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So far...

Approximate [Lyu09,Lyul?]:

Lattice-based cryptography

* We only prove that we know
short s and short ¢ such that
As = cu.

As=u
f ™.

N

N Equation over
/" Vector § has ring R,

polynomials with

* This is enough for
identification schemes and
signatures like CRYSTALS-

Dilithium.
* Small proof sizes (= 3KB).

Denote

Sg={x € Ry:||x|| < B} small
coefficients

\__eq. (-1,0,1) /




But we wanted morel

L attice-based cryptography Exact:

As = u * We prove exactly that s is

. within specified range and
As = u (mod q).

\[Equaton over} * This is crucial for building

ring Zg more advanced privacy-
preserving primitives, e.g.
verifiable encryption.

/\/ector S has\
small
coefficients

_eg (-1,0,1} * Much bigger proof sizes.




The main focus of this talk: [LNP22] framework

As =u (mod q) ands € {0,1}'"

4 N
Equation

over ring 4,
N J
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Overview

As = u (mod q) s € {0,1}"

Lemma: Let s € Z™. Then, s € {0,1}" if and only if

(s, s —1) = 0.

Proof: Suppose (s, s — 1) = 0. This means that

m
ZSi(Si — 1) =0.
i=1
However, since each s; is an integer, we have
Si(si — 1) = 0

Hence, the sum is equal to zero if each of the
inequalities is an equality, i.e. s; € {0,1}.




Overview

As = u (mod q) (s,s —1)=0.

U

(s,s —1) =0 (mod q)

and

Isll < q




Overview

As = u (mod q) (s,s —1) =0 (mod q) l|s]| < g

Inner product Approximate

Linear proof

proof range proof
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Overview

]| < g
* If | take a random short vector b,
then clearly
(b, s)
is short.
Approximate
* But if | am given a large vector s, range proof
then what’s the probability that
(b, s)
is short?




Overview + /K

* If | take a random short vector b,
add a short mask y then clearly
y + (b, s)
s short.

* Butif | am given a large vector s
and vy, then what’s the probability
that

y + (b, s)
is short?

sl < q

Approximate

range proof




Approximate range proof lemma [BL17,LNS21]

sl < q

Lemma:

1
— <
o Er LB s) + 1 <5 lisll] < 1/2,

Proof: Let s; = ||s|| for some i. Approximate
Then, we can write (b,s) + y = b;s; + . range proof

By the triangle inequality, at least one of {r, s; + r} has to

1
have norm at least > ||s]]|-

The probability of hitting that value is at least 4.




Overview

Lemma:

[
B0y

1
1Bs +yll <5 -llsll] < 1/2%.

Proof: By amplification.

sl < q

Approximate

range proof




Intuition

b+

s € {0,1}™

y « [—a,al?

S]] < q

Hence, the verifier is convinced
that |[s|| < 2||y + Bs|| <

2(a — m)
(with high probability).

B « {O’l}lxm

Check ||z|| £ a—m

Z=Yy+ Bs

If ||z|| > @ — m, reject

Z=y+Bs



b+

t = Com(m;r)

Message m
Binding: ST
’ | | Hiding:
t's h.ard to find two dlffelare’nt The adversary can't learn any
openings (m,r) and (m’,r") such information about (m,r) from t

that Com(m;r) = Com(m';r’").



Attempt 2

b+

s € {0,1}™

Isl] < q

S
"

I

~/

WL\\

y « [—a,al? y = Com(y;r),ts := Com(s;7)
r o« ¥
B 0’1 AxXm
. - {01}
Z=1vy+Bs Z&::> Check ||z|| < a —m
i Z=7vy+Bs
" y

t, = Com(y;r),tg = Com(s;T)



Attempt 2

b+

s € {0,1}™

y « [—a,a]?
Tr <—X

S]] < q

Instead of sending
the openings, we

of them

Z=Yy+ Bs

If ||z|]| > a — m, reject

B « {0,131

Check ||z|]| £ a—m
Z=7Yy+ Bs

t, = Com(y;r),ts = Com(s;T)



Approximate range proof

& s1] <« g
&

s € {0,1}™

)/Jr\‘

B < {0,1}™

y < [—a,a]
r<—y

t, := Com(y;r),ts == Com(s;T)

Z=y+Bs

.................................................................................................................................................................

! t, = Com(y;r) _
! y ! Z=7yY+ Bs




Overview

AS = U (mOd q) (S, S — 1) — O (mOd q) Approximate range proof

? lIs|| < q )
se{01m )(-L
N

¥y« [—a,a]? ty, = Com(y;1),t, = Com(s;T)
Ty 5 B « {0,1}‘1"’"
= B
zZ=Yy+Bs z

If [|2]| > @ — m, reject

Inner product

Linear proof

t, = Com(y;1)

Z=Yy+ Bs
t; = Com(s; 1)

proof

Linear proof




Overview

AS = U (mOd q) (S, S — 1) — O (mOd q) Approximate range proof

lIsll < q
s € {0,1}™ )(-|~
N

y < [~a,al? t, = Com(y; 1), ts = Com(s; T)

Ty 2 B « {U,l}lxm
zZ = Bs

y+ z

If ||12|| > @ —m, reject

Inner product Inner product t, = Com(y;r)

ty = Com(s;r)

proof

Z=Yy+ Bs

proof

Inner product

proof
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Next step: inner products over Zj

* We want to prove inner products (either between two committed
messages, or between one secret and one public vector)

* Working natively over integers will result with bad soundness error
(see previous lecture)

* We need to translate the inner products into relations over the
polynomial ring R,



Rq — Zq[X]/(f(X))

* For concreteness, set f(X) := X% + 1 for a power-of-two d



Rq — Zq[X]/(f(X))

* For concreteness, set f(X) := X% + 1 for a power-of-two d

*leta=ay+a; X+ -+ ag_1 X! € R,. Then ||a|| = max|a;].
l

* Lemma: ||ab|| < d - ||al| - ||b]].



Setup

* Fori € Z5,4, let us denote 0;: R; = R, to be the automorphism
defined by g;(X) = X*.

* Let 0 := 0_,.Seems irrelevant now but it will be useful later!

* For x € R,, we denote ct(x) = x, its constant coefficient/term.



The key ingredient

Lemma: Let u == Y& tu X and vi= Y v X be ring

elements in R Then, the constant coef'fluent of the

polynomlal uo_1(v) € Ry is 41 u,v;.

Proof: By definition,

Therefore, the constant term is indeed ugvy + uqvq + = + Ug_1Vq-1-



The key ingredient

Lemma: Let u == Y4 L u; X and v i= YL v X be ring

elements in R Then, the constant coefﬂuent of the

polynomlal uo_1(v) € Ry is 41 u,v;.

As an application of this lemma, we know a vector s € Z¢ satisfies (s, s — 1) = 0 (mod q) if and only if

where s := Y& 15, X",



The key ingredient

Lemma: Let u == Y& tu X and vi= Y v X be ring

elements in R Then, the constant coef'fluent of the

polynomlal uo_1(v) € Ry is 41 u,v;.

As an application of this lemma, we know a vector s = (sy, ..., Si/q) € Z™ satisfies (s,s — 1) = 0 (mod q)

-5 )

— Vd-1 [
where sj = )= Sj.q+iX -



Back to overview

As = u (mod q)

A

Vi, ct(f;(s)) = 0

(s,s —1) =0 (mod q)

Approximate range proof

|Is]] < q /Dj
[ se {01} /(Jr\l

y « [—a,al? t, = Com(y;1"),t; .= Com(s;T)
r — X
B 0,1 Axm
o -1
=y+Bs 2

If ||z]| a reject
. Check||z|]| s a—m

knowledge , = Com(y; ") B
fys,mr st t,=Com(sir) 7 —

t, = Com(y;r)
ty = Com(s;r)

\ 4

t, = Com(y;r)
ty = Com(s;1)

Z=YyY+ Bs

vi,ct(gi(s,y)) =0




So far so good

As = u (mod q) (s,s —1) =0 (mod q) o el <

m/d d-1
Vi, ct(fi(s)) =0 ct ( (s}- - z Xi
4 ;

Approximate range proof

B« [0,1}3%m

t, = Com(s;r)

t, = Com(y;r)
to = Com(s;1)

ty, = Com(y;r)
ty = Com(s;r)

Vi, Ct(fi(sl y)) =0

. Yl=0
) J(S})) ty = Com(y;T)

$

Vi, ct(gi(s,¥)) = 0

oo CheCk |2l S @ mm

Z=y+Bs

where f; are public quadratic
functions (with o)



How many people are
still following? ©



Proving constant coefficients

* We want to prove that Vi, ct(f;(s,y)) =0

* Clearly, for any u4, ..., Uy € Zq we have
k

k
ct (z K -fi(s,y)) = Euz -ct(fi(s,y)) =0.
i=1 =1



Proving constant coefficients

* We want to prove that Vi, ct(f;(s,y)) =0

* Clearly, for any u4, ..., Uy € Zq we have
k k
ct| D mfils,y) | = ) wi-ct(fi(s,y) =0.
=1 =1
But what happens if for some i, ct(f;(s,y)) # 0?

Then, with prob. é, we have ct(Z{-‘zlui - 1 (s, y)) = (. Repeat L times.



Adding zero-knowledge

% . 1; - fi(s,y) potentially leaks information about s, y



Adding zero-knowledge

% . 1; - fi(s,y) potentially leaks information about s, y

* Sample and commit to random polynomials g4, ..., g, < {x € Rg: ct(x) = 0}.

* Given challenges Ki1s e Hjk forj=1,..,L, compute
k
hi:=g; + Eﬂj,i - fi(s,y)
i=1

Hence, ct(hj) = 0 and h; hides info about other coeffs of YK, wii- fi(s,y)



-ty = Com(y;m) Vi, ct(fi(s,¥)) =0
ti = Com(s; 1)

-
——————

~

)rJr\‘

] LXKk
. — 7
(k) (:uj,l)j’i q
.u'j,i ji

: ( ) : hl,,hL
i fi(s,y
Vj, hi:=g; +;HM fi

e

S,y

ty = Com(g;T)
gL < {x € Rq: Ct(X) = 0}
J1 e

Check Vj, Ct(hj) =0



Overview

Approximate range proof

As = u (mod q) (s,s —1) =0 (mod q) ﬁ ol <

s€ (01" r+\|
y-HI_ I_-_:l‘ iy :.---.w.,';:_ Comis: F) —
B ﬁ e ——

drarra ety T G—
myd d-1
Vi, ct (fi(s)) = 0 N ) os) ) =
i,c (fi 5 Ct(; (S_; IZX) 0'(5'})) 0 ty = Com(y; 1) Z=y+Bs

ty = Com(s; 1)

$

ty = Com(y;r)
ty = Com(s;T)

Vi, Ct(gl(sr y}) =0

t, = Com(y;T)

. B where f; are public quadratic
t. = Com(s;r) voet(fi(sy) =0

functions (with o)

k
t, = Com(y;) t, = Com(g;T) Viohj = g;+ zﬂj,i (s y)
ts = Com(s;r) g =



In other words

As = u (mod q) (s,s —1) =0 (mod q) e

! !

mjd d-1
Heen = ! (Z (Sj ) ZD XI) - o-(sj)) -’ Ly = Com(y; )

ty = Com(s; 1)

$

ty = Com(y;r)
ty = Com(s;T)

zZ=y+Bs

Vi, Ct(g‘{s, y)) =0

t, = Com(y;T)

. B where f; are public quadratic
t. = Com(s;r) voet(fi(sy) =0

functions (with o)

Public quadratic
function (with o)

t, = Com(y;r)

t = C ; .) ] ) ) —_
tS = Com(s; r) 9 Om(g r) VJ I')](S y g) 0
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Slmple fxty=C0m(}’;T) :
amortisation o e =0

= Com(g;r)
3
&
S,y
N1 ML n; « Ré

:’ Prove that L
> 1;Pi(s,y,9) =0
| j=1 /

___________________________________________________________________________



Soundness analysis

* What'’s the probability that Z§:1 nj - Pj(S, y,g) = 0 if for some j,
Pi(s,y,g9) # 0?

* Consider the standard polynomial ring R; = Z, [X]/(X% + 1) whered is a
power-of-two and g = 5 (mod 8).



Soundness analysis

* What's the probability that ¥.7_; n; - Pi(s,y, g) = 0 if for some j,
Pi(s,y,g) # 0?

* Consider the standard polynomial ring R; = Z, [X]/(X% + 1) whered is a
power-of-two and g = 5 (mod 8).

d d
e Then, X4 + 1 = (XE — r)(XE + r) factors into two irreducible polynomials
modulo q.

* By CRT, R, is isomorphic to( z[x] ) x( Z[X] )

XE_T;q XE_T,CI




Soundness analysis

* What's the probability that ¥.:_; n; - Pi(s,y, g) = 0 if for some j,
Pi(s,y,g) # 0?

* Consider the standard polynomial ring R, q[X]/(Xd + 1) whered is a
power-of-two and g = 5 (mod 8).

d d
e Then, X4 +1 = (XE — r)(XE + r) factors into two irreducible polynomials
modulo q.

____________________________________________________________________________

—_——_—,— e e e e e e e e e e e e e e e e e e e e e e e e e e e e e — — —— —— — — — —— —— — —— —— — —— —— —— —— —— — —— —— —— —— —— — — — — — — — —— ——



As=u (mod q) (S,S — 1} =0 (mod q) a ol e q ﬁ‘\
i o Al

! !

mid d=1 —
Vict(fi(s)) =0 et Z 5= Z xt)-als) |=0
=1 = by = Com(yir) 4oy Bs

ty = Com(s;7)

$

ty = Comliy;r)
ty = Com(s; 1)

Vi, et (s.¥)) =0

ty, = Com(y;r)
t; = Com(s;r)

where f; are public quadratic

Vi, ct(fi(5,y)) = 0 functions (with o)

Public quadratic

‘ function (with o)

ty = Com(g;Tr) vj,Pi(s,y,9) =0

t, = Com(y;r)
ty = Com(s;7)

t, = Com(y;r)

tg="C ; YV, g) =
t, = Com(s;T) g om(g;T) Q(S y g) 0
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| can only do handwaving thus far

IFITS NOT HARD



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (sq,m) € R,

where s1 has small norm (but not necessarily m).

We could treat s == s
and m = (y, g).




ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s4 has small norm (but not necessarily m).

* The ABDLOP commitment under randomness s, € Rgnz is defined as:

ol = (6] +[g]s:+ 0]



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s4 has small norm (but not necessarily m).
* The ABDLOP commitment under randomness s, € Rgnz is defined as:
) =[o]s+ ]2+ )
= s1+ sa+ ||
[tB o0l°1 "LBI™% " Im

If | = 0 then ABDLOP = Ajtai commitment.
If m; = 0 then ABDLOP = BDLOP commitment.



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s4 has small norm (but not necessarily m).

* The ABDLOP commitment under randomness s, € Rgnz is defined as:

o] = [o]s+[gls+ [l

Breaking binding implies finding a MSIS solution to [4; A,].

Security:



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s4 has small norm (but not necessarily m).

* The ABDLOP commitment under randomness s, € Rgnz is defined as:
tA . Al A2 0
o] =[o]s1+ [Fls2+ )

Hiding follows from MLWE since [[1132] S, looks uniformly random (for

Security:

long enough randomness)



ABDLOP opening proof

[:2] - [/:)1] S1+ [/ll;z] Sz T L?J and s4, s, have small coefficients

(A1, Ay, B, ty, tg), (51,5, m)

b+

y; « D"

w=A4,y, + Ay,

zZ; =Yy, tCS;

Z,Z,

(A1, A;,B,t,,tg)

~

)/Jr\\

e

c<C

_Check: i) z1,z, are small
||) A]_Z]_ + A2Z2 =W + CtA
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Quadratic equations [ ol =011+ (5] + [l }

* Suppose we want to prove sl's; + m"m = 0.



Quadratic equations { ] = [l + [+ [l J

* Suppose we want to prove s;s; + m'm = 0.

2 )

Z; =Y +CSl'




Quadratic equations { ] = [l + [+ [l J

* Suppose we want to prove s|s; + m'm = 0.

(0 )
Note that the verifier can compute
2121 = Y11 + 2cyiS1 + 7515, w

z; =Yy; +cs;




Quadratic equations { ] = [l + [+ [l J

* Suppose we want to prove s' s, + m'm = 0.
proo

- (o )

Note that the verifier can compute

21z, = y1y; +2cy18; + 5154 w
Moreover, we know cty — Bz, = —By, + cm. ¢
Thus:
(ctg — Bz,)"(cty; — Bz,) YT

= (By;)"By; — 2c(By,)'m + c*m'm

¢ y




Quadratic equations

{ ol = (5151 +[5ls2+ [l J

* Suppose we want to prove s: s, + m'm = 0.

Then,
z'z, + (ctg — Bz,)"(cty — Bz,)

= go +cg; +c?(si s, + m'm)
where

Jdo = 3’{%’1 T (BYZ)TBTYZ
g1 =2y:51 — 2(By;)" m.

ABDLOP opening
proof

2

)

Z;i =Y; +CS;




ta] [Ay

tg| _|0

Quadratic equations R
\_

A, 0
B m
S, +
bi|™% " |

)

* Suppose we want to prove s: s, + m'm = 0.

Then,
Z’{Zl + (CtB — BZz)T(CtB — BZz)
= go +cg; +c?(si s, + m'm)

where
Jdo = 3’{%’1 T (BYZ)TBTYZ
g1 =2y:51 — 2(By;)" m.

Hence, commit to t; := bls, + g.

ABDLOP opening
proof

2

)

v

A

Z, =Yy; +cs;




ta] [Ay

tB — 0

Quadratic equations R
o\_

Sz+

/

* Suppose we
Appending the ABDLOP

commitment

Then,
Z’{Zl + (CtB — BZZ)T(CtB — BZz)
= go +cg; +c?(si s, + m'm)

where
Jdo = J’I%ﬁ + (BYZ)TBTYZ
g1 =2y:51 — 2(By;)" m.

Hence, commit to t; := bls, + g.

ABDLOP opening
proof

e

)




D

tg| _|0

Quadratic equations RN
N

A, 0
B m
S, +
b{ 2 g1

)

e Suppose we want to prove s; s, + m'm = 0.

» 21z, + (cty — Bz,)" (cty — Bz,) — (cty — b1 z,)
= go +cgy — (ct; — b} z,)
= go + b1y>

where the right-hand side does not depend on c.

ABDLOP opening
proof

2

)

v

A

zi =Yy; tcs;




Proving +m'm=0.

e

LY
g (Al'AZJB' tA'tB)l (Sl,Sz,m) (Al,Az,B, tA'tB)

)/JN

y; <« D™
w=A:y; + Ay,
g1 = 2yis; — 2(By,)"m
t, = bis, + g1

w,t,,V
v:=yly, + (By,)TBy, + bly, !

c<C

A

Zi,2Z9
Check: - z,,z, are small

-A1z1 + Az, = w+cty
- and:
z'z, + (ctg — Bz,)T(cty — Bz,) — (ct; — blz)) = v

v

zZ; =Yy, tCS;
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Quadratic equations with [ ] = [A] 51+ [2] 5, + [ }
automorphism

* Suppose we want to mix quadratic equations with ABDLOP opening
proof

automorphisms, e.g.

T 7 _ (o )
s10(s1)+m o(m) =0.
If we assume that each challenge ¢ € C is stable under w
the o automorphism, then one can prove the statement
as before! . ¢
zZi =Y +cs;
¢ y




Quadratic equations with [ ] = [A] 51+ [2] 5, + [ }
automorphism

* Suppose we want to mix quadratic equations with ABDLOP opening
proof

automorphisms, e.g.
T T _ 2 D
s10(s1)+m o(m) =0.
Then, w
z'o(z,) + (ctg — Bz,)"o(cty — Bz,)
= go + gy +c*(s10(s;) + m' o (m))
Where Z; =Y; + CS;

go =yia(yy) + (By,)Ta(By,)
g1 = yio(sy) + o(y])s; — o(By,)"m — (By,)"a(m).

& y




Quadratic equations with { 4] = [A] sy + 2] 52 + [0 J
automorphism

* Suppose we want to mix quadratic equations with ABDLOP opening
proof

automorphisms, e.g. = g
S’{O-(Sl) + mTO-(m We assumed o(c) = c.

Then,
z'o(z,) + (ctg — Bz,)"o(cty — Bzs

= go +cg1 +c*(s10(s;) + m'a(m))
where 2, = y; +cs;

Jgo =yi0(y1) + (By,)"o(By,)
g1 = yio(sy) + o(y])s; — o(By,)"m — (By,)"a(m).

& J




Challenge space

* We need exponentially large challenge space C.
* Wewanto(c) =cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.



Challenge space

* We need exponentially large challenge space C.
* Wewanto(c) =cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:

d d
C={co+c X+ -+ Cg_lXE_l — c§_1X5+1 — o — 0 X% i € [k, K]}

2 2



Challenge space

* We need exponentially large challenge space C.
* Wewanto(c) =cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:

d d
C={co+c X+ -+ 6g_1X5_1 — cz_lXE+1 — o — 0 X% i € [k, K]}

A 2 2

IC] = (2K + 1)%/2,



Challenge space

* We need exponentially large challenge space C.
* We want g(c) = cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:

d d
C={co+c X+ -+ Cg_lXE_l — c§_1X5+1 — o — 0 X% Lic; € [k, K]}

2 2



Challenge space

* We need exponentially large challenge space C.
* We want g(c) = cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:

d d
C={co+c X+ -+ cz_lXTl — C2_1X5+1 — o — 0 X% i € [k, K]}

2 2

Lemma: Suppose g = 5 (mod 8). If 6_;(c) = c and c is non-zero, then ¢
is invertible over R,,.
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Soundness analysis

 Since the verification equation is a quadratic equation”, we actually
need to extract three transcripts (w,c,z),(w,c’,z'), (w,c",z"") with
pairwise different ¢, c’, ¢’ € C.

* (Relaxed) Binding from SIS

* Interpolation approach to prove quadratic equations



We only extract (s7,S5,¢*) s.t. A1s7 + A,s5 = c*u (mod q),
S1,S85,C"*- short.

Lemma: Suppose there are two (s;,s5,¢” ) and (s7,s5, ¢’ ) which
satisfy the above. Then, under the Module-SIS assumption,

(
| 51 51 S Sy |
S =~ =—ands, ===+
\ C C C c
Candidate
witnhess

Proof sketch:
0=c'c'u —c'cfu=A44(c"s;—c's;) + A,(c" s, — c's})

-



Soundness analysis

 Since the verification equation is a quadratic equation”, we actually
need to extract three transcripts (w,c,z),(w,c’,z'), (w,c",z"") with
pairwise different ¢, c’, ¢’ € C.

* (Relaxed) Binding from SIS
* Interpolation approach to prove quadratic equations

* We extract a witness (division of two short
elements) and m, s.t. and



Extraction - meaning

* From the opening proof, we obtain a , it could be
large (but relaxed binding holds)



Extraction - meaning

* From the opening proof, we obtain a , it could be
large (but relaxed binding holds)

e quadratic equations/proving constant terms make sure that

As =u(modgq) (5,5—1)=0(modq)



Extraction - meaning

* From the opening proof, we obtain a , it could be
large (but relaxed binding holds)

e quadratic equations/proving constant terms make sure that
As =u(modgq) (5,5—1)=0(modq)

* Approximate range proof makes sure that ||<|| < g, and we are
done.



Which d to pick - tradeoff

 We want d to be large enough,
so that the challenge space is
exponential-size

Challenge space

* We need exponentially large challenge space C.
* We wanta(c) = cforanyc € C.

* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:
d

d
C={co+cX+-+ca_, Xzt - cd_, Xzt — X9 i € [—k, ]}
“_ .2 2

|C] = (2 + 1)9/2,

 We want d to be as small as
possible, since sending ring
elements will be costly

g1 - g < {x € Rgict(x) = 0}

ty, = Com(y;r)

ity = Com(s;T) vi,ct(fi(s.y)) = 0

) (130, = 247

hy, ., hy

ty == Com(g;7)

k
Vihyi=g;+ ) i fils,y) |
= Check V), ct(h;) =0



How many people are still following? ©

\\/




Efficiency ana
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Applications

* Proving knowledge of short s,e s.t. As + e = u.

Stern proofs (e.g. [Ste93,LNSW13]) 3MB

[Beu20] 233KB

[BLS19,YAZ+19] 384KB

Ligero [AHIV17] 157KB

Aurora [BCR+19,BC0OS20] 72KB
MPC-in-the-head approach [FR23] 22-60KB

[ALS20,ENS20] 47KB

[LNS21] 33KB

[LNP22] 14KB



What about SNARKs?



I_a B RA DO R [ BSZ 3] Succinct proof sizes (60KB) but, non-
succinct verification!
N

Approximate range '

proof

~_

Generic statement

Equations over R, 4 Amortise

Equations over Zq




Approximate range proof

Linear-sized matrix B

& Is1] < q
&

s € {0,1}™

y « [-a,a]’ t, = Com(y; 1), ts == Com(s;T)
r «
X B « {0’1}.1><m
B
= B
Z=YyY+ DS 2

If [|z]| > @ —m, reject

____________________________________________________________________________________________________________________________________________________________________

i Prove knowledge t, = Com(y;
! y = yiT) Z=Yy+Bs
EOf Y, ST st t; = Com(s;T) < >




How to achieve sublinear verification with ARP
* Use a structured tensor-type matrix B [CMNW?24]
e Use LaBRADOR as a subroutine [NS24]

e Just don’t use ARP (and deal with its consequences — next talk)

\_(V)_/



Summary

ﬁ'inear-sized efficient “exact” ZKN / \ i T R i
from lattices - :

» Under standard assumptions: https://eprint.iacr.org/2022/284
MSIS and MLWE

» Transparent setup

> Sizes: ~ 15KB

b
Thank you!

» Can be made non-interactive via
Fiat-Shamir transformation

* “Approximate” proofs more efficient
kand have some applications /
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