

Towards Fast Verification: (Polynomial) Commitments from Lattices

Ngoc Khanh Nguyen

KING'S College

LONDON

Towards succinct arguments with succinct verification

Ajtai commitment [Ajt96]

- Let \mathbb{Z}_q be a ring of integers modulo q.
- To commit to a short message vector \boldsymbol{s} , we compute:

Outline

- 1. Square-root approach
- 2. Cube-root approach
- 3. Commitment with a poly-log opening proof
- 4. Polynomial commitments
- 5. Quiz!!!

Square-root approach [BBCDGL18]

Tensor product refresher

$$\mathbf{A}\otimes\mathbf{B}=egin{bmatrix} a_{11}\mathbf{B}&\cdots&a_{1n}\mathbf{B}\ dots&\ddots&dots\ a_{m1}\mathbf{B}&\cdots&a_{mn}\mathbf{B} \end{bmatrix}$$

$$\begin{split} \mathbf{A} \otimes (\mathbf{B} + \mathbf{C}) &= \mathbf{A} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{C}, \\ (\mathbf{B} + \mathbf{C}) \otimes \mathbf{A} &= \mathbf{B} \otimes \mathbf{A} + \mathbf{C} \otimes \mathbf{A}, \\ (k\mathbf{A}) \otimes \mathbf{B} &= \mathbf{A} \otimes (k\mathbf{B}) = k(\mathbf{A} \otimes \mathbf{B}), \\ (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} &= \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}), \\ \mathbf{A} \otimes \mathbf{0} &= \mathbf{0} \otimes \mathbf{A} = \mathbf{0}, \end{split}$$

Mixed product property

 $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = (\mathbf{A}\mathbf{C}) \otimes (\mathbf{B}\mathbf{D}).$

Communication size: $\kappa \sqrt{m} + \kappa \sqrt{m} \log q = \tilde{O}(\sqrt{m})$ bits Verification time: $\tilde{O}(\sqrt{m})$

Coordinate-wise special soundness

Special soundness: given two valid transcripts (A, C, Z) and (A, C', Z') with different $C \neq C'$, one can extract w.

Consider the vectors $\mathbf{z} = (\mathbf{z}_1, ..., \mathbf{z}_{\sqrt{m}})$ and $\mathbf{z}' = (\mathbf{z}'_1, ..., \mathbf{z}'_{\sqrt{m}})$. Then we have

$$A\mathbf{z}_{i} = \sum_{k=1}^{\sqrt{m}} c_{i,k} \mathbf{t}_{k} \qquad A\mathbf{z}'_{i} = \sum_{k=1}^{\sqrt{m}} c'_{i,k} \mathbf{t}_{k}$$

By subtraction: $A(\mathbf{z}_i - \mathbf{z}'_i) = (c_{i,j} - c'_{i,j})\mathbf{t}_j = \pm \mathbf{t}_j$

We set $s_j^* \coloneqq (c_{i,j} - c_{i,j}')(z_i - z_i')$ - which is short!

Proving polynomial evaluations

$$y = \begin{bmatrix} 1 \ x \ x^{2} \ \dots \ x^{m-1} \end{bmatrix} \begin{bmatrix} s_{0} \\ s_{1} \\ \vdots \\ s_{m-1} \end{bmatrix}$$
$$= \begin{bmatrix} 1 \ x^{\sqrt{m}} \ x^{2\sqrt{m}} \ \dots \ x^{\sqrt{m}(\sqrt{m}-1)} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 1 \ x \ x^{2} \ \dots \ x^{\sqrt{m}-1} \end{bmatrix} \ \cdots \ 0 \\ \vdots \ \ddots \ \vdots \\ 0 \ \cdots \ \begin{bmatrix} 1 \ x \ x^{2} \ \dots \ x^{\sqrt{m}-1} \end{bmatrix} \end{bmatrix} \begin{bmatrix} s_{0} \\ s_{1} \\ \vdots \\ s_{m-1} \end{bmatrix}$$

$$= \left[1 \, x^{\sqrt{m}} \, x^{2\sqrt{m}} \dots x^{\sqrt{m}(\sqrt{m}-1)}\right] (I_{\sqrt{m}} \otimes \left[1 \, x \, x^2 \dots x^{\sqrt{m}-1}\right]) \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{m-1} \end{bmatrix}$$

Outline

- 1. Square-root approach
- 2. Cube-root approach
- 3. Commitment with a poly-log opening proof
- 4. Polynomial commitments
- 5. Quiz!!!

Cube-root approach for
$$m = \kappa^3 n$$

Square-root approach: $(I_{\sqrt{m}}\otimes A)s = t$

Cube-root: $(I_{\kappa} \otimes A) (I_{\kappa^2} \otimes A)s = t$ for $A \in \mathbb{Z}_q^{n \times \kappa n}$.

Size: $\kappa n \log q = \tilde{O}(m^{\frac{1}{3}}).$

Is this commitment binding?

Finding different short s, s' s.t. $(I_{\kappa} \otimes A) (I_{\kappa^2} \otimes A)s = t = (I_{\kappa} \otimes A) (I_{\kappa^2} \otimes A)s'$

Gadget matrix
• Let
$$G_n = \begin{bmatrix} 124 \dots 2^{\log q} \end{bmatrix} \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & [124 \dots 2^{\log q}] \end{bmatrix} \in \mathbb{Z}_q^{n \times n \log q}$$

• $G_n = I_n \otimes g^T$

• The binary decomposition function $G_n^{-1}:\mathbb{Z}_q^n\to\mathbb{Z}_q^{n\log q}$ satisfies for any $f\in\mathbb{Z}_q^n$:

$$G_n G_n^{-1}(f) = f$$

TLDR; Binarydecompose each entry of the vector

We will ignore the subscript.

To get binding from SIS

$$m = \kappa^3 n \log q$$
$$A \in \mathbb{Z}_q^{n \times \kappa n \log q}$$

 $(I_{\kappa} \otimes A) (I_{\kappa^{\underline{2}}} \otimes A) s = t$

$$(I_{\kappa} \otimes A)G^{-1}((I_{\kappa^{2}} \otimes A)s) = t$$

Finding different short s, s' s.t. $(I_{\kappa} \otimes A)G^{-1}((I_{\kappa^2} \otimes A)s) = t = (I_{\kappa} \otimes A)G^{-1}((I_{\kappa^2} \otimes A)s')$

If $(I_{\kappa^2} \otimes A)s = (I_{\kappa^2} \otimes A)s' \implies$ breaking SIS for A

Otherwise $G^{-1}((I_{\kappa^2} \otimes A)s) \neq G^{-1}((I_{\kappa^2} \otimes A)s') =>$ breaking SIS for A

Opening proof		$m = \kappa^3 n \log q$ $A \in \mathbb{Z}_q^{n \times \kappa n \log q}$	
$(I_{\kappa} \otimes A)G^{-1}((I_{\kappa} \otimes A)G^{-1}(I_{\kappa} \otimes A))$	$(2 \otimes A)s) = Communic 2\kappa n \log qVerificatio$	ication size (prover side): $q = \tilde{O}(m^{1/3}) \mathbb{Z}_q$ elements on time: $\frac{\tilde{O}(m^{1/3})}{ (\top \setminus) }$	
Define $r\coloneqq G^{-1}((I_{\kappa^2}\otimes A)s)$		t	
So, $(I_{\kappa}\otimes A)r=t$ and r is short!	C	$\boldsymbol{\mathcal{C}} \leftarrow \{0,1\}^{\kappa imes \kappa^2}$	
$\boldsymbol{v} = (\boldsymbol{C} \otimes \boldsymbol{I}_{n \log q}) \boldsymbol{r}$	v		
$(I_{\kappa n} \otimes g^T) v = (I_{\kappa} \otimes A) (C \otimes I_{\kappa n \log q}) s$		1. $(I_{\kappa} \otimes A)v = (I_{\kappa} \otimes A)(C \otimes I_{\ell})w = (C \otimes I_{n})(I_{\kappa} \otimes A)w = (C \otimes I_{n})t$ 2. v is short	
	<i>C</i> ′	$\boldsymbol{\mathcal{C}}' \leftarrow \{0,1\}^{\kappa imes \kappa^2}$	
$\mathbf{z} = (\mathbf{C} \otimes \mathbf{I}_{n \log q}) (\mathbf{C} \otimes \mathbf{I}_{\kappa n \log q}) \mathbf{s}$	Z	Check: 1. $(I_{\kappa} \otimes A)z = (C \otimes I_n)(I_{\kappa n} \otimes g^T)v$ 2. z is short	

Outline

- 1. Square-root approach
- 2. Cube-root approach
- 3. Commitment with a poly-log opening proof
- 4. Polynomial commitments
- 5. Quiz!!!

Many-to-one Ajtai commitment

To commit to any message vector $f_\ell \in \mathbb{Z}_q^m$ of length $m = \kappa^\ell \cdot n$, we compute:

Many-to-one Ajtai commitment

To commit to any message vector $f_\ell \in \mathbb{Z}_q^m$ of length $m = \kappa^\ell \cdot n$, we compute:

Our commitment scheme

Opening to a commitment $t = f_1$: message f_ℓ and short $s_1, \ldots, s_{\ell-1}$ s.t. $Gs_{\ell-1} = f_{\ell}$ $f_{\ell-1} \coloneqq Gs_{\ell-2} \\ (I_{\kappa^{\ell-1}} \otimes A)s_{\ell-1} = f_{\ell-1}$ $f_2 \coloneqq Gs_1$ $(I_{\kappa^2} \otimes A)s_2 = f_2$ $(I_{\kappa^1} \otimes A)s_1 = f_1$

Why is our scheme interesting

Why is our scheme interesting

Opening proof

Proof of opening to the commitment $\boldsymbol{t}=\boldsymbol{f}_1$ Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa imes \kappa^2}$ and a valid opening f_{ℓ} , $(s_1, ..., s_{\ell-1})$ for a commitment tvalid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the $f_{\ell}, (s_1, ..., s_{\ell-1})$ *C* commitment $(\mathbf{C} \otimes \mathbf{I}_n)\mathbf{Gs_1} = (\mathbf{C} \otimes \mathbf{I}_n)\mathbf{f_2}$ $\boldsymbol{v} = (\boldsymbol{C} \otimes \boldsymbol{I}_{n \log q}) \boldsymbol{s}_1 \in \mathbb{Z}_q^{\kappa n \log q}$ $\boldsymbol{r_1} = (\boldsymbol{C} \otimes \boldsymbol{I_{\kappa n \log q}})\boldsymbol{s_2}$ Length: $\kappa^2 n \log q$ Check whether $\boldsymbol{s_1}$ is short and Length: $\kappa^3 n \log q$ $\boldsymbol{r}_2 = (\boldsymbol{C} \otimes \boldsymbol{I}_{\kappa^2 n \log q}) \boldsymbol{s}_3$ $(\mathbf{I}_{\kappa^1} \otimes \mathbf{A})\mathbf{v} = (\mathbf{C} \otimes \mathbf{I}_n)\mathbf{f}_1$ $\boldsymbol{r}_{\ell-2} = \left(\boldsymbol{C} \otimes \boldsymbol{I}_{\kappa^{\ell-2}n\log q}\right) \boldsymbol{s}_{\ell-1}$ Prove knowledge of an opening Length: $\kappa^{\ell-1} n \log q$ $g_{\ell-1}, (r_1, ..., r_{\ell-2})$ to the commitment $Gv = G(C \otimes I_n \log q) s_1 = (C \otimes I_n) Gs_1$ $g_{\ell-1} \coloneqq Gr_{\ell-2}$

Opening proof

Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening f_ℓ , $(s_1, \dots, s_{\ell-1})$ for a commitment t

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)Gs_1 = (C \otimes I_n)f_2$

- Take $\boldsymbol{\mathcal{C}} \leftarrow \{0,1\}^{\kappa \times \kappa^2}$.
- We prove that the three-round protocol satisfies CWSS where $\{0,1\}^{\kappa \times \kappa^2} := (\{0,1\}^{\kappa})^{\kappa^2}$.
- The soundness error becomes $\frac{\kappa^2}{2^{\kappa}}$.
- For our general protocol, the error is $\ell \cdot \frac{\kappa^2}{2^{\kappa}}$

Proof of opening to the commitment $t = f_1$

 $Gv = G(C \otimes I_n \log a) s_1 = (C \otimes I_n) Gs_1$

Opening proof

Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening $f_{\ell}, (s_1, \dots, s_{\ell-1})$ for a commitment t

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)Gs_1 = (C \otimes I_n)f_1$

Communication complexity:

- $O(\kappa n \log q)$ elements over \mathbb{Z}_q per round
- there are $0(\ell)$ rounds
- total proof size is $O(\ell \kappa n \log q) \mathbb{Z}_q$ -elements

Recall that
$$L = \kappa^{\ell} \cdot n$$
.
Take $n, \kappa \in poly(\lambda)$. Then $\ell = O\left(rac{\log L}{\log \lambda}\right)$

Polylogarithmic proof size!

Proof of opening to the commitment $t = f_1$

For the commitment
$$g_{\ell-1}, (r_1, ..., r_{\ell-2})$$
 to the commitment $g_{\ell} = (C \otimes I_n \log q) s_1 \in \mathbb{Z}_q^{\kappa n \log q}$

Polynomial evaluation proof for free

Prove knowledge of an opening to a commitment $t = f_1$: message f_ℓ and short $s_1, \dots, s_{\ell-1}$ s.t.

 $Gs_{\ell-1} = f_{\ell}$

 $f_{\ell-1} \coloneqq Gs_{\ell-2}$ $(I_{\kappa^{\ell-1}} \otimes A)s_{\ell-1} = f_{\ell-1}$

 $f_2 \coloneqq Gs_1$ $(I_{\kappa^2} \otimes A)s_2 = f_2$

 $(I_{\kappa^1}\otimes A)s_1=f_1$

Outline

- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- 5. Quiz!!!

Concrete efficiency

We build a concretely efficient variant over polynomial rings (rather than over \mathbb{Z}_q).

- Asymptotically the proof size is $O(L^{1/3})$ ring elements.

Scheme	Proof size for $L = 2^{20}$
[FMN23](L)	3.4 MB
SLAP [AFLN24] (L)	36.5MB
Brakedown (H)	9.7 MB
Ligero (H)	1004KB
FRI (H)	388KB
This work	501KB

Outline

- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- 5. Quiz!!!

Summary

- Efficient polynomial commitments from lattices
 - Succinct proof sizes and verification
 - Under standard assumptions (+ROM)
 - ➢ Transparent setup
 - Tight security proof in ROM via CWSS
 - Security against quantum adversaries

https://eprint.iacr.org/2024/281

Thank you!

This work is supported by the **RFP-013 Cryptonet network grant** by Protocol Labs.