Towards Fast Verification: (Polynomial) Commitments from Lattices

TARE!

KING'S

LONDON

Ngoc Khanh Nguyen

Towards succinct arguments with succinct verification

Ajtai commitment [Ajt96]

- Let \mathbb{Z}_q be a ring of integers modulo q .
- To commit to a short message vector **s**, we compute:

Outline

- **1. Square-root approach**
- 2. Cube-root approach
- 3. Commitment with a poly-log opening proof
- 4. Polynomial commitments
- 5. Quiz!!!

Square-root approach [BBCDGL18]

Tensor product refresher

$$
\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11} \mathbf{B} & \cdots & a_{1n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1} \mathbf{B} & \cdots & a_{mn} \mathbf{B} \end{bmatrix}
$$

 $\mathbf{A} \otimes (\mathbf{B} + \mathbf{C}) = \mathbf{A} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{C},$ $(\mathbf{B} + \mathbf{C}) \otimes \mathbf{A} = \mathbf{B} \otimes \mathbf{A} + \mathbf{C} \otimes \mathbf{A},$ $(k\mathbf{A}) \otimes \mathbf{B} = \mathbf{A} \otimes (k\mathbf{B}) = k(\mathbf{A} \otimes \mathbf{B}),$ $(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}),$ $\mathbf{A}\otimes \mathbf{0}=\mathbf{0}\otimes \mathbf{A}=\mathbf{0},$

Mixed product property

 $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = (\mathbf{AC}) \otimes (\mathbf{BD}).$

Communication size: $\kappa \sqrt{m} + \kappa \sqrt{m} \log q = \tilde{O}(\sqrt{m})$ bits Verification time: $\tilde{O}(\sqrt{m})$

Coordinate-wise special soundness

Special soundness: given two valid transcripts (A, C, Z) and (A, C', Z') with different $C \neq C'$, one can extract **w**.

Consider the vectors $\mathbf{z}=(\pmb{z}_1,...,\pmb{z}_{\sqrt{m}})$ and $\pmb{z}'=(\pmb{z'}_1,...,\pmb{z'}_{\sqrt{m}})$. Then we have

$$
A z_i = \sum_{k=1}^{\sqrt{m}} c_{i,k} t_k \qquad A z'_i = \sum_{k=1}^{\sqrt{m}} c'_{i,k} t_k
$$

By subtraction: $\bm A (\bm z_i - \bm z'_i) = \bigl(c_{i,j} - c'_{i,j}\bigr) \bm t_j = \ \pm \bm t_j$

We set $s_j^* \coloneqq (c_{i,j} - c_{i,j}^\prime)(\mathbf{z}_i - \mathbf{z}_i^\prime)$ **- which is short!**

Proving polynomial evaluations

$$
y = \begin{bmatrix} 1 & x & x^2 & \dots & x^{m-1} \end{bmatrix} \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{m-1} \end{bmatrix}
$$

=
$$
\begin{bmatrix} 1 & x^{\sqrt{m}} & x^{2\sqrt{m}} & \dots & x^{\sqrt{m}(\sqrt{m}-1)} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 1 & x & x^2 & \dots & x^{\sqrt{m}-1} \end{bmatrix} & \dots & \begin{bmatrix} 0 \\ 1 & x & x^2 & \dots & x^{\sqrt{m}-1} \end{bmatrix} \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{m-1} \end{bmatrix}
$$

$$
= \left[1 \ x^{\sqrt{m}} \ x^{2\sqrt{m}} \dots x^{\sqrt{m}(\sqrt{m}-1)}\right] \left(I_{\sqrt{m}} \otimes \left[1 \ x \ x^2 \dots x^{\sqrt{m}-1}\right]\right) \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{m-1} \end{bmatrix}
$$

Outline

- 1. Square-root approach
- **2. Cube-root approach**
- 3. Commitment with a poly-log opening proof
- 4. Polynomial commitments
- 5. Quiz!!!

Cube-root approach for
$$
m = \kappa^3 n
$$

Square-root approach: $(I_{\sqrt{m}} \otimes A)s = t$

Cube-root: $(I_K \otimes A)$ $(I_{K^2} \otimes A)s = t$ for $A \in \mathbb{Z}_q^{n \times \kappa n}$.

Size: $\kappa \, n \log q = \tilde{O} \bigl(m^{\frac{1}{3}}$ $\frac{1}{3}$.

Is this commitment binding? Finding different short s, s' s.t. $I_{\kappa} \otimes A$ $(I_{\kappa^2} \otimes A)$ s = t = $(I_{\kappa} \otimes A)$ $(I_{\kappa^2} \otimes A)$ s'

Gadget matrix
\n• Let
$$
G_n = \begin{bmatrix} 124 & \frac{1}{2} \log q & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 124 & \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times n \log q}
$$

• $\boldsymbol{G_n} = \boldsymbol{I_n} \otimes \boldsymbol{g^T}$

• The binary decomposition function $\mathit{G}_{n}^{-1}\colon\mathbb{Z}_{q}^{n}\rightarrow\mathbb{Z}_{q}^{n\log q}$ satisfies for any $f \in \mathbb{Z}_q^n$:

$$
G_n G_n^{-1}(f) = f
$$

TLDR; Binarydecompose each entry of the vector

We will ignore the subscript.

To get binding from SIS

$$
m = \kappa^3 n \log q
$$

$$
A \in \mathbb{Z}_q^{n \times \kappa n \log q}
$$

 $H_{\kappa} \otimes A \bigl(H_{\kappa^2} \otimes A \bigr)$ s = t

$$
(I_{\kappa} \otimes A)G^{-1}((I_{\kappa^2} \otimes A)s) = t
$$

Finding different short s, s' s.t. $I_{\kappa} \otimes A)G^{-1}((I_{\kappa^2} \otimes A)s) = t = (I_{\kappa} \otimes A)G^{-1}((I_{\kappa^2} \otimes A)s')$

If $(I_{\kappa^2} \otimes A)s = (I_{\kappa^2} \otimes A)s' \implies$ breaking SIS for A

Otherwise $G^{-1}((I_{\kappa^2} \otimes A)s) \neq G^{-1}((I_{\kappa^2} \otimes A)s') =$ > breaking SIS for A

Outline

- 1. Square-root approach
- 2. Cube-root approach
- **3. Commitment with a poly-log opening proof**
- 4. Polynomial commitments
- 5. Quiz!!!

Many-to-one Ajtai commitment

To commit to any message vector $\boldsymbol{f}_\ell \in \mathbb{Z}_q^m$ of length $m = \kappa^\ell \cdot n$, we compute:

Many-to-one Ajtai commitment

To commit to any message vector $\boldsymbol{f}_\ell \in \mathbb{Z}_q^m$ of length $m = \kappa^\ell \cdot n$, we compute:

Our commitment scheme

Opening to a commitment $\boldsymbol{t} = \boldsymbol{f}_1$: message f_{ℓ} and short s_1 , …, $s_{\ell-1}$ s.t. $I_{\kappa^1} \otimes A) s_1 = f_1$ $f_2 \coloneqq G s_1$ $I_{\kappa^2} \otimes A) s_2 = f_2$ $\boldsymbol{f}_{\ell-\boldsymbol{1}} \coloneqq \boldsymbol{G} \boldsymbol{s}_{\ell-\boldsymbol{2}}$ $I_{\kappa^{\ell-1}}\otimes A)$ S $_{\ell-1}=f_{\ell-1}$ $\boldsymbol{G}\boldsymbol{S}_{\ell-1}=\boldsymbol{f}_{\ell}$

Why is our scheme interesting

Why is our scheme interesting

Opening proof

Proof of opening to the commitment $\boldsymbol{t} = \boldsymbol{f}_1$ **Folding** property: given any matrix $\boldsymbol{C} \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening $\boldsymbol{f}_{\boldsymbol{\ell}}$, $(\boldsymbol{s_1},...,\boldsymbol{s_{\ell-1}})$ for a commitment \boldsymbol{t} valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)$ *Gs*₁ = $(C \otimes I_n)$ *f*₂ $r_1 = (C \otimes I_{\kappa n \log q}) s_2$ $\bm{r_2} = (\bm{C} \otimes \bm{I}_{\kappa^2 n\log q})\bm{s_3}$ $\bm{r}_{\ell-\bm{2}} = \left(\bm{\mathcal{C}} \otimes \bm{I}_{\kappa^{\ell-2} n \log q} \right) \bm{s}_{\ell-\bm{1}}$ $g_{\ell-1} = Gr_{\ell-2}$ Length: $\kappa^2 n \log q$ Length: $\kappa^3 n \log q$ Length: $\kappa^{\ell-1} n \log q$ f_{ℓ} , $(s_1, ..., s_{\ell-1})$ t $\boldsymbol{v} = (\boldsymbol{C} \otimes \boldsymbol{I}_{n \log q}) \boldsymbol{s}_1 \in \mathbb{Z}_q^{\kappa n \log q}$ \boldsymbol{C} *Check whether* s_1 *is short and* $I_{\kappa^1} \otimes A)v = (C \otimes I_n)f_1$ Prove knowledge of an opening $\bm{g}_{\ell-\bm{1}}$, $(\bm{r_1}, ..., \bm{r}_{\ell-\bm{2}})$ to the commitment $Gv = G(C \otimes I_{n \log q})s_1 = (C \otimes I_n)Gs_1$

Opening proof

Folding property: given any matrix $\boldsymbol{C} \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening $\boldsymbol{f}_{\boldsymbol{\ell}}$, $(\boldsymbol{s_1},...,\boldsymbol{s_{\ell-1}})$ for a commitment \boldsymbol{t}

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)$ *Gs*₁ = $(C \otimes I_n)$ *f*₂

- Take $C \leftarrow \{0,1\}^{\kappa \times \kappa^2}$.
- We prove that the three-round protocol satisfies CWSS where $\{0,1\}^{\kappa \times \kappa^2}$: = $(\{0,1\}^{\kappa})^{\kappa^2}$.
- The soundness error becomes $\frac{\kappa^2}{2\kappa^2}$ $\frac{\kappa}{2^k}$
- For our general protocol, the error is $\ell \cdot \frac{\kappa^2}{2\kappa}$ $\frac{\kappa}{2^k}$.

Proof of opening to the commitment $\boldsymbol{t} = \boldsymbol{f}_1$

$$
f_{\ell}, (s_1, ..., s_{\ell-1})
$$
\n
$$
v = (C \otimes I_{n \log q})s_1 \in \mathbb{Z}_q^{kn \log q}
$$
\n
$$
v = (C \otimes I_{n \log q})s_1 \in \mathbb{Z}_q^{kn \log q}
$$
\nCheck whether s_1 is short and
\n
$$
(I_{\kappa^1} \otimes A)v = (C \otimes I_n)f_1
$$
\nProve knowledge of an opening
\n $g_{\ell-1}, (r_1, ..., r_{\ell-2})$ to the commitment
\n $gv = G(C \otimes I_{n \log q})s_1 = (C \otimes I_n)Gs_1$

Opening proof

Folding property: given any matrix $\boldsymbol{C} \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening $\boldsymbol{f}_{\boldsymbol{\ell}}$, $(\boldsymbol{s_1},...,\boldsymbol{s_{\ell-1}})$ for a commitment \boldsymbol{t}

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)$ *Gs*₁ = $(C \otimes I_n)$ *f*₁

Communication complexity:

- $O(\kappa n \log q)$ elements over \mathbb{Z}_q per round
- there are $O(\ell)$ rounds
- total proof size is $O(\ell \kappa n \log q) \mathbb{Z}_q$ -elements

Recall that $L = \kappa^{\ell} \cdot n$. Take $n, \kappa \in poly(\lambda)$. Then $\ell = O\left(\frac{\log L}{\log \lambda}\right)$ $\log \lambda$

Polylogarithmic proof size!

Proof of opening to the commitment $\boldsymbol{t} = \boldsymbol{f}_1$

$$
f_{\ell}, (s_1, ..., s_{\ell-1})
$$
\n
$$
v = (C \otimes I_{n \log q})s_1 \in \mathbb{Z}_q^{kn \log q}
$$
\n\nCheck whether s_1 is short and $(I_{\kappa^1} \otimes A)v = (C \otimes I_n)f_1$
\nProve knowledge of an opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ to the commitment

 $Gv = G(C \otimes I_{n \log q})s_1 = (C \otimes I_n)Gs_1$

Polynomial evaluation proof for free

Prove knowledge of an opening to a commitment $\boldsymbol{t} = \boldsymbol{f}_1$: message \boldsymbol{f}_{ℓ} and short $S_1, ..., S_{\ell-1}$ s.t.

 $\mathbf{G} s_{\ell-1} = \mathbf{f}_{\ell}$

 $\boldsymbol{f}_{\ell-\boldsymbol{1}} \coloneqq \boldsymbol{G} \boldsymbol{s}_{\ell-\boldsymbol{2}}$ $I_{\kappa^{\ell-1}}\otimes A)$ S $_{\ell-1}=f_{\ell-1}$

 $I_{\kappa^1} \otimes A) s_1 = f_1$

 $f_2 \coloneqq G s_1$ $I_{\kappa^2} \otimes A) s_2 = f_2$

Outline

- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- **4. Performance**
- 5. Quiz!!!

Concrete efficiency

We build a concretely efficient variant over polynomial rings (rather than over \mathbb{Z}_q).

- Asymptotically the proof size is $O(L^{1/3})$ ring elements.

Outline

- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- **5. Quiz!!!**

Summary

- Efficient polynomial commitments from lattices
	- ➢ Succinct proof sizes and verification
	- ➢ Under standard assumptions $(+ROM)$
	- ➢ Transparent setup
	- ➢ Tight security proof in ROM via CWSS
	- ➢ Security against quantum

https://eprint.iacr.org/2024/281

Thank you!

adversaries **This work is supported by the RFP-013 Cryptonet network grant** by Protocol Labs.