
Michele Ciampi

From Sigma-Protocols to Zero-Knowledge
in the Plain Model and Beyond

Sigma protocols

• Completeness

• Honest Verifier Zero-Knowledge HVZKSim(x)⇒

• Special Soundness

PΣ(x,w) VΣ(x)
a

c

 z

a’

c’

 z’

x, (a c z)

x, (a c’ z’)
w: (x,w)∈ Rc ≠ c’

≡

Thm: x

Special Honest Verifier Zero-Knowledge SHVZKSim(x,c)⇒ a’,z’
≈

Computational

Computational

Proof of Knowledge

a

c

 z

Thm: x Ext

w s.t. (x,w) ∈ R

If the transcript is accepted with more than some probability p>k, then the extractor returns
the witness in the expected time 1/(p-k) where k is the knowledge error

Special-soundness [D10] —> Proof of Knowledge

a

c

 z

Thm: x Ext

w s.t. (x,w) ∈ R
special soundness

c’

 z’

If the transcript is accepted with more than some probability p>k, then the extractor returns
the witness in the expected time 1/(p-k) where k is the knowledge error

Schnorr protocol
x= gy

a=gr

c

 z=r+cy

y

a

c

 z

Special-soundness

c’

z’
{ z=r+cy

z’=r+c’y
c≠c’ y

Accept iff gz=axc

 gz=gr+cy axc=grgyc=gr+cy

Let G be a group of order q,
with generator g

Schnorr protocol
x= gy

a=gr

c

 z=r+cy

y

HVZK

HVZKsim

Accept iff gz=axc

c Zq
z Zq
a=gz/xc

a

c

 z

Sigma Protocol for Diffie-Hellman tuples

Let G be a group of order q,
with generators g and hx=(g, h, u,v) u=gy, v=hyIs a DH tuple if

b<—{0,1}

if b=0 then

 T=(g, h, u=gy, v=hy)

else

 T=(g, h, u=gy, v=hw) with y≠w

T

Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)

A=gr

c

 z=r+cy

y s.t.

u=gy,v=hy

Accept iff gz=Auc

H=hr

and hz=Hvc

Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)

A=gr

c

 z=r+cy

y s.t.

u=gy,v=hy

Accept iff gz=Auc

H=hr

and hz=Hvc

HVZKHVZKsim
c Zq
z Zq
A=gz/uc

a=(A,H)

c

 z
H=hz/vc

Sigma Protocol for Diffie-Hellman tuples

x=(g, h, u,v)

A=gr

c

 z=r+cy

y s.t.

u=gy,v=hy

Accept iff gz=Auc

H=hr

and hz=Hvc

Special-soundness

Exactly the same as the one for the Dlog protocol

OR-Composition
x0 or x1

w0

a0

c0

 z0

Σ0=(PΣ0,VΣ0)

a0 a1

c

a1

c1

 z1

Σ1=(PΣ1,VΣ1)

HVZK1sim(x1) —>a1,c1,z1

a0<—PΣ0(x0,w0)

c0<—c⊕c1
z0<—PΣ0(x0,w0,c0)

c1, z1c0, z0

HVZK1sim(x1) —>a1,c1,z1

HVZK0sim(x0) —>a0,c0,z0

VΣ0(x0,a0,c0,z0)=1

VΣ1(x1,a1,c1,z1)=1
and

and
c=c0⊕c1

OR-Composition
x0 or x1

a0 a1

c

c1, z1c0, z0

VΣ0(x0,a0,c0,z0)=1

VΣ1(x1,a1,c1,z1)=1
and

and
c=c0⊕c1

c’

c’1, z’1c’0, z’0

VΣ0(x0,a0,c’0,z’0)=1

VΣ1(x1,a1,c’1,z’1)=1
and

and
c’=c’0⊕c’1

c ≠ c’
c0 ≠ c’0

or
c1 ≠ c’1

by s-soundness
of Σ0

e.g. c0 ≠ c’0

w0

Special Soundness

AND-Composition
x0 AND x1

w0,w1

a0

c0

 z0

Σ0=(PΣ0,VΣ0)

a0 a1

a1

c1

 z1

Σ1=(PΣ1,VΣ1)

z1z0

HVZK1sim(x1) —>a1,c1,z1

HVZK0sim(x0) —>a0,c0,z0

VΣ0(x0,a0,c,z0)=1

VΣ1(x1,a1,c,z1)=1
and

a0<—PΣ0(x0,w0)
a1<—PΣ1(x1,w1)

cz0<—PΣ0(x0,w0,c)
z1<—PΣ0(x1,w1,c)

AND-Composition
x0 AND x1

a0 a1

z1z0

VΣ0(x0,a0,c,z0)=1

VΣ1(x1,a1,c,z1)=1
and

a0<—PΣ0(x0,w0)
a1<—PΣ1(x1,w1)

cz0<—PΣ0(x0,w0,c)
z1<—PΣ0(x1,w1,c)

c’

z’1z’0

VΣ0(x0,a0,c’,z’0)=1

VΣ1(x1,a1,c’,z’1)=1
and

Special Soundness

c ≠ c’

and

s-soundness of
Σ0 and Σ1

w0,w1

Commitments from Sigma-Protocols

m

Commit(m)

com, dec
• Hiding

• Binding

 ∄ dec’, m’, with m≠m s.t.
Decommit(com, m, dec)=1 and

Decommit(com, m’, dec’)=1

com dec

Decommit(com, m, dec)

1/0

m

Commitment scheme

• if x ∈ L Hiding

• If x ∉ L Binding

∄ dec’, m’, with m≠m s.t.
Decommit(x, com, m, dec)=1 and

Decommit(x, com, m’, dec’)=1

m

Commit(x,m)

com,dec

x com dec

Decommit(x, com, m, dec)

1/0

mx

Instance-dependent commitment scheme
NP-Language L

Commitments from Sigma-Protocols

a

c

 z

Σ=(PΣ,VΣ) mx

SHVZKsim(x,m) —>a, z
com<—a
dec<—z

com, dec

com decmx

VΣ(x, com,m,dec)—>b

bSHVZKsim(x,c) —>a, z

Binding (x ∉ L)

VΣ(x, com,m,dec)—>1
VΣ(x, com,m’,dec’)—>1

m’≠m

s-soundness of Σ w: witness for x

Commitments from Sigma-Protocols

mbx

SHVZKsim(x,mb) —>a, z
com<—a
dec<—z

com, dec

m0, m1

b<—{0,1}

com

b’

By contradiction b=b’

x ∈ L

SHVZKsim(x,m0) —>
a0

z0

a<—PΣ(x,w)
z<—PΣ(x,w,m0)

≡ <— SHVZKsim(x,m1)
a1

z1

≡

So far

• Sigma protocols for some fixed languages

• Practical efficiency

• Only HVZK

• Can we have a sigma protocol for all NP?

• How do we get security against malicious verifiers?

Commitments

m

Commit(m)

com, dec

• (computational statistical) Hiding

• (computational statistical) Binding

com dec

Decommit(com, m, dec)

1/0

m

Non-interactive

Commit(m)

Interactive

Decommit

m was committedm

Statistically binding commitments

El-Gamal

Comg,r(m,r)=gr,hr gm⋅

From PRGs (OWFs)

c= {G(s) m=0

G(s) r m=1⊕

r
c

m

s

if G(s)=c then 0

if G(s) r=c then 1⊕

m,r

Hamiltonian graphs

0 1 2

3 4

0 1 2 3 4
0 1 1 0 1 0
1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 1 1
4 0 0 1 1 1

(0,1,2,4,3,0)

0 1 2 3 4
0 1 1 0 1 0
1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 1 1
4 0 0 1 1 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

(0,3,1,4,2,0)

G H
0 3
1 1
2 4
3 0
4 2

𝝅

G

3 1 4

0 2

H

NP-Complete
Every L NP is poly-time reducible to HAM∈

If we have a protocol with property p for the
language HAM then we have a protocol with

the property p for every language L NP∈

Sigma Protocol for HAM

0 1 2

3 4

(0,1,2,4,3,0)

0 1 2 3 4
0 1 1 0 1 0
1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 1 1
4 0 0 1 1 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

G

G H
0 3
1 1
2 4
3 0
4 2

𝝅

H

Com Com

Com

Com Com Com

Com Com Com Com Com

Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

0

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

G H
0 3
1 1
2 4
3 0
4 2

H is just like G

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

𝝅

H

G
Stm: G is Hamiltonian

Sigma Protocol for HAM

0 1 2

3 4

(0,1,2,4,3,0)

0 1 2 3 4
0 1 1 0 1 0
1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 1 1
4 0 0 1 1 1

G

G H
0 3
1 1
2 4
3 0
4 2

𝝅

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

H

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

Com Com Com Com

Com Com Com Com

Com Com Com Com

Com Com Com Com

Com Com Com Com

H is Hamiltonian

Stm: G is Hamiltonian

Special Soundness

0 1 2 3 4
0 1 1 0 1 0
1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 1 1
4 0 0 1 1 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

H

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

Com Com Com Com

Com Com Com Com

Com Com Com Com

Com Com Com Com

Com Com Com Com

0

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

G H
0 3
1 1
2 4
3 0
4 2

Stm: G is Hamiltonian

(0,3,(0,3,1, (0,3,1, 4,(0,3,1,4,2,0)

(0,1,2,4,3,0)

(3,(3, 0(3, 0, 1

Cycle in H

(3,0,1,2,4,3)

Cycle in G
It relies on the binding of the

commitment

0 1 2 3 4
0 1 1 1 1 1
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

0 1 2 3 4
0 1 1 0 1 0
1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 1 1
4 0 0 1 1 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

Com Com Com Com

Com Com Com Com

Com Com Com Com

Com Com Com Com

Com Com Com Com

Stm: G is Hamiltonian

Special Honest Verifier Zero-Knowledge (b=1)

It relies on the hiding of the
commitment

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

H

Special Honest Verifier Zero-Knowledge (b=0)

0 1 2 3 4
0 1 1 0 1 0
1 1 1 1 1 1
2 0 1 1 0 1
3 1 1 0 1 1
4 0 0 1 1 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

Com Com Com Com Com

0

0 1 2 3 4
0 1 1 1 1 0
1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 0
4 0 1 1 0 1

G H
0 3
1 1
2 4
3 0
4 2

Stm: G is Hamiltonian

G H
0 3
1 1
2 4
3 0
4 2

Zero-Knowledge against arbitrary verifiers

Completeness

Soundness

Zero-knowledge

x∈L

w: (x,w)∈ R

OutputReal

Sim(x) OutputSim

≈

Zero-Knowledge against arbitrary verifiers

Sim(x)
a
b*
z

view
• Sample a random bit b

• SHVZK(x,b)->a,c,z

• If b=b*
• If b b*≠

Zero-Knowledge against arbitrary verifiers

Sim(x)
a
b*
z

view
• Sample a random bit b

• SHVZK(x,b)->a,c,z

• If b=b*
• If b b*≠

The simulator succeeds in 2 expected number of rewinds
If we use the Sigma protocol for HAM, we have a 3-round ZK protocol for all NP [Blum86]

• Computational ZK if the commitments are statistically binding (one additional round is needed if we
want to rely on OWFs)

• Statistical ZK if the commitments are statistically hiding
Are we happy with this protocol? A malicious prover can cheat with 1/2 probability

Our Goal

• Computational zero-knowledge

• Constant round (1 round maybe)

• Negligible soundness error

• Minimal assumptions

Reduce the soundness error of the sigma-protocol

b1 {0,1}∈

w: (x,w)∈ R

…

• Repeat the protocol in parallel k times in parallel

• A corrupted prover cannot guess the challenge in advance

b2 {0,1}∈ bk {0,1}∈

• In general, we cannot have a ZK 3-round protocol unless the polynomial hierarchy collapses*

• We can achieve a weaker notion of ZK, which we will use as a tool for our final, optimal round

protocol

How do we simulate?

Witness Indistinguishability

Witness Indistinguishability

The interaction between the prover and the verifier does not reveal which of the NP witnesses for x L was
used in the proof

∈

For every w1,w2 such that (x,w1) Rel and (x,w2) Rel∈ ∈

w1 w2

≈

• L NP can have many different relations. The relation specifies what I am hiding

• Trivial if there is only one witness

• In the security game, the witnesses are public

• Every ZK proof/argument is also WI

• WI is closed under parallel/concurrent composition

∈

Every ZK proof/argument is also WI

For every w1,w2 such that (x,w1) Rel and (x,w2) Rel∈ ∈

w1 w2

≈

Sim(x)

≈

≈

WI is closed under parallel composition
For every w1,w2 such that (x,w1) Rel and (x,w2) Rel∈ ∈

w1 w1 w1

…

w2 w1 w1

…

≈

w2 w2 w2

…

≈
…… … …

Observations and Corollaries

A sigma-protocol with 1-bit challenge is zero-knowledge

Every zero-knowledge protocol is WI

Amplify the soundness of the WI via parallel repetition

HAM is a sigma-protocol with 1-bit challenge based on the
existence of statistically binding non-interactive commitment

scheme

Sigma-Protocols are PoK

Assuming non-interactive statistically binding commitments every L NP has a 3-round
witness-indistinguishable proof-of-knowledge (WIPoK) with negligible soundness error

∈
Theorem

=

WIPoK

x L∈

Constant round zero-knowledge argument for NP [FS90,FLS90]

w

x L∈

y0=f(z0)
y1=f(z1)

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=(z)

∃

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=(z) or

3. (x,w) Rel

∃

∈

z0,z1 <—{0,1}k

f is a one-way function

Constant round zero-knowledge argument for NP [FS90,FLS90]

x L∈
y0=f(z0)
y1=f(z1)

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=(z)

∃

Zero-Knowledge

PoKExt
the PoK property guarantees that the extraction is

successful in expected polynomial time

WI guarantees that the adversary does not
distinguishes between the real proof and the

simulated proof

z0

Sim(x)

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=(z) or

3. (x,w) Rel

∃

∈

z1

Constant round zero-knowledge argument for NP [FS90,FLS90]

x L∉

y0=f(z0)
y1=f(z1)

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃

Soundness

z0,z1 <—{0,1}k

f is a one-way function

Do the WIPoK using z0

PoKExt
Could we extract z1?

Assume this happens, then we have an efficient
algorithm to compute the pre-image of y1

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z) or

3. (x,w) Rel

∃

∈

Constant round zero-knowledge argument for NP [FS90,FLS90]

x L∉

y0=f(z0)
y1=y

Soundness

z0 <—{0,1}k

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃ Do the WIPoK using z0

PoKExt

z1

OWF
adversary

OWF
challenger

f,y

z1

Note that f(z1)=y

We have a ppt adversary that inverts OWFs!

Claim: PoKExt does not extract z1

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z) or

3. (x,w) Rel

∃

∈

Constant round zero-knowledge argument for NP [FS90,FLS90]

x L∉

y0=f(z0)
y1=f(z1)

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃

Soundness

z0,z1 <—{0,1}k

f is a one-way function

Do the WIPoK using z0

PoKExt

z0

Claim: PoKExt does not extract z1

Do the WIPoK using z1

Can the extracted value be z0?
No, for the same arguments as before

Claim: If we use zb to complete the first WIPoK
then PoKExt does not extract z1-b

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z)

3. (x,w) Rel

∃

∈

x L∉

y0=f(z0)
y1=f(z1)

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃

Soundness

z0,z1 <—{0,1}k

f is a one-way function

Do the WIPoK using z0

PoKExt

zb

Claim: PoKExt does not extract z1

Do the WIPoK using zb

If this happens, we have a reduction to
the WI property of the first WIPoK

Claim: If we use zb to complete the first WIPoK
then PoKExt does not extract z1-b

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z)

3. (x,w) Rel

∃

∈

Constant round zero-knowledge argument for NP [FS90,FLS90]

Constant round zero-knowledge argument for NP [FS90,FLS90]

x L∉

y0=f(z0)
y1=f(z1)

Soundness

z0 <—{0,1}k

z1 <—{0,1}k

PoKExt

zb

WI
adversary

WI
challenger

z0, z1

stm

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃
WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃

b<—{0,1}

use zb

We have an adversary that guesses
correctly what witness has been used to

compute the first WIPoK

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z)

3. (x,w) Rel

∃

∈

x L∉

y0=f(z0)
y1=f(z1)

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃

Soundness

f is a one-way function

Do the WIPoK using z0

PoKExt

zd

Do the WIPoK using zb

Claim: If we use zb to complete the first WIPoK
then PoKExt does not extract z1-b

Claim: If we use zb to complete the first WIPoK
then PoKExt does not extract zb

Hence it must be that we extract the witness for
x —>x L∈

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z)

3. (x,w) Rel

∃

∈

Constant round zero-knowledge argument for NP [FS90,FLS90]

Let’s squeeze it into four rounds
Soundness

w

x L∈

y0=f(z0)
y1=f(z1)

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃

WIPoK

z s.t. either

1. y0=f(z) or

2. y1=f(z)

∃ WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z)

3. (x,w) Rel

∃

∈

WIPoK

z,w s.t. either

1. y0=f(z) or

2. y1=f(z)

3. (x,w) Rel

∃

∈

•The simulator when computing these messages does not know any of the
pre-images

•We need the WIPoK to also be delayed input

•Such a three-round protocol exists for Hamiltonicity [LS90] and it is similar to

the Blum's protocol we have seen.

• The delayed-input property is enjoyed by some efficient sigma-protocols as

well*

So far

• ZK implies WI

• WI composes (concurrently)

• The four-round computational zero-knowledge argument of

knowledge for Hamiltonian graphs

• NP CZK will be in four rounds, assuming statistically binding

commitments.

• NP SZK in four rounds assuming statistically hiding commitments

• Can we do better than 4 rounds?

⊆

⊆

Impossibility for languages outside BPP

w: (x,w)∈ R

Zero-Knowledge and negligible soundness error

Sim(x)
view

x L∈

What happens if I run the simulator with x L∉

If we assume that it is difficult to decide whether x L
or x L then the simulator must work in the same way

∉
∈

Sim(x) x L∉

For non-trivial languages and with BB
simulation 4-round is the best we can do

About compositoin

• The standalone setting for zero-knowledge.

• We made one attempt at parallel composition and it failed

• Can we design a constant round protocol that can be run in concurrency?

• The schedule of the messages is arbitrary (maliciously chosen) [DNS98]

Concurrent composition

w

v1x L∈

…
…

vnvn-1…

Concurrent composition

v1 vnx L∈ vn-1

…
…

…

The simulator needs to do all the
work again

How many steps does the simulation of concurrent executions take?

Sim(x)

About compositioin

• [DNS98] Concurrent composition of constant round protocols becomes possible
in the timing model

• [D00] If we assume trusted setup, then every language in NP has a constant
round zero-knowledge protocol

• [KPR98,CKPR01] Only languages in BPP have BB concurrent ZK with o(log n/log
log n) rounds

• [KP01,PRS02] Every language in NP has a concurrent ZK protocol with (log n)
rounds.

• If the number of sessions is known apriori then constant round protocols are
possible

ω

Summary

• Sigma-Protocol

• Every language in NP has a sigma-protocol

• Boost security from HVZK to zero-knowledge

• The best possible round complexity is 4 round

• Can we circumvent the 3-round impossibility and design an efficient non-interactive

argument?

How do we make non-interactive proofs?

Ow

a<—PΣ(x)

x

c<—O(a,x)
z<—PΣ(x,w,c)

a,z VΣ(a,c,z)=1

c<—O(a,x)

• Fiat-Shamir transform

• in practice O is a hash function (e.g.SHA2)

z
c
aPΣ VΣ

• Adds very little overhead to the starting sigma-protocol

• Used in practice for identification scheme, signatures,

SNARKS, …

The Random Oracle Model [BR93]

• Given a query m, s.t. (m, t) History for some t, then return t.

• Given a query m .s.t (m,) History then pick a random t<—{0,1}n, add (m,t) to

History and return t

∈
⋅ ∉

O

• It is an ideal functionality and nobody has its description

• Can only be treated like a black-box

• Security holds with high probability over the choice of O
• The reduction can control the RO

m t

Soundness of Fiat-Shamir

O
x ∉ L

a,z

VΣ(a,c,z)=1

c<—O(a,x)

Soundness of Fiat-Shamir

O
x ∉ L Soundness

adversary for Σ
Challenger for Σ

a’,xa,x aa’,x
pick a random c’

c’
a,x

c

a,z VΣ(x,a,c,z)=1

z

We have turned a successful adversary for the soundness of the FS-transform into an adversary
that breaks the soundness of the sigma-protocol

c

Formally proving this requires a more involved analysis based on the forking lemma

Zero-Knowledge of Fiat-Shamir

O

x L∈

a,x

a,z

c

Sim(x)

• c<—{0,1}n

• SHVZK(x,c)->a,c,z

• Various ways to define zero-knowledge

• A programmable hash function suffices (like a CRS)

• Is this still zero knowledge?

A bit more discussion on the RO model

• Hash functions are far from being random functions (PRFs?)

• [CGH98] Exist protocols secure in the RO model but broken

when replacing the RO with any hash function

Optimistic view
• Counterexamples have very specific

characteristics

• Better to have proof than no proof at all

• Good heuristic

• Recent results show that the FS transform if

the RO is replaced with a special type of
hash function and a special type of sigma-
protocols is used*[HMR08,CCH+19]

Pessimistic view
• Basing security on assumptions

we do not understand is
undesirable

Summary and Conclusions

• It works with constant round public coin protocols with negligible soundness error (tight)

• It prevents malleability attacks (a stronger form of zero-knowledge, but assuming a quite

strong setup).

• Setup is needed if we want to circumvent the 4-round impossibility

• Weaker notions still exist that do not require setup (witness hiding, weak zero-knowledge,
…)

• Setup is needed for full composition

• The plain model provides a pure form of zero-knowledge

• Pick your tool, depending on your application: you do not always need the strongest possible

protection

• [D10] On Sigma-Protocols. Ivan Damgaard. https://www.cs.au.dk/~ivan/Sigma.pdf

• [DNS98] Cynthia Dwork, Moni Naor, Amit Sahai. Concurrent Zero-Knowledge

• [D00] Ivan Damgaard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model

• [CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, Alon Rosen. Black-Box Concurrent Zero-Knowledge Requires

(Almost) Logarithmically Many Rounds.

• [KPR98] Joe Kilian, Erez Petrank, Charles Rackoff. Lower Bounds for Zero Knowledge on the Internet.

• [KP01] Joe Kilian, Erez Petrank. Concurrent and resettable zero-knowledge in poly-loalgorithm rounds. STOC 2001.

• [FS90] Uriel Feige, Adi Shamir. Witness Indistinguishable and Witness Hiding Protocols. STOC 1990

• [FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on a

single random string (extended abstract).

• [CGH98] Ran Canetti, Oded Goldreich, Shai Halevi: The Random Oracle Methodology, Revisited.

• [CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, Daniel

Wichs. Fiat-Shamir: from practice to theory. STOC 2019.

• [HMR08] Shai Halevi, Steven Myers, and Charles Rackoff, On seed-incompressible functions

References

https://www.cs.au.dk/~ivan/Sigma.pdf

Thank you

