d \cdot z_{n/2}} = (g_1^d \cdot g_{n/2+1})^{z_1} \cdot \dots \cdot (g_{n/2}^d \cdot g_n)^{z_{n/2}}$$

Recursive Folding

- Now: $\oint proves knowledge of <math>\vec{z} \in \mathbb{Z}_p^{n/2}$ s.t. $\bigvee \vec{z}$ opens to \vec{z}
- Instead of sending \vec{z} we can repeat the folding procedure!
- Important: Use fresh challenge each time \rightarrow more communication rounds
- After log n repetitions: Only have to send $z \in \mathbb{Z}_p$
- Overall communication: $2 \cdot \log n \cdot | \sum | + \log p|$

 $\overrightarrow{W_L}$ + $d \cdot \overrightarrow{W}$ + $d^2 \cdot \overrightarrow{W_R}$

What did we get?

- **Completeness:** Every honest transcript is accepting (i.e., V outputs 1)
- (3, 3, ..., 3)-Special soundness: Giving a "tree of accepting transcripts" one can efficiently compute a witness \tilde{w} for X
- Succinctness: |Communication| $\approx \log n \cdot |G|$

[AttemaCramer**Kohl**'21] Tight Analysis of Knowledge Extractor \rightarrow Knowledge Error $\leq 2 \log n/p$

Succinctness & Zero Knowledge?

Adding Zero-Knowledge

• Simply start with a standard (non-succinct) Σ -protocol \rightarrow HVZK

 $g^z \stackrel{?}{=} g^r \cdot (g^w)^c$

Adding Zero-Knowledge

• Can generalize this to homomorphic commitments!

• $\int \int f$ proves knowledge of opening of $i + c \cdot i$

Compressed $\Sigma\text{-}\text{protocols}$ for Proving Linear Forms

[AttemaCramer'20]

Goal: Σ -Protocol for Linear Relations

Σ -protocols for Circuit ZK

The missing part: How to prove correctness of multiplication gates

Goal: Σ -Protocol for Circuit ZK

- **Completeness:** Every honest transcript is accepting (i.e., V outputs 1)
- Knowledge soundness: A successful prover must "know" the witness
- Succinctness: |Communication| $\ll n$

Here: Consider f to be an **arithmetic circuit**, i.e., only to consist of additions and multiplications over a (large) finite field \mathbb{F} , **known to all parties**

Note: Not succinct!

A blue print for zero knowledge proofs

[CramerDamgård'97]

- 1. Write $f: \mathbb{F}^m \to \mathbb{F}$ as **arithmetic circuit** with multiplication and addition gates
- **2. Extend witness** *w* to all intermediary results of multiplication gates
- 3. Commit to the extended witness using a **homomorphic commitment scheme**
- 4. Evaluate addition gates homomorphically and open final result
- 5. Prove correctness of multiplication gates

 $f(w_1, w_2) = w_1 \cdot w_2 + w_2 + w_2 + 1$ Witness: $w_1 = -1, w_2 = -1, w_3 \coloneqq 1$

Compressed Σ -protocols for Proving Many Multiplications

[CramerDamgård'97, CramerDamgårdMaurer'00, CramerDamgårdPastro'12 AttemaCramer'20]

Linearizing Multiplication Gates

[CramerDamgård'97]

Shamir secret sharing: (assume $\mathbb{F} = \mathbb{Z}_p$ for large prime p) 1. $\int f$ chooses random f(X), g(X) of degree 1 such that

- $f(0) = \alpha, g(0) = \beta$
- 2. $\int f(X) \coloneqq f(X) \cdot g(X)$
- 3. **(**) commits to:
 - f(1), g(1) (note: together with α, β this fully determines f, g)
 - h(1), h(2) (note: together with γ this fully determines h)
- 4. sends a challenge $c \leftarrow \mathbb{Z}_p \setminus \{0\}$
- 5. $\int f(c), g(c), h(c)$
- 6. Checks if openings are correct & $h(c) = f(c) \cdot g(c)$ f(1)

Zero knowledge: hiding of commitments + f, g random $\rightarrow f(c), g(c)$ random

Soundness: binding of commitments + $h - f \cdot g \neq 0$ has at most 2 zero positions

h(c)

h(2)

g(1)

α

 $= \mathcal{L}_0 \cdot \gamma$

 $+ \mathcal{L}_1 \cdot h(1)$

 $+ \mathcal{L}_2 \cdot h(2)$

Lagrange Interpolation h(c)

f(c)

Lagrange Interpolation

 $= \ell_0 \cdot \alpha$

 $+\ell_1 \cdot f(1)$

t (c)

g(c)

Proving Many Multiplication Gates (1/2)

[CramerDamgård'97, CramerDamgårdMaurer'00, CramerDamgårdPastro'12, AttemaCramer'20]

Now: *m* multiplication gates α_i , β_i , $\gamma_i = \alpha_i \cdot \beta_i$ ($0 \le i < m$)

- **1.** Packed secret sharing: $\int c$ chooses random f, g of degree m s.t. $f(i) = \alpha_i, g(i) = \beta_i$
- 2. $\oint \text{sets } h(X) \coloneqq g(X) \cdot f(X)$
- 3. $\int \int dditionally commits to f(m), g(m), h(m), ..., h(2m)$
- Issue: Communication scales with the size of the circuit

- 4. Sends a challenge $c \leftarrow \mathbb{Z}_p \setminus \{0\}$
- 5. $\int \int sends$ the opening f(c), g(c), h(c)
- 6. Checks if openings are correct & $h(c) = f(c) \cdot g(c)$

Observation:

Can pack all values in **succinct vector commitment** and use

\Sigma-protocols for linear forms to prove correct openings f(c), g(c), h(c)

Proving Many Multiplication Gates (2/2)

[CramerDamgård'97, CramerDamgårdMaurer'00, CramerDamgårdPastro'12, AttemaCramer'20]

• More precisely, we have to prove three linear forms L_1, L_2, L_3 :

$$\begin{array}{cccc} (\ell_0 \ \ell_1 \ \ldots \ \ell_m \ 0 \ \ldots \ 0) & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{array}{c|c} (0 \dots \dots 0 \ \mathcal{L}_0 \ \mathcal{L}_1 \dots \mathcal{L}_{2m}) & \vdots & = h(c) \\ & \gamma_0 & \vdots \\ & h(2m) \end{array}$$

Only need Σ-protocols for linear forms

Σ -protocols for Circuit ZK

[AttemaCramer'20]

From Multiplications to Circuit ZK

[AttemaCramer'20]

Observation:

- 1. Wires α_i, β_i are determined by affine forms $u_i(w_1, ..., w_n, \gamma_1, ..., \gamma_m), v_i(w_1, ..., w_n, \gamma_1, ..., \gamma_m)$
- 2. Same for the output value $f(w_1, ..., w_n)$

Strategy:

- 1. Instead of committing to α_i , β_i use the affine forms to define f, g
- 2. Finally, show $f(w_1, ..., w_n) = 0$ as required

Fiat-Shamir and Parallel Repetition

Some Notes on Multi-Round Σ -Protocols

• Parallel repetition of Σ -protocols:

- **2-special soundness:** *t*-fold parallel repetition also satisfies 2-special soundness \rightarrow knowledge error decreases exponentially to $1/|\mathcal{C}|^t$
- k-special soundness: t-fold parallel repetition only satisfies ((k − 1)^t+1)-special soundness → extractor becomes inefficient for large t
- $(k_1, ..., k_n)$ -special soundness: not clear if it satisfies meaningful notion of special soundness
- [AttemaFehr'22]: Parallel repetition reduces the knowledge error to κ^t
- [AttemaFehrKlooss'22]:
 - Fiat Shamir of $(k_1, ..., k_n)$ -special sound protocols has linear soundness loss Q
 - Fiat Shamir of t-fold $(k_1, ..., k_n)$ -special sound protocols has exponential soundness loss Q^{μ} if $t > \mu$

Thank you!