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Lectures 1,2,3

(G,+) group of prime order p;
(Algebraic) proof systems where DLOG problem is hard;

Pr(x ← A(P , H) ∧ H = xP | x ← Z∗p) ≈ 0

Lecture 1: techniques in groups without efficiently computable bilinear
maps/pairings;
Lecture 2: techniques in groups with efficiently computable pairings
Lecture 3: Polynomial Commitments in pairing groups
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Algebraic Commitments
Pedersen Vector Commitments

(G,+) group of prime order p.

ck← Setup(G, n): sample ck = G⃗ = (G1, . . . , Gn) ∈ Gn from some
distribution Dn.
C ← Commit(ck ∈ Gn, m⃗ ∈ Zn

p):{
ck = G⃗ = (G1, . . . , Gn)

(m1, . . . , mn) ∈ Zn
p

−→ C =< m⃗, G⃗ >=
n

∑
i=1

miGi

Binding: If adversary finds one commitment and two valid openings C, m⃗, m⃗′

then: {
C = ∑n

i=1 miGi

C = ∑n
i=1 m′iGi

=⇒ O =< m⃗− m⃗′, G⃗ >

Dn-FINDREP problem (also kernel problem, or discrete log relations):

Pr
(

v⃗← A(G⃗) ∧O = ⟨⃗v, G⃗⟩ | G⃗ ← Dn

)
≈ 0
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Algebraic Commitments
Pedersen Vector Commitments

(G,+) group of prime order p.

Example 1: Uniform Key, transparent setup, Dn = Un.
ck = G⃗ = (G1, . . . , Gn), Gi uniformly and independently chosen from G

Binding Ex1: DLOG
tight
=⇒ Un − FINDREP.
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Algebraic Commitments
Pedersen Vector Commitments

(G,+) group of prime order p.

Example 1: Uniform Key, transparent setup, Dn = Un.

ck = G⃗ = (G1, . . . , Gn), Gi uniformly and independently chosen from G

Binding Ex1: DLOG Assumption
tight
=⇒ Un − FINDREP (⇐= is trivial).

Example 2: Structured Setup (powers of trapdoor)

ck = G⃗ = (P , xP , . . . , xnP), Gi = xiG, x ← Zp

Example 3: Structured Setup, n = 2µ (multilinear monomials of µ
variables)

ck = G⃗ = (P , x1P , x2P , . . . , xµP , x1x2P , . . . , x1x2 . . . xµP)

Binding Ex 2,3 : n−DLOG
tight
=⇒ Dn − FINDREP.

n−DLOG Assumption : Pr
(

x ← A(P , xP , . . . , xnP) | x ← Z∗p
)
≈ 0
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Bulletproofs
BP is an Inner Product Argument

(G,+) group of prime order p. G⃗, H⃗ ∈ Gn commitment keys;

Statement:

C ∈ G is a commitment to a⃗ with key G⃗
and

D ∈ G is a commitment to b⃗ with key H⃗
and

σ ∈ Zp is the inner product of committed values a⃗, b⃗.

i.e.



C =< a⃗, G⃗ >

and
D =< b⃗, H⃗ >

and
σ =< a⃗, b⃗ > .

Witness: a⃗, b⃗.

Recursive Strategy: Reduce to a randomized statement of half the size:

C′ =< a⃗′, G⃗′ >
and

D′ =< b⃗′, H⃗′ >
and

σ′ =< a⃗′, b⃗′ >,

a⃗′, b⃗′ ∈ Zn/2
p , G⃗′, H⃗′ ∈ Gn/2

p . Repeat until length 1, then open and check.
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Bulletproofs Recursive Strategy I
Simple Facts

Simple Fact 1: a⃗ = (⃗aL, a⃗R), G⃗ = (G⃗L, G⃗R),

C =< a⃗, G⃗ >=< a⃗L, G⃗L > + < a⃗R, G⃗R > .

Simple Fact 2: Let α ∈ R,

If
{⃗

a′ = a⃗L + α⃗aR

G⃗′ = G⃗L + α−1G⃗R
then < a⃗′, G⃗′ >= C + αCRL + α−1CLR

Proof:

< a⃗′, G⃗′ >=< a⃗L, G⃗L > +αα−1 < a⃗R, G⃗R > +α < a⃗R, G⃗L > +α−1 < a⃗L, G⃗R >
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Simple Fact 3: Let α ∈ R, C =< a⃗, G⃗ >, D =< H⃗, b⃗ >, σ =< a, b >.

If


a⃗′ = a⃗L + α⃗aR

H⃗′ = H⃗′L + αH⃗R

G⃗′ = G⃗L + α−1G⃗R

b⃗′ = b⃗L + α−1⃗bR

then:


< a⃗′, G⃗′ >= C + αCRL + α−1CLR = C⃗′

< H⃗′, b⃗′ >= D + αDRL + α−1DLR = D⃗′
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Bulletproofs Recursive Strategy II
Split and Combine: From Commitments Size n to Commitments size n/2

Simple Fact 2: Let α ∈ R,

If
{⃗

a′ = a⃗L + α⃗aR

G⃗′ = G⃗L + α−1G⃗R
then < a⃗′, G⃗′ >= C + αCRL + α−1CLR

Split and Combine Protocol:



Bulletproofs Full Protocol



Bulletproofs: Soundness
Algebraic Reductions of Knowledge

Idea: if adversary knows opening for C(i+1) w.r.t to key G⃗(i+1), then it
knows an opening for C(i) w.r.t to key G⃗(i).



Polynomial Commitments in DLOG Groups



Polynomial commitments from BP

C ← PolyCommit(ck ∈ Gn, a⃗ ∈ Zn
p):{

ck = G⃗ = (G1, . . . , Gn)

(a1, . . . , an) ∈ Zn
p

−→ C =< a⃗, G⃗ >=
n

∑
i=1

aiGi

π, f (s)← PolyCommitOpen(ck ∈ Gn, c⃗ ∈ Zn
p, s ∈ Zp): if a⃗ are the

coefficients of polynomial f (X), return f (s), and short proof of correct
opening π.
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Bulletproofs: Efficiency

Prover Complexity: O(n)
Communication Complexity: O(log n).
Verifier Complexity:

O(n)

G⃗ = (G0, G1, G2, G3) ∈ G4

G⃗(1) = (G0 + α−1
1 G2, G1 + α−1

1 G3) ∈ G2

G⃗(2) = G0 + α−1
1 G2 + α−1

2 G1 + α−1
2 α−1

1 G3 ∈ G

= G0 + α−1
2 G1 + α−1

1 G2 + α−1
2 α−1

1 G3

= ⟨G⃗, (1, α−1
1 )⊗ (1, α−1

2 )⟩
= PolyCommitG⃗(g)

where g(X) = (1 + α−1
1 X2)(1 + α−1

2 X) = 1 + α−1
2 X + α−1

1 X2 + α−1
2 α−1

1 X3.
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Accumulators



Bulletproofs: Efficiency

Prover Complexity: O(n)
Communication Complexity: O(log2 n).
Verifier Complexity: O(n) IT’S A SAD, SAD, WORLD

More generally, if n = 2µ,

G⃗(µ) = ⟨G⃗,
⊗

(1, α−1
i )⟩ = PolyCommitG⃗ (⃗c)

where g(X) = ∏
µ
i=1(1 + α−1

µ+1−iX
2i−1

).



Bulletproofs: Split Verifiers

Except with probability d/p, if s← Zp is chosen independently of G(µ),

G(µ) is correct ⇐⇒ G(µ) opens to g(s) =
µ

∏
i=1

(1 + α−1
µ+1−is

2i−1
)



Bulletproofs: Amortizing Linear Verifiers
(Atomic) Accumulator Intuition

Suppose we want to prove a sequence of inner product statements...

The linear verification “delayed” or accumulated in a fresh running instance
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