#### ZK Proofs From VOLE and VOLE-in-the-Head

Carsten Baum and Peter Scholl

Foundations of Zero Knowledge Proofs, Edinburgh

3 September 2024



#### Overview of the next sessions





#### **VOLE-ZK**

ZK proofs in the designated verifier setting



## Vector Oblivious Linear Evaluation: ideal functionality



#### What is VOLE good for?

Fundamental building block in many cryptographic protocols:

- General-purpose secure computation
- Oblivious transfer
   >Implied by variant of VOLE
- Private set intersection
   Contact discovery; online advertising





()

#### How do we build VOLE?

- Linearly homomorphic encryption (LWE, DCR) → High communication and/or computation
- Pseudorandom correlation generators ("Silent" VOLE)
   ➤ Learning parity with noise
   ➤ Random, length-m VOLE: O(log m) communication [BCGI 18, BCGIKS 19, WYKW20, ....]
- Oblivious transfer extension (SoftSpokenVOLE [Roy 22])

Mainly symmetric primitives, fast

 $\geq O(\log m)$  communication for small fields

### Information-theoretic commitments from VOLE [CF 13, BMRS 21, WYKW 21]



• Binding: opening to  $w' \neq w$  requires guessing  $\Delta$ , prob.  $1/|\mathbb{F}|$ 

#### Commitments are linearly homomorphic



#### Proving circuits with linear commitments

**Goal:** prove knowledge of x such that C(x) = z

- Commit to extended witness  $\vec{w}$ >inputs, + output wire of every mult.
- Evaluate linear gates
   >Using linear homomorphism



• Prove correctness of multiplications

### How to prove multiplication gates? Multiplicative homomorphism!



#### Multiplication gates in VOLE-ZK [DIO 21, YSWW 21]

- Multiply commitments to  $w_i$ ,  $w_j \Rightarrow$  quadratic polynomial  $\gg p_{ij}(x) = t_0 + t_1 x + w_i w_j x^2$
- Let z(x) ≔ p<sub>ij</sub>(x) xp<sub>k</sub>(x)
   Should be degree-1
   >Open and check
   >First, mask with random deg-1 commitment



Wi

 $W_k$ 

#### Full ZK proof from VOLE: Initial Protocol [DIO 21]



 $z_i(x)$  for *i*-th mult. gate (masked)

Soundness error:

• 2/|F|

Cost for *m* multiplications:

• VOLE + 2*m* field elements

#### Optimization: batching multiplications



Soundness error:

•  $2/|\mathbb{F}| + m/|\mathbb{F}|$ 

Cost for *m* multiplications:

• Length-(n + m + 1) VOLE

[YSWW 21]

#### Peter Scholl

15

#### Exploiting higher-degree multiplicative homomorphism [YSWW 21, BBGMORRRS 24]

General degree-reduction gadget:
> p(x) = a<sub>0</sub> + a<sub>1</sub>x + … + wx<sup>d</sup>
> Commit to fresh w: p<sub>w</sub>(x) = a' + wx
> Show that z(x) ≔ p(x) - x<sup>d-1</sup>p<sub>w</sub>(x) is deg-(d - 1) commitment to zero

• Circuit evaluation:

➤Lazily reduce degree on-the-fly



## Communication complexity of VOLE-ZK with lazy reduction

- Cost per degree reduction:
  - ➤Create fresh commitment: 1 × VOLE element
  - $\succ$ Open masked commitment: send d-1 field elements
    - (amortized via batch check)
- For circuit with m multiplications, using max. degree d:  $0 \le \frac{m}{\log d} + d$  field elements – sublinear in circuit size!

#### Improvements/extensions

• Circuits over  $\mathbb{F}_2$ : [YSWW 21]

≻Let  $w \in \mathbb{F}_2$ , but use subfield VOLE  $q = w\Delta + v$  in  $\mathbb{F}_{2^{\lambda}}$ 

- Circuits over  $\mathbb{Z}_{2^k}$  [BBMS 22] > Use VOLE  $q = w\Delta + v$  in  $\mathbb{Z}_{2^{k+\lambda}}$
- Mixed Boolean/arithmetic circuits [BBMRS 21, YYXKW 21]
   ➢VOLE in 𝔽<sub>2</sub> and 𝔽<sub>p</sub>, prove consistency

#### Performance of VOLE-ZK

| Threads | Boolean circuits | Arithmetic circuits |
|---------|------------------|---------------------|
| 1       | 7.6 M gates/s    | 4.8 M gates/s       |
| 4       | 15.8 M gates/s   | 8.9 M gates/s       |

Numbers from QuickSilver [YSWW21]: degree-2 checks over local network, including setup time for LPN-based VOLE

### Summary: what's VOLE-ZK good for?



#### **Example use-cases:**

- Proof of well-formed LWE ciphertexts
- Anonymous credentials

- Ensuring MPC input consistency
- Proof of vulnerability

#### Credits

[CF 13] Catalano, Fiore **Practical Homomorphic MACs for Arithmetic Circuits** *Eurocrypt 2013* 

[WYKW 21] Weng, Yang, Katz, Wang Wolverine: Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits. S&P 2021

[BMRS 21] *Baum, Malozemoff, Rosen, Scholl* Mac'n'Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits with Nested Disjunctions *Crypto 2021* 

[DIO 21] *Dittmer, Ishai, Ostrovsky* Line-Point Zero Knowledge and its Applications *ITC 2021* 

[YSWW 21] Kang Yang, Pratik Sarkar, Chenkai Weng, Xiao Wang QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field. CCS 2021 Peter Scholl

### VOLE-in-the-Head Adding public verifiability



#### Story of VOLE-in-the-head



#### Recap: MPC-in-the-Head



 $w = w_1 + \dots + w_N$ 

#### VOLE-in-the-head: high-level overview



# Goal: implement public-receiver VOLE functionality



#### Building Public-Receiver VOLE

 $\vec{u}, \vec{v}$ 



 $\vec{q} = \vec{u}\Delta + \vec{v}$ 

### 

Key observation: (N - 1)-out-of-N commitment  $\Rightarrow$  VOLE in  $\mathbb{F}_N$ [Roy 22, BBdGKORS 23, CDI 05]



#### Public-Receiver VOLE: Summary

- If w is random, can succinctly commit to arbitrarily long VOLE
   ➤ Commit to N seeds, expand to w''<sub>i</sub>'s with PRG
- Cost for w ∈ F<sup>ℓ</sup><sub>N</sub>:
   Communication: O(log N) seeds
   Computation: O(N)
- For non-random w:
   ≻Send extra |w| field elements

# Simplified VOLE-in-the-head: 3-round sigma protocol for arithmetic circuit satisfiability





Open  $\{w_i\}_{i \neq \Delta}$ 

Soundness error:

- 2/N
- Shrink via parallel repetition

#### 5-round VOLE-in-the-head: batching multiplications



Soundness error:

• 3/N

#### The Curse of Parallel Repetitions with >3 Rounds

- Problem: Fiat-Shamir can worsen security for >3-round protocols
   Adversary can attack each round independently
- **Solution**: more rounds!

# VOLE-in-the-head, last optimization: avoiding parallel repetition

• Naïve repetition:

 $\succ \tau$  sets of VOLEs  $\vec{q_i} = \vec{w}\Delta_i + \vec{v}_i$  in  $\mathbb{F}_q^{\ell}$ , with same witness  $\succ \tau$  independent VOLE-ZK checks in  $\mathbb{F}_q$ 

• Idea: pack into a single VOLE and run one check

➤ Combine and lift VOLEs into F<sub>q</sub><sup>τ</sup>
➤ Gives subfield VOLE  $\vec{q} = \vec{w}\Delta + \vec{v}$ , where  $\Delta = \sum_i \alpha^i \Delta_i$  in F<sub>q</sub><sup>τ</sup>
(α: generator of F<sub>q</sub> over F<sub>q</sub><sup>τ</sup>)

## Challenge: need to prove $\tau$ witnesses are consistent

• When repeating  $\tau$  times:

Ensure prover uses consistent *w* 

• Check consistency via [Roy 22]:

Linear, universal hash *H* 

$$\widetilde{w} = H(\overrightarrow{w}), \ \widetilde{v_i} = H(\overrightarrow{v_i})$$

Check 
$$H(\overrightarrow{q_i}) = \widetilde{w}\Delta + \widetilde{v_i}$$

• Security:

>Intricate analysis, esp. to prove compatibility with Fiat-Shamir

### Final Protocol for $\mathbb{F}_2$ : Overview

[BBdGKOR**S** 23]



Communication cost:

- $\mathbb{F}_2$ :  $\approx$ 10-16 bits per AND
- $\mathbb{F}_p$  variant: 1-2 field elements per mult

### Application to Post-Quantum Signatures



Call for Additional Digital Signature Schemes

#### Standardization of Post-Quantum Signatures



2023: new algorithms submitted to diversify candidates

#### Peter Scholl

NIST

#### Paradigm for ZK-based signatures

- Keypair sk,  $pk = (x, Enc_{sk}(x))$ , for symmetric Enc
- Signature:

NIZK proof of knowledge of sk
With Fiat-Shamir transform

• Challenge: finding a ZK-friendly Enc

Custom cipher designs with few AND gates: e.g. LowMC (Picnic)
 Code-based: syndrome decoding, MinRank

AES: a ZK-friendly OWF?

ShiftRows, MixColumns, AddRoundKey:

> All linear over  $\mathbb{F}_2$ 

SubBytes:

 $\succ$ Nice representation in  $\mathbb{F}_{2^8}$ 



#### Proving the AES S-Box, v1

- Given commitments to (bits of) x, yover  $\mathbb{F}_2$
- Lift to x, y in  $\mathbb{F}_{2^8}$
- Verify S-Box with

$$xy = 1$$



What if x = 0?

Sample key such that this never happens

≻1-2 bits less security

#### Proving the AES S-Box, v2



- Observation: S-box and its inverse are degree-7 functions over  $\mathbb{F}_2$
- Verify two S-Boxes at once by checking:

$$Linear(SBox(x_i)) = SBox^{-1}(Linear^{-1}(x_{i+2}))$$

 $\circ$  Only need to commit to every other  $x_i$  value!  $\circ$  Drawback: degree-7 check instead of degree-2 Impact: 5-10% smaller signatures [BBMORRRS 24]

#### FAEST summary: proving $pk = AES_{sk}(x)$



#### FAEST performance

|            | Sign (ms) | Verify (ms) | sig  (bytes) |
|------------|-----------|-------------|--------------|
| FAEST-128s | 4.4       | 4.1         | 5 006        |
| FAEST-128f | 0.4       | 0.4         | 6 336        |
| FAEST-256s | 14.4      | 14.4        | 22 100       |
| FAEST-256f | 1.6       | 1.6         | 28 400       |

#### • Signature sizes:

Smaller than SPHINCS+ and most MPCitH-based candidates

Faster signing, slower verification vs SPHINCS+

• Latest optimizations/variants: 10-20% smaller for same/faster signing

#### Conclusion

VOLE-ZK proofs:

- Simple proof systems for circuit satisfiability
- Fast prover, flexible, linear-ish size
- VOLE-in-the-head: publicly verifiable
   > Useful for PQ signatures

**Resources:** 

https://ia.cr/2023/996 https://faest.info





#### Credits

[Roy 22] *Roy* SoftSpokenOT: Communication-Computation Tradeoffs in OT Extension *Crypto 2022* 

[AGHHJY 22] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue **The Return of the SDitH** *Eurocrypt 2022* 

[BBdGKOR**S** 23] *Baum, Braun, de Saint Guilhem, Klooß, Orsini, Roy, Scholl* **Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head** *CRYPTO 2023* 

**FAEST Digital Signature Scheme** + Majenz, Mukherjee, Ramacher, Rechberger Submission to NIST PQC call

[FR 23] Fenuil, Rivain Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments

[BBMORRRS 24] *Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl* One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures *Asiacrypt 2024*